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Abstract: Bubble formation and dissolution have a wide range of industrial applications, from the
production of beverages to foam manufacturing processes. The rate at which the bubble expands or
contracts has a significant effect on these processes. In the current work, the hydrodynamics of an
isolated bubble expanding due to mass transfer in a pool of supersaturated gas–liquid solution is
investigated. The complete scalar transportation equation (advection–diffusion) is solved numerically.
It is observed that the present model accurately predicted bubble growth when compared with
existing approximated models and experiments. The effect of gas–liquid solution parameters such as
inertia, viscosity, surface tension, diffusion coefficient, system pressure, and solubility of the gas has
been investigated. It is found that the surface tension and inertia have a very minimal effect during
the bubble expansion. However, it is observed that the viscosity, system pressure, diffusion, and
solubility have a considerable effect on bubble growth.

Keywords: bubble growth; hydrodynamics; supersaturated liquids; 1-d moving interface; advection–
diffusion process

1. Introduction

A gas bubble is formed when an atomically or molecularly dissolved gas becomes
supersaturated in a liquid solvent as a result of the reduction in imposed gas pressure,
change in liquid temperature, or change in solute or solvent character Rosner et al., 1972, [1].
The study of gas bubbles is of major interest due to their appearance in many real-world
problems. One of the important applications of bubble hydrodynamics is in chemical
process industries, for example in the production of foamed plastics Elshereef et al., 2010, [2].
When a gas-generating substance such as a blowing agent is mixed with a high-pressure
molten polymer, the resulting product turns out to be thermoplastic Arefmanesh et al.,
1992, [3]. In this process, gas bubbles emerge and have a considerable effect on product
quality. Therefore, it is necessary to understand the behavior of bubbles under different
process parameter conditions. High-density foamed thermoplastics, otherwise called
cellular plastics, are used in household furniture, transportation, and building products; on
the other hand, low-density thermoplastics are frequently used in rigid packing Lee et al.,
1996, [4]. The formation and growth of bubbles due to de-gassing or reduction in pressure
in a supersaturated gas–liquid solution is observed in a broader spectrum of industrial and
natural processes. For example, a very well-known process in which de-gassing is observed
are carbonated beverages, such as beer, soda, and champagne (Bisperink et al., 1994, [5];
Jones et al., 1999, [6]; Barker et al., 2002, [7]; Liger-Belair 2005, [8]; Lee et al., 2011, [9];
Enríquez et al., 2013, [10] Enríquez et al., 2014, [11]). The study of bubble dynamics is vital
in production industries, where molten polymers, metals, and glasses are of major interest
Amon and Denson, 1984, [12] and a bubble prediction theory is important in the exsolution
of gases during oil extraction Pooladi-Darvish et al., 1999, [13].

Several mathematical models have been developed to predict the bubble size evolu-
tion in various industrial processes. For instance, Epstein and Plesset, 1950, [14] derived
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an approximate analytical solution, by neglecting inertia, to an unbounded single bub-
ble growth/dissolution in a gas–liquid solution due to pure mass transfer (diffusion) for
supersaturated and undersaturated conditions. Epstein’s formulation suggests that the
bubble grows as the square root of time, i.e., R ∝

√
t, where R is the radius of the bubble.

However, their formulation lacks in explaining the hydrodynamic effects on bubble growth,
including inertia, surface tension, etc. Barlow and Langlois, 1962, [15] were the first to com-
bine diffusion with hydrodynamics, wherein they introduced a very complicated integro-
differential equation based on a thin shell assumption. The formulation of Barlow et al.
is complicated and computationally time-consuming to solve for larger bubble growth
rates. Rosner and Epstein, 1972, [1] assumed a parabolic concentration profile in a thin
boundary layer to generate an approximate solution of the diffusion equation. This work
has been adopted by many researchers including Elshereef et al., 2010, [2], Patel, 1980, [16]
and Han and Yoo, 1981, [17] formulation does not account for the change in gas pressure
inside the bubble with time. Patel, 1980, [16] developed two coupled ordinary differential
equations (ODEs) for predicting the unbounded growth of a single bubble in a Newtonian
liquid; however, he neglected the effect of inertia in his formulation. Later, Amon and
Denson, 1984, [12] introduced a cell-based model that incorporates the effect of available
gas from the surrounding bubbles. Amon and Denson’s formulation is developed based on
a cell model assumption, where they have considered the foam as a summation of an equal
microscopic unit of spherical cells with a constant mass in it and every cell has a spherical
gas bubble that grows by diffusion of gas from the microscopic unit.

