Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = gas dissolution foaming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4590 KB  
Article
Effect of CO2 Concentration on the Performance of Polymer-Enhanced Foam at the Steam Front
by Mingxuan Wu, Binfei Li, Liwei Ruan, Chao Zhang, Yongqiang Tang and Zhaomin Li
Polymers 2024, 16(19), 2726; https://doi.org/10.3390/polym16192726 - 26 Sep 2024
Cited by 6 | Viewed by 1726
Abstract
This study examines the impact of CO2 concentration on the stability and plugging performance of polymer-enhanced foam (PEF) under high-temperature and high-pressure conditions representative of the steam front in heavy oil reservoirs. Bulk foam experiments were conducted to analyze the foam performance, [...] Read more.
This study examines the impact of CO2 concentration on the stability and plugging performance of polymer-enhanced foam (PEF) under high-temperature and high-pressure conditions representative of the steam front in heavy oil reservoirs. Bulk foam experiments were conducted to analyze the foam performance, interfacial properties, and rheological behavior of CHSB surfactant and Z364 polymer in different CO2 and N2 gas environments. Additionally, core flooding experiments were performed to investigate the plugging performance of PEF in porous media and the factors influencing it. The results indicate that a reduction in CO2 concentration in the foam, due to the lower solubility of N2 in water and the reduced permeability of the liquid film, enhances foam stability and flow resistance in porous media. The addition of polymers was found to significantly improve the stability of the liquid film and the flow viscosity of the foam, particularly under high-temperature conditions, effectively mitigating the foam strength degradation caused by CO2 dissolution. However, at 200 °C, a notable decrease in foam stability and a sharp reduction in the resistance factor were observed. Overall, the study elucidates the effects of gas type, temperature, and polymer concentration on the flow and plugging performance of PEF in porous media, providing reference for fluid mobility control at the steam front in heavy oil recovery. Full article
(This article belongs to the Special Issue New Advances in Polymer-Based Surfactants)
Show Figures

Figure 1

13 pages, 4156 KB  
Article
Transformation of Biomass Power Plant Ash into Composite Fertilizers: A Perspective to Prepare a Rain-Controlled Ammonium Ion–Releasing Composite Fertilizer
by László Kótai, Márk Windisch and Kende Attila Béres
J. Compos. Sci. 2024, 8(9), 336; https://doi.org/10.3390/jcs8090336 - 24 Aug 2024
Cited by 4 | Viewed by 2391
Abstract
We have developed a convenient route to transform biomass power plant ashes (BPPA) into porous sponge-like fertilizer composites. The absence of water prevents the chemical reaction and carbon dioxide formation when concentrated sulfuric acid is mixed with BPPA and CaCO3. Adding [...] Read more.
We have developed a convenient route to transform biomass power plant ashes (BPPA) into porous sponge-like fertilizer composites. The absence of water prevents the chemical reaction and carbon dioxide formation when concentrated sulfuric acid is mixed with BPPA and CaCO3. Adding water, however, initiates the protonation reaction of carbonate ion content and starts CO2 evolution. The key element of the method was that the BPPA and, optionally, CaCO3 and/or CaSO4·0.5H2O were mixed with concentrated sulfuric acid to make a paste-like consistency. No gas evolution occurred at this stage; however, with the subsequent and controlled addition of water, CO2 gas evolved and was released through the channels developed in the pastry-like material due to the internal gas pressure, but without foaming. Using a screw-containing tube reactor, the water can be introduced under pressure. Due to the pressure, the pores in the pastry-like material became smaller, and consequently, the mechanical strength of the granulated and solidified mixture became higher than that of the reaction products prepared under atmospheric pressure. The main reaction products were syngenite (K2Ca(SO4)2·H2O) and polyhalite (K2Ca2Mg(SO4)4·2H2O). These compounds are valuable fertilizer components in themselves, but the material’s porous nature helps absorb solutions of microelement fertilizers. Surprisingly, concentrated ammonium nitrate solutions transform the syngenite content of the porous fertilizer into ammonium calcium sulfate ((NH4)2Ca(SO4)2·2H2O, koktaite). Koktaite is slightly soluble in water, thus the amount of ammonium ion released on the dissolution of koktaite depends on the amount of available water. Accordingly, ammonium ion release for plants can be increased with rain or irrigation, and koktaite is undissolved and does not decompose in drought situations. The pores (holes) of this sponge-like fertilizer product can be filled with different solutions containing other fertilizer components (phosphates, zinc, etc.) to adjust the composition of the requested fertilizer compositions for particular soils and plant production. The method allows the preparation of ammonium nitrate composite fertilizers containing metallic microelements, and various solid sponge-like composite materials with adjusted amounts of slowly releasing fertilizer components like syngenite and koktaite. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials)
Show Figures

