Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = gas chromatography/electron capture detector (GC/ECD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3010 KB  
Article
Assessment of Pesticide Contamination of Groundwater from Titu-Sarata Plain, Romania
by Crinela Dumitrescu, Claudia Stihi, Diana Costinel, Elisabeta Irina Geana, Corina Teodora Ciucure, Diana Ionela Popescu (Stegarus), Danut Tanislav and Petre Bretcan
Appl. Sci. 2025, 15(11), 5880; https://doi.org/10.3390/app15115880 - 23 May 2025
Cited by 1 | Viewed by 1208
Abstract
In Romania, groundwater is an important source of drinking water, especially in rural areas. This study investigated the concentrations of organophosphorus, carbamate, and triazine pesticides (OPs) along with organochlorine pesticides (OCPs) in groundwater samples collected from the Titu-Sarata Plain. Sensitive analytical techniques were [...] Read more.
In Romania, groundwater is an important source of drinking water, especially in rural areas. This study investigated the concentrations of organophosphorus, carbamate, and triazine pesticides (OPs) along with organochlorine pesticides (OCPs) in groundwater samples collected from the Titu-Sarata Plain. Sensitive analytical techniques were employed, including Ultrahigh-Performance Liquid Chromatography coupled with Q Exactive™ HF Hybrid Quadrupole-Orbitrap™ Mass Spectrometry (UHPLC-Orbitrap-MS/MS) and Gas Chromatography coupled with an electron capture detector (GC-ECD). Environmental and human health risks were assessed in the case of pesticides that exceeded the maximum allowed concentration. The environmental risk assessment (ERA) revealed significant risks associated with Phosdrin, Phorate, and pp’DDE. Additionally, particular concerns arose from the presence of Aldrin and Dieldrin, which pose a high carcinogenic risk, especially through groundwater consumption in agricultural areas. The results of this research highlight the need for the implementation of a continuous quality monitoring program for groundwater in the agricultural regions that were studied. Full article
(This article belongs to the Special Issue Novel Approaches for Water Resources Assessment)
Show Figures

Figure 1

18 pages, 1556 KB  
Article
Dynamics of the Dissipation of Acetamiprid, Azoxystrobin, and β-Cyfluthrin in Jalapeño Pepper (Capsicum annuum L.) Produced Under Greenhouse and Open-Field Conditions
by Luis Alfonso Jiménez-Ortega, Jaime Villa-Bojórquez, Pedro de Jesús Bastidas-Bastidas, Rosalba Contreras-Martínez, José Armando Carrillo-Fasio and Manuel Alonzo Báez-Sañudo
Foods 2025, 14(6), 1023; https://doi.org/10.3390/foods14061023 - 17 Mar 2025
Cited by 1 | Viewed by 1438
Abstract
Pepper is one of the most widely consumed foods around the world. China is the leading producer, while Mexico is the primary exporter. To support these roles, the responsible use of agrochemicals is essential. Additionally, investigating the factors influencing pesticide dissipation is critical [...] Read more.
Pepper is one of the most widely consumed foods around the world. China is the leading producer, while Mexico is the primary exporter. To support these roles, the responsible use of agrochemicals is essential. Additionally, investigating the factors influencing pesticide dissipation is critical to ensure that residue levels do not exceed established Maximum Residue Limits (MRLs) and to achieve the required pre-harvest interval (PHI). This is essential to prevent trade-related issues and mitigate potential health risks to consumers. Consequently, this study aims to evaluate the dissipation dynamics of acetamiprid, azoxystrobin, and β-cyfluthrin residues in jalapeño peppers cultivated under both greenhouse and open-field conditions. Three applications of a manufacturer’s suggested dosage were evaluated, with 7-day intervals between each. The residual content was quantified after 1 h and 1, 3, 7, 14, and 21 days following each application. A QuEChERS method utilizing ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) and gas chromatography equipped with a micro electron capture detector (GC-µECD) to determine the pesticide residues was optimized and validated, obtaining suitable performance, with satisfactory linearity, detection and quantification limits, recovery rates, and accuracy. The dissipation curves were constructed from the residues and dissipation percentages of the pesticides over time, elucidating the initial residuality, accumulation, half-life, residence time, and total persistence of the active ingredient. In addition, an analysis was carried out, relating climatic conditions to the cumulative dissipation of pesticides. The results show an increase in the initial residues, half-life, and residence time of pesticides in the greenhouse. Otherwise, in the open field, the residues of the pesticides acetamiprid and azoxystrobin increased over the initial applications. Climatic conditions, mainly evapotranspiration during crop growing, involve the dissipation of pesticides in jalapeño pepper. The validation method demonstrated satisfactory parameters, aligning with the guidelines provided by the US EPA and SENASICA. All concentrations quantified in real samples were found to be below the MRLs, ensuring compliance with regulatory standards. Additionally, the dissipation kinetics played a critical role in elucidating key aspects such as residence times, latency periods, and marketing timelines for ensuring food safety. This kinetics provided essential insights into the behavior and persistence of the residues, contributing to a more comprehensive understanding of their dynamics in agricultural and commercial contexts. We believe these findings underscore the reliability and applicability of the method for monitoring pesticide residues in real-world scenarios. Full article
Show Figures