As discussed earlier, Barlow et al., 1962, [15] and Patel, 1980, [16] developed models for
pure Newtonian fluid cases, hence neglected the effect of the elastic nature of the polymer.
To fill this gap, Han and Yoo, 1981, [17] and Ramesh et al., 1991, [18] introduced a model
that includes the effect of the elasticity of the fluid (polymer). Elshereef et al., 2010, [2]
compared two popular bubble growth models. The first model is known as the Patel model
or single bubble growth model, which is developed on assumption that a single bubble
grows in a pool of liquid with infinite availability of gas, and the second model is called a
cell model or Amon and Denson model, which is developed by incorporating the finiteness
of gas availability and considering the proximity of gas bubbles. The main motivation of
the Elshereef et al., 2010, [2] investigation was to compare these two models in terms of
numerical implementations and accuracy in bubble growth prediction. In this regard, they
compared the models with Han and Yoo’s experimental findings. In recent years, Soto et al.,
2019, 2020, [19,20] investigated experimentally carbon dioxide (CO2) and nitrogen (N2)
bubble growth in water solutions with and without confinements. Their finding suggests
that after the initial period of diffusion-driven bubble growth, the mass transfer is further
accelerated due to density-driven convective flow.

Although researchers have performed ample work in understanding the hydrodynam-
ics of the bubbles in different processes, clear insight into the diffusion process coupling
with hydrodynamics and an explanation of process flow parameters’ effects on hydrody-
namics are lacking. The current work emphasizes solving the diffusion process numerically
and closely studying how different liquid parameters such as liquid viscosity, surface ten-
sion, diffusion coefficient, system pressure, and solubility of gas affect the hydrodynamics
of bubble growth. Though the current numerical framework developed in this work is
for Newtonian liquids, the authors aim to explore how the current model compares with
the different Newtonian liquid models of Elshereef et al., 2010, [2] and the viscoelastic
experimental data of Han and Yoo, 1981, [17].

2. Physical Domain and Problem Formulation
2.1. The Physical Domain

The hydrodynamics of an isolated, spherically symmetrical gas bubble of radius R(t),
where t is the time, in an incompressible gas–liquid solution is examined in spherical coor-
dinates (r, θ, φ). Barred variables denote dimensional quantities. We assume a stationary
single bubble of initial radius R0 and a gas pressure pg0 nucleating in a saturated solution
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of gas and liquid with the partial pressure of the gas in the liquid p0 and concentration c0,
as shown in Figure 1. Denoting the interfacial tension by σ, then pg0 = σ

R0
+ p0. At t = 0+,

the gas–liquid solution is suddenly exposed to a drop in pressure when the atmospheric
pressure pa is applied in the bulk liquid region far from the gas bubble, and where it is
assumed maintained for all time t > 0. We denote by pR(t) the pressure at the gas–liquid
interface and by pg(t), the gas pressure inside the bubble. The concentration of the gas
in the liquid at a given time and position is denoted by c(r, t), whereas the concentration
at the interface of the bubble is cR(t) ≡ c(r = R, t). Due to the spherical symmetry as-
sumption the velocity components v and w in the direction θ and φ vanishes. Therefore,
the only non-vanishing liquid velocity component is in radial direction and denoted by
u(r, t) and the bubble interface velocity is given by dR

dt = u(r = R, t) Maloth, 2020, [21].
Henry’s law is assumed to apply initially so that c0 = kH p0 and at the interface so that
cR(t) = kH pR(t), where kH is Henry’s constant. Finally, as it is customarily done in the
literature, we assume that the concentration far from the bubble retains its initial level as
it is not affected by the sudden drop in pressure during the transient process of bubble
growth. Thus, c( r → ∞, t ) ∼ c0.
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Figure 1. Schematic diagram of a single bubble in a liquid–gas solution.

2.2. Conservation of Mass and Linear Momentum

The flow of the Newtonian liquid of density ρL and viscosity µL is assumed to be
spherically symmetric, thus reducing to a transient one-dimensional problem in the radial
direction, r. The conservation of mass and momentum in the liquid region reduces to

∂u
∂r

+ 2
u
r
= 0 (1)

ρL(
∂u
∂t

+ u
∂u
∂r

) = −∂p
∂r

+ 2µL(
∂2u
∂r2 +

1
r

∂u
∂r
− 1

r2 u). (2)

These equations are subject to the following initial and boundary conditions. Initially,
the bubble is assumed to be of radius R0 and at rest, so that

R(t = 0) = R0, u(r, t = 0) = 0. (3)