Graphical abstract

9 pages, 1864 KB  
Article
A New Straightforward Darcy-Scale Compositional Solver in OpenFOAM for CO2/Water Mutual Solubility in CO2 Storage Processes in Aquifers
by Ali Papi, Amir Jahanbakhsh and Mercedes M. Maroto-Valer
Energies 2024, 17(14), 3401; https://doi.org/10.3390/en17143401 - 11 Jul 2024
Cited by 1 | Viewed by 2874
Abstract
Advancing the modeling of evaporation and salt precipitation is essential in CO2 storage processes in aquifers. OpenFOAM provides a platform for computational fluid dynamics (CFD) modeling with its open-source C++ object-oriented architecture that can especially be used in the development of fluid [...] Read more.
Advancing the modeling of evaporation and salt precipitation is essential in CO2 storage processes in aquifers. OpenFOAM provides a platform for computational fluid dynamics (CFD) modeling with its open-source C++ object-oriented architecture that can especially be used in the development of fluid flow models in porous media. Some OpenFOAM packages have been developed in this area, and their codes are available for use. Despite this, the existing OpenFOAM literature does not include a model that incorporates multicomponent interactions in multi-phase flow systems, referred to as compositional modeling, at the Darcy scale. This existing gap is addressed in this paper, where a new simple model in OpenFOAM is introduced that aims to model the interaction of CO2 and H2O components in CO2 storage processes in aquifers at the Darcy scale. The model, named compositionalIGFoam, incorporates a compositional solver by extending the impesFoam solver of the porousMultiphaseFoam package, while assuming some simplifications, to account for CO2/water mutual dissolution, relevant to carbon capture and storage (CCS) processes in aquifers. The functionality of the compositionalIGFoam solver was assessed by showcasing its ability to reproduce the outcomes of existing examples. In addition to that, the process of gas injection into a water-saturated core sample was simulated using the developed model to mimic CO2 injection into aquifers. The CMG-GEM commercial compositional simulator was used to compare its results with the coreflood model of this study. Phenomenal agreement was achieved with the GEM model, showing only 1.8% and 0.4% error for both components. This confirms the accuracy and reliability of the developed model. In conclusion, this study enhances the state of the art in porous media modeling using OpenFOAM 10, providing a valuable tool for examining fluid interactions in subsurface environments, especially within the context of CCS processes. Full article
(This article belongs to the Special Issue Optimization of CO2 Capture and Sequestration)
Show Figures

Figure 1

17 pages, 8713 KB  
Article
Co-Injection of Foam and Particles: An Approach for Bottom Water Control in Fractured-Vuggy Reservoirs
by Jianhai Wang, Yibo Feng, Aiqing Cao, Jingyu Zhang and Danqi Chen
Processes 2024, 12(3), 447; https://doi.org/10.3390/pr12030447 - 22 Feb 2024
Cited by 7 | Viewed by 1694
Abstract
Fractured-vuggy carbonate reservoirs are tectonically complex; their reservoirs are dominated by holes and fractures, which are extremely nonhomogeneous and are difficultly exploited. Conventional water injection can lead to water flooding, and the recovery effect is poor. This paper takes the injection of foam [...] Read more.
Fractured-vuggy carbonate reservoirs are tectonically complex; their reservoirs are dominated by holes and fractures, which are extremely nonhomogeneous and are difficultly exploited. Conventional water injection can lead to water flooding, and the recovery effect is poor. This paper takes the injection of foam and solid particles to control bottom water as the research direction. Firstly, the rheological properties of foam were studied under different foam qualities and the presence of particles. The ability of foam to carry particles was tested. By designing a microcosmic model of a fractured-vuggy reservoir, we investigated the remaining oil types and the distribution caused by bottom water. Additionally, we analyzed the mechanisms of remaining oil mobilization and bottom water plugging during foam flooding and foam–particle co-injection. The experimental results showed that foam was a typical power-law fluid. Foam with a quality of 80% had good stability and apparent viscosity. During foam flooding, foam floated at the top of the dissolution cavities, effectively driving attic oil. Additionally, the gas cap is released when the foam collapses, which can provide pressure energy to supplement the energy of the reservoir. Collaborative injection of foam and solid particles into the reservoir possessed several advantages. On one hand, it inherited the benefits of foam flooding. On the other hand, the foam transported particles deep into the reservoir. Under the influence of gravity, particles settled and accumulated in the fractures or cavities, forming bridge plugs at the connection points, effectively controlling bottom water channeling. The co-injection of foam and solid particles holds significant potential for applications. Full article
(This article belongs to the Topic Multi-Phase Flow and Unconventional Oil/Gas Development)
Show Figures