Graphical abstract

11 pages, 4974 KB  
Article
Analyzing Alkyl Bromide Genotoxic Impurities in Febuxostat Based on Static Headspace Sampling and GC-ECD
by Alexandros Kavrentzos, Elli Vastardi, Evangelos Karavas, Paraskevas D. Tzanavaras and Constantinos K. Zacharis
Pharmaceuticals 2024, 17(4), 422; https://doi.org/10.3390/ph17040422 - 26 Mar 2024
Cited by 1 | Viewed by 2215
Abstract
Herein, a sensitive and selective gas chromatography-electron capture detector (GC-ECD) method was developed and validated for the quantification of trace levels of five bromo-containing genotoxic impurities in Febuxostat active pharmaceutical ingredient (API) after headspace sampling (HS). Multivariate experimental designs for the optimization of [...] Read more.
Herein, a sensitive and selective gas chromatography-electron capture detector (GC-ECD) method was developed and validated for the quantification of trace levels of five bromo-containing genotoxic impurities in Febuxostat active pharmaceutical ingredient (API) after headspace sampling (HS). Multivariate experimental designs for the optimization of static headspace parameters were conducted in two stages using fractional factorial design (FFD) and central composite design (CCD). The optimum headspace conditions were 5 min of extraction time and a 120 °C extraction temperature. Baseline separation on the analytes against halogenated solvents was carried out using an Agilent DB-624 (30 m × 0.32 mm I.D., 1.8 μm film thickness) stationary phase under isothermal conditions. The method was validated according to ICH guidelines in terms of specificity, linearity, the limits of detection and quantification, precision and accuracy. The linearity was assessed in the range of 5–150% with respect to the specification limit. The achieved LOD and LOQ values ranged between 0.003 and 0.009 and 0.01 and 0.03 μg mL−1, respectively. The accuracy of the method (expressed as relative recovery) was in the range of 81.5–118.2%, while the precision (repeatability, inter-day) was less than 9.9% in all cases. The validated analytical protocol has been successfully applied to the determination of the impurities in various Febuxostat API batch samples. Full article
(This article belongs to the Special Issue Analytical Techniques in the Pharmaceutical Sciences 2023)
Show Figures