The kinematic and dynamic boundary conditions at the interface take the form:

u(r = R, t) =
dR
dt

(4)

pg(t) = 2
σ

R(t)
+ p(r = R, t) + 4

µL

R(t)
u(r = R, t), (5)
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where σ is the interfacial tension. In stating condition (5), the gas inside the bubble is
assumed to be motionless. Integrating Equation (1) and using condition (4) leads to

u(r, t) =
R2

r2
dR
dt

. (6)

Substituting this expression for the radial velocity and integrating Equation (2) over
the interval r ∈ (R, ∞), and eliminating the pressure at the interface from conditions (5)
yields the Rayleigh–Plesset equation:

ρL

[
R

d2R

dt2 +
3
2

(
dR
dt

)2]
= pg(t)− 2

σ

R
− 4

µL

R
dR
dt
− pa. (7)

Here, the growth of the bubble is dictated by the pressure difference pg − pa, where
pg > pa. We note that the pressure at infinity is the surrounding or ambient pressure of
the liquid and is equal to pa. Equation (7) can be solved once and pg(t) is determined.
The evolution of the gas pressure inside the bubble is directly related to the evolution and
distribution of the gas concentration in the liquid, which is formulated next.

2.3. Concentration and Mass Transfer

In a supersaturated liquid, bubbles grow due to the diffusion of mass across the
interface. Therefore, the diffusive mass flux across the interface is equal to the rate of
change in mass inside the gas bubble. According to Fick’s first law, the time rate of change
in mass flux

.
mR at the interface of the spherical bubble is then given by

dmR

dt
= 4πR2D

(
∂c
∂r

)
R

. (8)

Here,
(

∂c
∂r

)
R
= ∂c

∂r (r = R, t) is the concentration gradient of the gas at the interface

and D (m2/s) is the diffusion coefficient of the gas–liquid solution. Now, let the mass of
the gas inside the bubble be mg(t) = 4

3 πρg0(t)R3
(t), where ρg(t) is the gas density. Then,

the rate of change in mass inside the spherical bubble is

dmg

dt
= 4πR2

(
ρg

.
R +

R
3

ρg

)
. (9)

Assuming that the gas inside the bubble follows the ideal gas law, the density of the gas

can be eliminated in terms of the pressure as ρg(t) =
pg(t)M

RgTg
, where Rg is the universal gas

constant; Tg is the temperature of the gas, which is assumed to remain constant throughout
the transient process; and M is the molar gas weight. We also assume that, after nucleation,
the pressure inside the bubble is in equilibrium with the initial saturation pressure pg0 and

density ρg0. In this case, we can write ρg(t) =
ρg0
pg0

pg(t), and Equation (9) becomes

dmg

dt
= 4π

ρg0

pg0
R2
(

pg
dR
dt

+
R
3

dpg

dt

)
(10)

Upon introducing (10) into Equation (8), we obtain the desired equation for the
pressure inside the gas bubble:

dpg

dt
= 3

pg0

ρg0
D

1
R

(
∂c
∂r

)
R
− 3

pg

R
dR
dt

. (11)
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This is the pressure equation resulting from the thermodynamic equilibrium at the
interface. This first-order equation requires one initial condition on the pressure inside the
bubble, which is formally written as

pg(t = 0) = pg0. (12)

Equations (7) and (11) reflect the coupling between the bubble growth and pressure
evolution inside the bubble. The presence of the concentration gradient at the interface
in (11) also signals an additional coupling with the gas concentration across the saturated
liquid, which is governed by an advection–diffusion equation, as shown next.

The concentration of gas in the liquid c(r, t) can be described by the scalar transport
advection–diffusion equation which, when the velocity is substituted from (6) in the
convective term, becomes

∂c
∂t

+
R2

r2
dR
dt

∂c
∂r

= D
(

2
r

∂c
∂r

+
∂2c
∂r2

)
. (13)

The initial condition for Equation (13) comes from the assumption that, after the
nucleation of the bubble, the concentration is uniformly distributed in the liquid, and it is
equal to the dissolved concentration c0. Therefore, it is written as

c(r, t = 0) = c0. (14)

The remaining two boundary conditions for Equation (13) are the equilibrium condi-
tion of the concentration at the interface, which is described by Henry’s law,

c(r = R, t) = cR(t) = kH pg(t), (15)

where kH is Henry’s constant. The concentration far from the bubble is assumed to be equal
to the saturation concentration:

c( r → ∞, t ) ∼ c0 = kH p0 = kH

(
pg0 − 2

σ

R0

)
. (16)

This completes the formulation of the problem, which illustrates the non-linear cou-
pling among the bubble growth, gas pressure, and concentration in the liquid region.