Figure 1

21 pages, 7465 KB  
Article
Impact of Injection Gas on Low-Tension Foam Process for EOR in Low-Permeability Oil-Wet Carbonates
by Dany Hachem and Quoc P. Nguyen
Energies 2023, 16(24), 8021; https://doi.org/10.3390/en16248021 - 12 Dec 2023
Cited by 3 | Viewed by 1692
Abstract
Low-tension gas (LTG) flooding has been proven in lab-scale experiments to be a viable tertiary enhanced oil recovery (EOR) technique in low-permeability (~10 mD) oil-wet carbonates. Work carried out previously almost exclusively focused on water-wet cores. The application of LTG in oil-wet carbonates [...] Read more.
Low-tension gas (LTG) flooding has been proven in lab-scale experiments to be a viable tertiary enhanced oil recovery (EOR) technique in low-permeability (~10 mD) oil-wet carbonates. Work carried out previously almost exclusively focused on water-wet cores. The application of LTG in oil-wet carbonates is investigated in this study along with the impact of a hydrocarbon (HC) mixture as the injection gas on oil–water microemulsion phase behavior. The optimum injection gas fraction (ratio of gas injection rate to total injection rate of gas and water) for the hydrocarbon gas mixture in oil-wet carbonates regarding the oil recovery rate was determined to be 60% as it resulted in around 50% residual oil in place (ROIP) recovery. It was shown that proper mobility control can be achieved under these conditions even in the absence of strong foam. The effect of HC gas dissolution in oil was clearly shown by replacing the injection HC gas with nitrogen under the same conditions. Furthermore, the importance of ultra-low interfacial tension (IFT) produced by the injection gas and surfactant slug is proven by comparing injection at sub-optimum salinity to injection at optimum salinity. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

15 pages, 6110 KB  
Article
Study on Flow Characteristics of Flue Gas and Steam Co-Injection for Heavy Oil Recovery
by Yanmin Ji, Boliang Li, Zongyuan Han, Jian Wang, Zhaomin Li and Binfei Li
Processes 2023, 11(5), 1406; https://doi.org/10.3390/pr11051406 - 6 May 2023
Cited by 10 | Viewed by 2900
Abstract
Flue gas is composed of N2 and CO2, and is often used as an auxiliary agent for oil displacement, with good results and very promising development prospects for co-injection with steam to develop heavy oil. Although research on the oil [...] Read more.
Flue gas is composed of N2 and CO2, and is often used as an auxiliary agent for oil displacement, with good results and very promising development prospects for co-injection with steam to develop heavy oil. Although research on the oil displacement mechanism of flue gas has been carried out for many years, the flow characteristics of steam under the action of flue gas have rarely been discussed. In this paper, the flow resistance and heat transfer effect of flue gas/flue gas + steam were evaluated by using a one-dimensional sandpack, a flue gas-assisted steam flooding experiment was carried out using a specially customized microscopic visualization model, and the microscopic flow characteristics in the process of the co-injection of flue gas and steam were observed and analyzed. The results showed that flue gas could improve the heat transfer effect of steam whilst accelerating the flow of steam in porous media and reducing the flow resistance of steam. Compared with pure steam, when the volume ratio of flue gas and steam was 1:2, the mobility decreased by 2.8 and the outlet temperature of the sandpack increased by 35 °C. This trend intensified with an increase in the proportion of flue gas. In the microscopic oil displacement experiments, the oil recovery and sweep efficiency of the flue gas and steam co-injection stage increased by 4.7% and 32.9%, respectively, compared with the pure steam injection stage due to the effective utilization of blocky remaining oil and corner remaining oil caused by the expansion of fluid channels, the flow of flue gas foam, and the dissolution and release of flue gas in heavy oil. Full article
(This article belongs to the Topic Multi-Phase Flow and Unconventional Oil/Gas Development)
Show Figures