Figure 1

17 pages, 2468 KB  
Article
Dissipation Kinetics, Leaching, and Ecological Risk Assessment of S-Metolachlor and Benfluralin Residues in Soil
by Paraskevas Parlakidis, George S. Adamidis, Georgios D. Gikas, Sofia Vasiliou, Melpomeni Kissa, Konstantinos Doitsinis, Christos Alexoudis and Zisis Vryzas
Environments 2024, 11(1), 18; https://doi.org/10.3390/environments11010018 - 18 Jan 2024
Cited by 5 | Viewed by 3261
Abstract
The use of selective herbicides is one of the best methods for weed management. However, the extensive use of herbicides can have adverse impacts on non-target organisms. The goals of this study were to assess the dissipation kinetics, leaching, and ecological risk assessment [...] Read more.
The use of selective herbicides is one of the best methods for weed management. However, the extensive use of herbicides can have adverse impacts on non-target organisms. The goals of this study were to assess the dissipation kinetics, leaching, and ecological risk assessment of S-metolachlor and benfluralin residues in silty loam soil planted with chickpea (Cicer arietinum L.). The experimental setup included four different layers with four replications corresponding to an experimental randomized complete block design consisting of 16 plots. The application doses of S-metolachlor and benfluralin were 1350 and 1920 g a.i./ha, respectively, according to manufacturer recommendations. Soil samples were split into four depths, 0 to 20 cm (Layer A), 20 to 40 cm (Layer B), 40 to 60 cm (Layer C), and 60 to 80 cm (Layer D), to determine the dissipation kinetics and the leaching behavior of the herbicides. Gas chromatography coupled with the electron capture detector (GC-ECD) method was developed and validated for the determination of S-metolachlor and benfluralin residues in soil. The analytes were extracted from the soil with distilled water and ethyl acetate followed by solid-phase extraction (SPE). The limit of quantification (LOQ) of the method was 0.1 μg/g, and the recoveries of S-metolachlor and benfluralin were in the ranges 81% to 97% and 88% to 101%, respectively, with relative standard deviations (RSD) of less than 9.7%. The dissipation kinetics of S-metolachlor and benfluralin in soil (0–20 cm) followed first-order kinetics with half-lives of 21.66 and 30.13 days, respectively. The results for samples obtained from the 20–80 cm soil profile showed that both benfluralin and S-metolachlor presented high leaching, following preferential flow. Also, a soil ecological risk assessment was conducted in the top 0–20 cm soil profile, estimating the toxicity–exposure ratio (TER) for four soil organisms and the risk quotient (RQ). The mean herbicide levels found at the studied soil profile at 0 days (2 h) and 60 days of the experiment were used for risk assessment. In the first case, the mean pesticide concentration (MPC) gives a worst-case scenario (ws); in the second case, a dissipation scenario (ds) is given using the respective MPC. In all cases, both TER and RQ values showed that benfluralin corresponds to a higher risk than S-metolachlor for soil organisms. Full article
Show Figures

Figure 1

10 pages, 2447 KB  
Article
Headspace Extraction of Chlorobenzenes from Water Using Electrospun Nanofibers Fabricated with Calix[4]arene-Doped Polyurethane–Polysulfone
by Hamid Najarzadekan, Muhammad Afzal Kamboh, Hassan Sereshti, Irfan Ahmad, Nanthini Sridewi, Syed Shahabuddin and Hamid Rashidi Nodeh
Polymers 2022, 14(18), 3760; https://doi.org/10.3390/polym14183760 - 8 Sep 2022
Cited by 4 | Viewed by 2135
Abstract
Chlorobenzenes (CBs) are persistent and potentially have a carcinogenic effect on mammals. Thus, the determination of CBs is essential for human health. Hence, in this study, novel polyurethane–polysulfone/calix[4]arene (PU-PSU/calix[4]arene) nanofibers were synthesized using an electrospinning approach over in-situ coating on a stainless-steel wire. [...] Read more.
Chlorobenzenes (CBs) are persistent and potentially have a carcinogenic effect on mammals. Thus, the determination of CBs is essential for human health. Hence, in this study, novel polyurethane–polysulfone/calix[4]arene (PU-PSU/calix[4]arene) nanofibers were synthesized using an electrospinning approach over in-situ coating on a stainless-steel wire. The nanosorbent was comprehensively characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques. The SEM analysis depicted the nanofiber’s unique morphology and size distribution in the range of 50–200 nm. To determine the levels of 1,2,4-trichlorobenzene, 1,2,3-trichlorobenzene, and 1,2,3,4-tetrachlorobenzene in water samples, freshly prepared nanosorbent was employed using headspace-solid phase microextraction (HS-SPME) in combination with gas chromatography micro electron capture detector (GC-µECD). Other calixarenes, such as sulfonated calix[4]arene, p-tert-calixarene, and calix[6]arene were also examined, and among the fabricated sorbents, the PU–PSU/calix[4]arene showed the highest efficiency. The key variables of the procedure, including ionic strength, extraction temperature, extraction duration, and desorption conditions were examined. Under optimal conditions, the LOD (0.1–1.0 pg mL−1), the LDR (0.4–1000 pg mL−1), and the R2 > 0.990 were determined. Additionally, the repeatability from fiber to fiber and the intra-day and inter-day reproducibility were determined to be 1.4–6.0, 4.7–10.1, and 0.9–9.7%, respectively. The nanofiber adsorption capacity was found to be 670–720 pg/g for CBs at an initial concentration of 400 pg mL−1. A satisfactory recovery of 80–106% was attained when the suggested method’s application for detecting chlorobenzenes (CBs) in tap water, river water, sewage water, and industrial water was assessed. Full article
(This article belongs to the Special Issue Novel Wastewater Treatment Applications Using Polymeric Materials)
Show Figures