Equation (11) is similar to the pressure formulation of Elshereef et al., 2010, [2]. How-
ever, they assumed an approximate analytical solution to calculate the concentration
gradient that appears in Equation (11). In the present work, one of the main goals is to solve
the fully coupled problem numerically using a finite difference approach and compare it
with the approximated analytical results.

3. Non-Dimensionalization and Solution Procedure
3.1. The Dimensionless Problem

The equations and their initial and boundary conditions are non-dimensionalized as

follows. The velocity scale is taken as V =

√
(pg0−pa)

ρL
, which is related to the initial driving

pressure difference, the length scale is the initial bubble radius R0, the pressure scale is the
initial gas pressure pg0, and the concentration scale is the equilibrium concentration c0. In

this case, the time scale is naturally R0
V

. The dimensionless variables become

r =
r

R0
, c =

c
c0

, t =
V
R0

t, R =
R
R0

, p =
p

pg0
. (17)
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There are five non-dimensional groups appearing in the problem, three familiar
groups: the Reynolds number Re, the capillary number Ca and the Péclet number Pe.
More explicitly:

Re =
ρLV R0

µL
, (18a)

Ca =
ρLV2R0

σ
=

(pg0 − pa)R0

σ
, (18b)

Pe =
V R0

D
. (18c)

Here, the Reynolds number (Re) compares the inertial force due to bubble growth
in the liquid region with the liquid viscosity. The capillary number (Ca) weighs between
viscous forces from the liquid to the surface tension forces at the interface of the bubble and
the liquid and the Péclet number describes the ratio between the convection mass transfer
to the diffusive mass transfer of gas from the liquid into the bubble.

The additional two new non-dimensional parameters are denoted by P and C, the
former being the ratio of the initial pressure to the pressure difference, and the latter reflects
the initial level of gas solubility:

P =
pg0

pg0 − pa
=

1
1− pa

, (19a)

C =
c0

ρg0
. (19b)

Finally, a sixth additional parameter in the problem is the dimensionless atmospheric-
to-gas pressure ratio pa =

pa
pg0

.

3.2. Domain Mapping

The interface of the bubble changes with time, which makes the numerical proce-
dure for solving the concentration distribution in the liquid more complicated and time-
consuming. We implement an implicit finite difference in space and integrate the resulting
equations with respect to time. One obvious but costly approach is to track the interface of
the bubble with time and re-mesh the computational domain at each time step.

Alternatively, we recast the concentration Equation (13) in terms of Lagrangian coor-
dinates x(r, t) = r− R(t), such that at all time intervals the interface is fixed. Therefore,
after non-dimensionalization and coordinate transformation the Equations (7), (11) and (13)
takes the form:

R
d2R
dt2 +

3
2

(
dR
dt

)2
= P(pg − pa)−

2
CaR

− 4
ReR

dR
dt

. (20)

dpg

dt
= 3

C
RPe

(
∂c
∂x

)
x=0
− 3

pg

R
dR
dt

(21)

∂c
∂t

+
∂c
∂x

( .
RR2

(x + R)2 −
.
R

)
=

1
Pe

(
2

x + R
∂c
∂x

+
∂2c
∂x2 ) (22)

The rescaled initial and boundary conditions are deduced from (3), (12), and (14) to:

R(t = 0) = 1, (23a)
.
R(t = 0) = 0, (23b)

pg(t = 0) = 1, (23c)
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c(x, t = 0) = 1. (23d)

c(x = 0, t) = pg(t), (24a)

c( x → ∞, t ) = 1. (24b)

3.3. Numerical Implementation

Equation (20) is a non-linear, second-order ODE that describes the bubble growth. If
the pressure in the bubble is constant, Equation (20) can be solved for the bubble growth
R(t) and its interface velocity

.
R(t) with the use of any readily available numerical time

integration solver, such as ode45 in MathWorks MATLAB version R2019b. However, the
difficulty arises when the pressure inside the bubble varies with time, and it then needs
to be coupled with the scalar diffusion equation to solve for the concentration gradient at
the interface. Additionally, the scalar diffusion Equation (22) contains a highly non-linear
convective term in terms of bubble radius and interface velocity. This combination makes
the equations stiffer and involves solving Equations (20)–(22) simultaneously. Therefore,
solving the highly stiff equations with ode45 takes a tremendous amount of time. Instead
of ode45, a variable order of accuracy solver, ode15s, is used to integrate the equations.
Here, ode15s uses first to fifth orders, changing the order as required. This solver takes
much less time compared to the ode45 solver without compromising accuracy.