Figure 1

18 pages, 24941 KB  
Article
Feasibility and Mechanism of Deep Heavy Oil Recovery by CO2-Energized Fracturing Following N2 Stimulation
by Shuaishuai Sun, Yongbin Wu, Xiaomei Ma, Pengcheng Liu, Fujian Zhang, Peng Liu and Xiaokun Zhang
Energies 2023, 16(3), 1161; https://doi.org/10.3390/en16031161 - 20 Jan 2023
Cited by 3 | Viewed by 2211
Abstract
There are large, heavy oil reserves in Block X of the Xinjiang oilfields, China. Due to its large burial depth (1300 m) and low permeability (26.0 mD), the traditional steam-injection technology cannot be used to obtain effective development benefits. This paper conducts experimental [...] Read more.
There are large, heavy oil reserves in Block X of the Xinjiang oilfields, China. Due to its large burial depth (1300 m) and low permeability (26.0 mD), the traditional steam-injection technology cannot be used to obtain effective development benefits. This paper conducts experimental and simulation research on the feasibility and mechanism of CO2-energized fracturing of horizontal wells and N2 foam huff-n-puff in deep heavy oil reservoirs with low permeability in order to further explore the appropriate production technology. The foaming volume of the foaming agent at different concentrations and the oil displacement effect of N2 foam at different gas/liquid ratios were compared by the experiments. The results show that a high concentration of foaming agent mixed with crude oil is more conducive to increasing the foaming volume and extending the half-life, and the best foaming agent concentration is 3.0∼4.0%. The 2D micro-scale visualization experiment results show that N2 foam has a good selective blocking effect, which increases the sweep area. The number of bubbles per unit area increases as the gas/liquid ratio increases, with 3.0∼5.0 being the optimal gas/liquid ratio. Numerical simulation results show that, when CO2-energized fracturing technology takes into account the advantages of fracturing and crude oil viscosity reduction by CO2 dissolution, the phased oil recovery factor in the primary production period can reach approximately 13.7%. A solvent pre-slug with N2 foam huff-n-puff technology is applied to improve oil recovery factor following primary production for 5∼6 years, and the final oil recovery factor can reach approximately 35.0%. The methodology formulated in this study is particularly significant for the effective development of this oil reservoir with deeply buried depth and low permeability, and would also guide the recovery of similar oil deposits. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

17 pages, 3148 KB  
Article
Bubble Growth in Supersaturated Liquids
by Raj Kumar Nayak Maloth, Roger E. Khayat and Christopher T. DeGroot
Fluids 2022, 7(12), 365; https://doi.org/10.3390/fluids7120365 - 25 Nov 2022
Cited by 7 | Viewed by 4272
Abstract
Bubble formation and dissolution have a wide range of industrial applications, from the production of beverages to foam manufacturing processes. The rate at which the bubble expands or contracts has a significant effect on these processes. In the current work, the hydrodynamics of [...] Read more.
Bubble formation and dissolution have a wide range of industrial applications, from the production of beverages to foam manufacturing processes. The rate at which the bubble expands or contracts has a significant effect on these processes. In the current work, the hydrodynamics of an isolated bubble expanding due to mass transfer in a pool of supersaturated gas–liquid solution is investigated. The complete scalar transportation equation (advection–diffusion) is solved numerically. It is observed that the present model accurately predicted bubble growth when compared with existing approximated models and experiments. The effect of gas–liquid solution parameters such as inertia, viscosity, surface tension, diffusion coefficient, system pressure, and solubility of the gas has been investigated. It is found that the surface tension and inertia have a very minimal effect during the bubble expansion. However, it is observed that the viscosity, system pressure, diffusion, and solubility have a considerable effect on bubble growth. Full article
(This article belongs to the Special Issue Recent Advances in Fluid Mechanics: Feature Papers, 2022)
Show Figures

Figure 1

10 pages, 1990 KB  
Communication
One-Step Generation of Alginate-Based Hydrogel Foams Using CO2 for Simultaneous Foaming and Gelation
by Imene Ben Djemaa, Sébastien Andrieux, Stéphane Auguste, Leandro Jacomine, Malgorzata Tarnowska and Wiebke Drenckhan-Andreatta
Gels 2022, 8(7), 444; https://doi.org/10.3390/gels8070444 - 16 Jul 2022
Cited by 16 | Viewed by 5959
Abstract
The reliable generation of hydrogel foams remains a challenge in a wide range of sectors, including food, cosmetic, agricultural, and medical applications. Using the example of calcium alginate foams, we introduce a novel foam generation method that uses CO2 for the simultaneous [...] Read more.
The reliable generation of hydrogel foams remains a challenge in a wide range of sectors, including food, cosmetic, agricultural, and medical applications. Using the example of calcium alginate foams, we introduce a novel foam generation method that uses CO2 for the simultaneous foaming and pH reduction of the alginate solution to trigger gelation. We show that gelled foams of different gas fractions can be generated in a simple one-step process. We macroscopically follow the acidification using a pH-responsive indicator and investigate the role of CO2 in foam ageing via foam stability measurements. Finally, we demonstrate the utility of interfacial rheology to provide evidence for the gelation process initiated by the dissolution of the CO2 from the dispersed phase. Both approaches, gas-initiated gelation and interfacial rheology for its characterization, can be readily transferred to other types of gases and formulations. Full article
(This article belongs to the Special Issue Biopolymers-Based Emulsions and Hydrogels)
Show Figures

Graphical abstract

21 pages, 51310 KB  
Article
Nanostructure of PMMA/MAM Blends Prepared by Out-of-Equilibrium (Extrusion) and Near-Equilibrium (Casting) Self-Assembly and Their Nanocellular or Microcellular Structure Obtained from CO2 Foaming
by Suset Barroso-Solares, Victoria Bernardo, Daniel Cuadra-Rodriguez and Javier Pinto
Nanomaterials 2021, 11(11), 2834; https://doi.org/10.3390/nano11112834 - 25 Oct 2021
Cited by 4 | Viewed by 2131
Abstract
Blends of poly(methyl methacrylate) (PMMA) and a triblock copolymer poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate) (MAM) have been obtained following both out-of-equilibrium (extrusion) and near-equilibrium (solvent casting) production routes. The self-assembly capability and the achievable nanostructures of these blends are analyzed by transmission electron microscopy [...] Read more.
Blends of poly(methyl methacrylate) (PMMA) and a triblock copolymer poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate) (MAM) have been obtained following both out-of-equilibrium (extrusion) and near-equilibrium (solvent casting) production routes. The self-assembly capability and the achievable nanostructures of these blends are analyzed by transmission electron microscopy (TEM) regarding their production route and potential for the achievement of nanocellular foams by CO2 gas dissolution foaming. The influence of the initial nanostructure of the solids on the obtained cellular structure of bulk and film samples is determined by high-resolution scanning electron microscopy (HRSEM) for diverse foaming conditions (saturation pressure, saturation temperature, and post-foaming stage), taking into account the required use of a foaming mold to achieve foams from films. Moreover, the influence of the nanostructuration on the presence of solid outer layers, typical of the selected foaming process, is addressed. Finally, consideration of a qualitative model and the obtained results in terms of nanostructuration, cellular structure, and foaming behavior, allow proposing a detailed cell nucleation, growth, and stabilization scheme for these materials, providing the first direct evidence of the cell nucleation happening inside the poly(butyl acrylate) phase in the PMMA/MAM blends. Full article
(This article belongs to the Special Issue Advanced Nano Cellular Foams)
Show Figures