To solve these two equations simultaneously, the second-order non-linear hydrody-
namic Equation (20) primarily needs to be converted into the system of first-order ODEs by
letting R = y1. Therefore, the system of first-order ODEs is given as

dR
dt

= y2 (25)

dy2

dt
=

1
y1

(
P(pg − pa)−

2
y1Ca

− 4y2

y1Re
− 3

2
y2

2

)
(26)

This way, when Equation (25) is integrated, one can obtain y2, which is bubble interface
velocity, and similarly Equation (26) is integrated to obtain y1, which is the bubble radius.
Since Equation (26) includes partial derivates in time and space, one can approximate
either time or space using the finite difference methods. For convenience, the space partial
derivative is approximated with a finite difference, up to second-order accuracy.

Let i be the node position and N be the total number of nodes (see Figure 2) in the
gas–liquid solution, starting from the interface x = 0 to infinity. The central difference
scheme is adopted for the derivates. Therefore, the finite difference approximation for the
first- and second-order derivatives with central difference schemes are written as

∂c
∂x

=
ci+1 − ci−1

2dx
(27)

∂2c
∂x2 =

ci+1 − 2ci + ci−1

dx2 (28)

The discretized form of the scalar diffusion equation using Equations (27) and (28)
takes the form

dci
dt

=
1

Pe

(
2

(xi + R)
(

ci+1 − ci−1

2dx
) + (

ci+1 − 2ci + ci−1

dx2 )

)
− (

ci+1 − ci−1

2dx
)

( .
RR2

(xi + R)2 −
.
R

)
(29)

The discretized form of diffusion Equation (29) needs to be solved at N −2 (1 < i < N)
nodes, starting from i = 2 to i = N − 1. Whereas at the interface, i.e., at i = 1, the boundary
condition (24a) can be written in terms of ODE as

dc1

dt
=

(
kh pg0

c0

)
dpg

dt
(30)
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The final node serves as a boundary and the value of concentration is known from the
boundary condition (24b), therefore at i = N,

cN = 1 (31)
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Similarly, the concentration gradient at the interface in Equation (21) is discretized
using a forward finite difference scheme and is given as

∂c
∂x

=
ci+1 − ci

dx
, (32)

and substituting Equation (32) in (21) results in

dpg

dt
=

3I
RPe

(
ci+1 − ci

dx

)
− 3pg

( .
R
R

)
(33)

To be consistent with the notation used for the hydrodynamic ODEs (25) to (26),
Equations (29) to (33) are rewritten in terms of y as follows:

For the nodes between 1 and N (1 < i < N) is written as

dy3+i
dt = 1

Pe

(
2

(xi+y1)

( y3+(i+1)−y3+(i−1)
2dx

)
+
( y3+(i+1)−2y3+i+y3+(i−1)

dx2

))
−
( y3+(i+1)−y3+(i−1)

2dx

)(
y2y1

2

(xi+y1)
2 − y2

) (34)

at the interface node (i = 1),
dcy3+i

dt
=

dy3

dt
(35)

and at the final boundary node i = N,

yN+3 = 1. (36)

Finally, the pressure equation takes the form:

dy3

dt
=

3I
y1Pe

(
y5 − y4

dx

)
− 3y3

(
y2

y1

)
(37)

Therefore, the total (N +3) equations starting from (25) to (37) are the final system of
ODEs that has to be solved simultaneously subjected to the initial and boundary conditions
(23) to (24).

3.4. Grid Independence Test

For the numerical simulations, the infinite spatial domain is assumed to be 10 times the
maximum radius of the bubble. Furthermore, the maximum radius of the bubble is anticipated
to be 250 µm. This suggests that the physical infinity of the domain is 250 × 10 = 2500 µm
and in terms of x∞ it is 2250. (Note that x = r− R(t)). The grid independence test seeks to
minimize discretization error by making the numerical solution independent of the grid
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spacing. Figure 3 shows that the solution converges with increasing number of nodes.
When the domain is discretized from 100 to 1000 nodes a 15% of maximum error is observed
in the bubble radius and the error reduced to 2% as the number of nodes increased from
1000 to 3000; Therefore, to achieve accurate results in the numerical simulations, the domain
is equally discretized with 3000 nodes.
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4. Results and Discussion
4.1. Comparison with Existing Experiments and Theory

A comparison has been made between the present model and experiment data of Han
and Yoo, 1981, [17] along with the Patel, 1980, [16] and Amon and Denson, 1984, [12] models
in Figure 4. The comparison is carried out based on Han and Yoo, 1981, [17] viscoelastic
bubble growth experimental data for Re = 4.5× 10−6, Ca = 13.17, P = 1.27, C = 0.3, and
Pe = 3.7× 104. It is evident from the plot that the present numerical model was able to
capture the experimental data more accurately than the other two models. In the initial
stages, it is observed that there is a discrepancy between all the bubble growth models when
compared to the experimental data of Han and Yoo, 1981, [17]. This type of divergence at
the initial stage is expected, since the polymer used by Han and Yoo for the experiment
exhibits the viscoelastic effect, whereas other numerical models stated in the work including
the present numerical model were developed based on pure Newtonian fluid assumptions.
This indicates that the viscoelastic nature of the liquid is of importance only at the initial
stages and has minimum to no effects on the later stages of bubble growth.

Similarly, Figure 4 shows that the trend of the models proposed by Patel and Amon
and Denson were similar at their initial and later stages. Amon and Denson’s model
deviates from the Patel model and moves toward the present numerical model. It is worth
mentioning that the slight deviation of the aforementioned models from the present model
is because of the cell model assumptions carried out by the authors in their work, whereas
the present model is solved completely with the numerical approach. Overall, the present
model shows more promising and accurate predictions than previous models.
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Figure 4. Present model comparison with experiment data of Han and Yoo, 1981, [17] and theory
of Elshereef et al., 2010, [2], Amon and Denson, 1984, [12] and Patel, 1980, [16] (Re = 4.5× 10−6,
Ca = 13.17, P = 1.27, C = 0.3, and Pe = 3.7× 104).

4.2. Concentration in the Liquid

In the literature, the variation in concentration of gas in the liquid medium has not been
reported or investigated thoroughly. For instance, Elshereef et al., 2010, [2] reported that
his second comparison model, which is developed by Amon and Denson, 1984, [12], has
solved the advection–diffusion equation using finite difference approximation. However,
the concentration profiles in the liquid side were not reported. In this section, we present
the concentration profile of the gas in the liquid explicitly.

Figures 5 and 6, represent the transient concentration profiles at different locations
and time instances. The positional concentration profiles (Figure 5) are shown from the
bubble interface, i.e., x = 0, to the location where the concentration gradient disappears,
i.e., x = 400. Additionally, the time instances (Figure 6) are shown from 0.01 to 20 s. It is
expected that as we move farther from the interface, the concentration gradient decreases,
and this trend can be observed in Figure 5. Similarly, Figure 6 shows that at the initial time
steps the concentration profile at the interface starts developing and eventually reaches a
steady state with larger gradients at a larger time period.
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4.3. Parametric Study of Bubble Growth

Equations (20) to (22), which constitute the full bubble growth model, emphasize that
Equations (18a–c) and (19a,b), i.e., Re, Ca, Pe, P, and C, are the numbers that control bubble
growth. A small change in these field parameters may affect bubble growth. In this section,
an extensive study is carried out to determine the effect of these parameters on bubble
growth. To do so, we only change a single parameter in non-dimensional numbers that
is independent of other non-dimensional numbers. This is because if we closely observe
the non-dimensional groups, they are coupled to one another by the liquid density (ρL),
velocity (V), and initial bubble radius (R0). For example, to study the effect of viscosity of
the liquid, we can only change the µL parameter in the Reynolds number Equation (18a),
and to study the effect of surface tension, we only change the σ in the capillary number
Equation (18b), and so on. To observe the effects of these parameters, we need a primary
or base case result to perform a relative comparison. Therefore, we consider the present
numerical model results shown in Figure 4 as the primary case.

4.3.1. Effect of Viscosity on the Bubble Growth

To observe the effect of viscosity, only Reynolds number is varied, keeping other
non-dimensional numbers constant. In the base case, Reynolds number is 4.5 × 10−6, and
this number is varied between 4.5 × 10−7 and 4.5 × 10−5. In Figure 7a, at higher Reynolds
numbers (Re = 4.5× 10−5), the bubble growth is faster, and at lower Reynolds numbers
(Re = 4.5× 10−7), the bubble growth is slower. This type of behavior is expected because,
at lower viscosity, the normal stress in the liquid is lower, which results in a more rapid
bubble growth rate. Although the figure depicts a change in the qualitative trend with time
when Re is increased, this change is only in appearance, at least initially. In fact, the slope
at t = 0 is always zero, but the radius grows too rapidly for this to be visible; this becomes
clear when we next examine the interfacial velocity.