Figure 1

14 pages, 4770 KB  
Article
Analysis of the Foaming Window for Thermoplastic Polyurethane with Different Hard Segment Contents
by Mercedes Santiago-Calvo, Haneen Naji, Victoria Bernardo, Judith Martín-de León, Alberto Saiani, Fernando Villafañe and Miguel Ángel Rodríguez-Pérez
Polymers 2021, 13(18), 3143; https://doi.org/10.3390/polym13183143 - 17 Sep 2021
Cited by 10 | Viewed by 5862
Abstract
A series of thermoplastic polyurethanes (TPUs) with different amounts of hard segments (HS) (40, 50 and 60 wt.%) are synthesized by a pre-polymer method. These synthesized TPUs are characterized by Shore hardness, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), wide angle X-ray [...] Read more.
A series of thermoplastic polyurethanes (TPUs) with different amounts of hard segments (HS) (40, 50 and 60 wt.%) are synthesized by a pre-polymer method. These synthesized TPUs are characterized by Shore hardness, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), dynamic mechanical thermal analysis (DMTA), and rheology. Then, these materials are foamed by a one-step gas dissolution foaming process and the processing window that allows producing homogeneous foams is analyzed. The effect of foaming temperature from 140 to 180 °C on the cellular structure and on density is evaluated, fixing a saturation pressure of 20 MPa and a saturation time of 1 h. Among the TPUs studied, only that with 50 wt.% HS allows obtaining a stable foam, whose better features are reached after foaming at 170 °C. Finally, the foaming of TPU with 50 wt.% HS is optimized by varying the saturation pressure from 10 to 25 MPa at 170 °C. The optimum saturation and foaming conditions are 25 MPa and 170 °C for 1 h, which gives foams with the lowest relative density of 0.74, the smallest average cell size of 4 μm, and the higher cell nucleation density of 8.0 × 109 nuclei/cm3. As a final conclusion of this investigation, the TPU with 50 wt.% HS is the only one that can be foamed under the saturation and foaming conditions used in this study. TPU foams containing 50 wt.% HS with a cell size below 15 microns and porosity of 1.4–18.6% can be obtained using foaming temperatures from 140 to 180 °C, saturation pressure of 20 MPa, and saturation time of 1 h. Varying the saturation pressure from 10 to 25 MPa and fixing the foaming temperature of 170 °C and saturation pressure of 1 h results in TPU foams with a cell size of below 37 microns and porosity of 1.7–21.2%. Full article
(This article belongs to the Special Issue Advanced Cellular Polymers)
Show Figures

Graphical abstract

18 pages, 4720 KB  
Article
Effect of the Molecular Structure of TPU on the Cellular Structure of Nanocellular Polymers Based on PMMA/TPU Blends
by Ismael Sánchez-Calderón, Victoria Bernardo, Mercedes Santiago-Calvo, Haneen Naji, Alberto Saiani and Miguel Ángel Rodríguez-Pérez
Polymers 2021, 13(18), 3055; https://doi.org/10.3390/polym13183055 - 10 Sep 2021
Cited by 17 | Viewed by 5376
Abstract
In this work, the effects of thermoplastic polyurethane (TPU) chemistry and concentration on the cellular structure of nanocellular polymers based on poly(methyl-methacrylate) (PMMA) are presented. Three grades of TPU with different fractions of hard segments (HS) (60%, 70%, and 80%) have been synthesized [...] Read more.
In this work, the effects of thermoplastic polyurethane (TPU) chemistry and concentration on the cellular structure of nanocellular polymers based on poly(methyl-methacrylate) (PMMA) are presented. Three grades of TPU with different fractions of hard segments (HS) (60%, 70%, and 80%) have been synthesized by the prepolymer method. Nanocellular polymers based on PMMA have been produced by gas dissolution foaming using TPU as a nucleating agent in different contents (0.5 wt%, 2 wt%, and 5 wt%). TPU characterization shows that as the content of HS increases, the density, hardness, and molecular weight of the TPU are higher. PMMA/TPU cellular materials show a gradient cell size distribution from the edge of the sample towards the nanocellular core. In the core region, the addition of TPU has a strong nucleating effect in PMMA. Core structure depends on the HS content and the TPU content. As the HS or TPU content increases, the cell nucleation density increases, and the cell size is reduced. Then, the use of TPUs with different characteristics allows controlling the cellular structure. Nanocellular polymers have been obtained with a core relative density between 0.15 and 0.20 and cell sizes between 220 and 640 nm. Full article
(This article belongs to the Special Issue Sub-microcellular and Nanocellular Polymers)
Show Figures

Graphical abstract

12 pages, 4276 KB  
Article
Cyclic Gas Dissolution Foaming as an Approach for Simultaneously Reducing Cell Size and Relative Density in Nanocellular PMMA
by Judith Martín-de León, Victoria Bernardo and Miguel Ángel Rodriguez-Perez
Polymers 2021, 13(14), 2383; https://doi.org/10.3390/polym13142383 - 20 Jul 2021
Cited by 6 | Viewed by 2827
Abstract
A new approach to produce nanocellular polymers combining small cell sizes with low relative densities is presented herein. This production method, based on gas dissolution foaming, consists of performing a double saturation and foaming cycle. Thus, nanocellular polymethylmethacrylate (PMMA) has been produced through [...] Read more.
A new approach to produce nanocellular polymers combining small cell sizes with low relative densities is presented herein. This production method, based on gas dissolution foaming, consists of performing a double saturation and foaming cycle. Thus, nanocellular polymethylmethacrylate (PMMA) has been produced through a first saturation at different saturation conditions (6, 10, and 20 MPa and −32 °C), at constant foaming conditions (60 °C for 1 min). Then, the nanocellular PMMAs obtained from the previous step were again saturated at different saturation conditions, 10 MPa 24 °C, 31 MPa 24 °C, 35 MPa 22 °C, and 6 MPa −15 °C and foamed at different temperatures (40, 80 and 100 °C) for 1 min. This new approach allows the cells created in the first saturation and foaming cycle to further grow in the second cycle. This fact permits producing nanocellular polymethylmethacrylate sheets combining, for the first time in the literature, cell sizes of 24 nm with relative densities of 0.3. Full article
(This article belongs to the Special Issue Advanced Cellular Polymers)
Show Figures