Figure 7b shows that, if the viscosity is high, the normal stress is high, which retards
bubble growth. This behavior can be well understood from Figure 7b, where the initial
interface bubble velocity is high at a higher Reynolds number, suggesting rapid bubble
growth. Additionally, at a lower Reynolds number, retardation of bubble interface velocity
is observed, expressing that the bubble growth rate is slower. At a relatively low Re,
the interfacial velocity grows slowly, reflecting a weak acceleration of the bubble, which
continues to weaken with time until it vanishes, at which time the velocity reaches a
maximum, reflected in the change in concavity in Figure 7a. The bubble continues to grow,
but at a slower pace. This trend is similar at higher Re, but the initial growth is much faster,
and the maximum is reached earlier, leading to a stronger deceleration. The change in
concavity for the radius happens for any Re, but is most visible for the lowest Re shown in
Figure 7a,b.
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The response in the pressure of the gas is dictated by (21), and is influenced by an
intricate coupling between the evolution of the interfacial concentration gradient and the
velocity. The evolution of the pressure is depicted in Figure 7c between the high and low
Reynolds numbers. Typically, the pressure drops initially at a rate dominated primarily
by the concentration gradient since the interface velocity is close to zero. The drop rate
decreases gradually as the interface velocity increases with time. At lower Reynolds
number, the pressure inside the bubble decreases slowly, reflecting a lower pressure drop,
thus remaining closer to atmospheric pressure, causing slower bubble growth. On the other
hand, at a high Reynolds number, the pressure inside the bubble decreases rapidly, which
in turn enhances bubble growth. Finally, the maximum in the interface velocity occurs
when the acceleration vanishes, and the maximum is then given by

.
Rmax = − 4

3ReR
+

√
16

9Re2R2
+

2P
3

∆p− 4
3CaR

(38)

Clearly, the maximum vanishes if the driving pressure balances with the surface
tension force. If surface tension is dominant, the maximum does not occur (see next section)

4.3.2. Effect of Surface Tension of the Liquid on the Bubble Growth

The effect of surface tension on the bubble growth is carried out with a similar approach
that was demonstrated in the previous section. The capillary number is varied from the
reference number while keeping other non-dimensional numbers constant. The reference
capillary number is 13.17, and is varied in the range of low magnitudes Ca = 1.9 and Ca = 3.
It is expected that the interfacial tension tends to retard the bubble growth by opposing
the motion of the bubble boundary, and similar behavior is observed from the numerical
simulations. Equation (20) clearly illustrates the competition among gas pressure, surface
tension, and viscous forces on the right-hand side, as they simultaneously influence the
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bubble growth. If surface tension effects are weak, then the bubble growth is dictated mainly
by the gas pressure. If surface tension is increased, then the growth can be neutralized,
or even reversed, as illustrated in Figure 8. The growth or collapse hinges on the initial
stage, and is reflected by the initial concavity in R. If the surface tension effect is weak, then
..
R(t = 0) ≈ P(1− pa) > 0, leading to the ensuing bubble growth. On the other hand, for
small Ca,

..
R(t = 0) ≈ − 2

Ca < 0, and the bubble collapses from its initial size R(t = 0) = 1.
Finally, when Ca = 2

P(1−pa)
, no growth or collapse occurs.
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We see that at approximately Ca = 2, the slope of the bubble growth shifts toward
the positive trend, highlighting that the critical capillary number is ~2. At Ca > 2, the
surface tension effect results in positive bubble growth. On the other hand, for Ca < 2
surface tension becomes dominant, and the bubble collapses. These effects can also be
understood by examining the bubble interface velocity (Figure 8b) and evolution of gas
pressure inside the bubble (Figure 8c). During bubble growth, the increase in interface
velocity and decrease in bubble pressure is noticed; during bubble shrinkage, the decrease
in interface velocity and increase in gas pressure is noticed. Finally, and as reflected in
(38), we note that no maximum occurs in the interface velocity as a result of the relative
dominance of surface tension.

4.3.3. Effect of Ambient Pressure on the Bubble Growth

In this section, the effect of ambient pressure (pa) is studied. The system pressure is the
ambient pressure where the growth of the bubble takes place. For instance, in the case of
foaming, the system pressure is considered as the mold pressure, where the bubble growth
occurs upon injecting polymer melts Han and Yoo, 1981, [17]. Similarly, in carbonated
beverages, the system pressure becomes the ambient pressure.
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It is important to see how the system pressure affects the overall growth of the bubble.
Therefore, three cases are considered: the reference case pa = 0.21 of Han and Yoo, 1981, [17],
and the cases of high pressure pa = 0.31 and low pressure pa = 0.10. Note that the initial gas
pressure (Pg0) in the bubble is kept constant for all the cases. One can see from Equation (20)
the initial magnitude of (pg − pa) defines the rate of bubble growth. Since the initial
pressure pg = 1 is the same for all the cases, and 1 > pa, then a higher pa leads to a lower
pressure difference and slower bubble growth, as reflected in Figure 9a–c. As the system
pressure increases, bubble growth decreases, and vice versa. On decreasing the system
pressure, we observe a large deviation between the base case and lower system pressure
case. On the other hand, while increasing the system pressure, we observe a comparatively
smaller deviation between the base case and lower system pressure case. Figure 9c indicates
that the pressure drops sharply initially, at a rate that is slightly lower for higher system
pressure. After the initial drop, the pressure rapidly reaches the system pressure, and
bubble growth slows mainly as a result of surface tension and viscous effects.
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Figure 9. Effect of system pressure on (a) bubble growth, (b) interface velocity, and (c) pressure inside
the bubble (Re = 4.5× 10−6, Ca = 13.17, P = 1.27, C = 0.3, and Pe = 3.7× 104).

4.3.3.1. Effect of Solubility and Diffusion Parameters on Bubble Growth

The solubility and diffusivity of the gas in the liquid solution plays a major role in the
bubble growth process. The present part focuses on studying the effect of both parameters.
From the definition of Péclet number (see equation (18c)), only the diffusion coefficient is
varied to maintain the other parameters as unchanged.

Therefore, a lower Pe = 3.7× 103 (high diffusion coefficient) and higher Péclet number
Pe = 3.7× 105 (low diffusion coefficient) are considered. The magnitudes are compared
with the base case, Pe = 3.7× 104. Figure 10a shows that at a lower Péclet number, the
growth rate of the bubble is higher; at a higher Péclet number, the growth rate is slower.
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This type of trend is predicted since, at a higher diffusion coefficient, the rate of gas flow
through the interface is high, and vice versa.
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Figure 10. (a) Effect of diffusion coefficient on bubble growth; (b) effect of Henry’s constant on bubble
growth (Re = 4.5× 10−6, Ca = 13.17, P = 1.27, and C = 0.3).

Similarly, to see the effect of solubility on bubble growth, the non-dimensional number
C (see Equation (19b)), which relates to Henry’s constant kh, is varied. Here, the non-
dimensional number C increases with increasing kh and decreases by decreasing the kh.
The magnitude of the non-dimensional number C for the base case is 0.33, and this is varied
between the lower number C = 0.1 to a higher number C = 1.

Figure 10b suggests that, on increasing the solubility of a gas in the liquid, the bubble
growth rate is faster, and the lower the solubility of the gas in the liquid, the growth rate
is lower. This result is close to physical observations; i.e., at higher solubility, the amount
of gas available in the liquid is high, because the mass transfer from the liquid side to the
bubble is high, resulting in a higher bubble growth rate.

5. Concluding Remarks

The hydrodynamics of a single bubble in the pool of Newtonian liquid that expands
due to mass transfer was investigated in the current work. This study directly relates to
foaming processes, carbonated beverages, and any other problem in which the bubble
grows due to mass transfer.

Rigorous non-dimensional formulations were derived to incorporate interfacial, vis-
cosity, diffusivity, and solubility effect on bubble growth. Especially the inertia of the
liquid was included in the formulation, along with full scalar advection–diffusion pro-
cesses. A strong numerical approach to the highly non-linear stiff coupled equations was
discussed. The moving interface of the bubble was tackled by mapping the domain to the
new coordinate (x).

The results obtained with the present formulation and numerical solution to the
advection–diffusion equation was compared with the Elshereef et al., 2010, [2] models. The
present numerical model predicts accurate bubble growth in comparison to Elshereef et al.,
2010, [2] models. These results were validated by comparing with the Han and Yoo,
1981, [17] experimental data set.

To our knowledge, the influence and behavior of the concentration of the gas in the
liquid has not been reported in the literature. In this work, a clear insight is provided
on the concentration profiles of gas in the liquid and a boundary layer variation around
the bubble. A simple numerical investigation was conducted to compare the variation
in the approximated diffusion equation results against the present numerical results. We
showed that that the gas concentration profile in the liquid deviates from the traditional
concentration profile.
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With the validated numerical model, a comprehensive parametric study was per-
formed on the bubble growth. The results show that the rate of bubble growth depends
primarily on the viscosity of the liquid, initial pressure difference, diffusion, and solubility.
The effect of surface tension on the overall bubble growth process is limited.

We showed that the higher viscosity of the liquid lowers the bubble growth rate,
and vice versa. The initial pressure difference between the bubble and the system has a
significant effect on the overall bubble growth process. The higher the initial pressure
difference, the greater is the bubble growth. With a lower initial pressure difference, the
bubble growth is limited.

The investigation shows that the effect of diffusion and solubility of the gas in the
liquid play an important role in the overall bubble growth process. Higher magnitude of
these parameters leads to a higher bubble growth rate, and vice versa. It is concluded that
these parameters have a similar effect on bubble growth.
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