Graphical abstract

12 pages, 3382 KB  
Article
Electrical Conduction Behavior of High-Performance Microcellular Nanocomposites Made of Graphene Nanoplatelet-Filled Polysulfone
by Hooman Abbasi, Marcelo Antunes and José Ignacio Velasco
Nanomaterials 2020, 10(12), 2425; https://doi.org/10.3390/nano10122425 - 4 Dec 2020
Cited by 3 | Viewed by 2394
Abstract
Graphene nanoplatelet (GnP)-filled polysulfone (PSU) cellular nanocomposites, prepared by two different methods—namely, water vapor-induced phase separation (WVIPS) and supercritical CO2 dissolution (scCO2) foaming—were produced with a range of densities from 0.4 to 0.6 g/cm3 and characterized in terms of [...] Read more.
Graphene nanoplatelet (GnP)-filled polysulfone (PSU) cellular nanocomposites, prepared by two different methods—namely, water vapor-induced phase separation (WVIPS) and supercritical CO2 dissolution (scCO2) foaming—were produced with a range of densities from 0.4 to 0.6 g/cm3 and characterized in terms of their structure and electrical conduction behavior. The GnP content was varied from 0 to 10 wt%. The electrical conductivity values were increased with the amount of GnP for the three different studied foam series. The highest values were found for the microcellular nanocomposites prepared by the WVIPS method, reaching as high as 8.17 × 10−2 S/m for 10 wt% GnP. The variation trend of the electrical conductivity for each series was analyzed by applying both the percolation and the tunneling models. Comparatively, the tunneling model showed a better fitting in the prediction of the electrical conductivity. The preparation technique of the cellular nanocomposite affected the resultant cellular structure of the nanocomposite and, as a result, the porosity or gas volume fraction (Vg). A higher porosity resulted in a higher electrical conductivity, with the lightest foams being prepared by the WVIPS method, showing electrical conductivities two orders of magnitude higher than the equivalent foams prepared by the scCO2 dissolution technique. Full article
(This article belongs to the Special Issue Multifunctional Polymer-Based Nanocomposite Materials)
Show Figures

Figure 1

19 pages, 3186 KB  
Review
Nanocellular Polymers: The Challenge of Creating Cells in the Nanoscale
by Judith Martín-de León, Victoria Bernardo and Miguel Ángel Rodríguez-Pérez
Materials 2019, 12(5), 797; https://doi.org/10.3390/ma12050797 - 7 Mar 2019
Cited by 41 | Viewed by 4835
Abstract
The evolution of technology means that increasingly better materials are needed. It is well known that as a result of their interesting properties, nanocellular polymers perform better than microcellular ones. For this reason, the investigation on nanocellular materials is nowadays a very topical [...] Read more.
The evolution of technology means that increasingly better materials are needed. It is well known that as a result of their interesting properties, nanocellular polymers perform better than microcellular ones. For this reason, the investigation on nanocellular materials is nowadays a very topical issue. In this paper, the different approaches for the production of these materials in our laboratory are explained, and results obtained by using polymethylmethacrylate (PMMA) are shown. Homogeneous nucleation has been studied by using raw PMMA, while two different systems were used for heterogeneous nucleation; adding nanoparticles to the system and using nanostructured polymers as solid precursors for foaming. The effects of the different parameters of the production process (gas dissolution foaming process) have been evaluated for all systems being possible to establish a comparison between the materials produced by different approaches. Moreover, the limitations and future work to optimise the materials produced are also discussed. Full article
(This article belongs to the Special Issue New Trends in Polymeric Foams)
Show Figures

Figure 1

Back to TopTop