Figure 1

12 pages, 708 KB  
Article
Optimization of an Analytical Method for Indoxacarb Residues in Fourteen Medicinal Herbs Using GC–μECD, GC–MS/MS and LC–MS/MS
by Hun-Ju Ham, Syed Wasim Sardar, Abd Elaziz Sulieman Ahmed Ishag, Jeong-Yoon Choi and Jang-Hyun Hur
Separations 2022, 9(9), 232; https://doi.org/10.3390/separations9090232 - 30 Aug 2022
Cited by 9 | Viewed by 4149
Abstract
Pesticide residue analysis in medicinal herbs is a challenging task because of the matrix effect and its influence on quantitative analysis despite the continuous development of several new analytical methods and instrumentations. In this study, a modified QuEChERS method was developed for the [...] Read more.
Pesticide residue analysis in medicinal herbs is a challenging task because of the matrix effect and its influence on quantitative analysis despite the continuous development of several new analytical methods and instrumentations. In this study, a modified QuEChERS method was developed for the analysis of indoxacarb residue in medicinal herbs by using the conventional instrument, gas chromatography micro-electron-capture-detector (GC–μECD), and comparing it with gas chromatography–tandem mass spectrometry (GC–MS/MS) and liquid chromatography–tandem mass spectrometry (LC–MS/MS). Samples were extracted with acetonitrile and purified using an NH2 cartridge. The optimized method efficiently removes the co-extractives and offered a limit of quantification of 0.01 mg kg−1. The GC–μECD analysis results of indoxacarb in seven medicinal herbs out of fourteen species at a fortification level of 0.01 mg kg−1 showed a recovery range of 79.7–117.6%, while the rest showed recovery > 120%. Similarly, the recovery of indoxacarb by GC and LC–MS/SM were 74.1–105.9 and 73.0–99.0%, respectively, with a relative standard deviation of <20%. Matrix effects for the majority of medicinal herbs analyzed by GC–MS/MS were >±20%. Whereas the results for LC–MS/MS were <20%, which was within the acceptable range according to the SANTE/11312/2021 guidelines. Considering the performance of the method and alignment with the regulatory guidelines, LC–MS/MS is recommended for the analysis of indoxacarb in selected medicinal herbs. Full article
Show Figures

Graphical abstract

26 pages, 6073 KB  
Article
Contamination of Foods from Cameroon with Residues of 20 Halogenated Pesticides, and Health Risk of Adult Human Dietary Exposure
by Yamdeu Joseph Hubert Galani, Michael Houbraken, Abukari Wumbei, Joseph Fovo Djeugap, Daniel Fotio, Yun Yun Gong and Pieter Spanoghe
Int. J. Environ. Res. Public Health 2021, 18(9), 5043; https://doi.org/10.3390/ijerph18095043 - 10 May 2021
Cited by 26 | Viewed by 6972
Abstract
(1) Background: Halogenated pesticides are abundantly used in Cameroon, but there is no information on the health risk of consumers from exposure to their residues in foods. (2) Methods: Residues of 20 halogenated pesticides were determined in 11 agricultural products collected in the [...] Read more.
(1) Background: Halogenated pesticides are abundantly used in Cameroon, but there is no information on the health risk of consumers from exposure to their residues in foods. (2) Methods: Residues of 20 halogenated pesticides were determined in 11 agricultural products collected in the 3 largest cities of Cameroon using QuEChERS extraction and gas chromatography with electron capture detector (GC-ECD), and health risk from dietary exposure was assessed. (3) Results: Organochlorines pesticides aldrin, p,p’-dichlorodiphenyl-trichloroethane (DDT) and β-hexachlorocyclohexane (β-HCH) found in 85.0%, 81.9% and 72.5% of samples, respectively, were the most frequently detected. The highest average concentrations of residues were 1.12, 0.74 and 0.39 mg/kg for methoxychlor, alachlor and β-HCH, respectively, found in chilli pepper. Chili pepper (58.9%), cowpea (56.8%), black beans (56.5%) and kidney beans (54.0%) exhibited the highest residue occurrences. Levels above the European Union maximum residue limits (MRLs) were found for all the 20 pesticides, in 40.1% of the positive analyses, and the food samples contained 14 pesticides banned in Cameroon. Chronic, acute, cumulative and carcinogenic risk assessments revealed that lifetime consumption of maize, black beans, kidney beans, groundnuts and chili pepper contaminated with aldrin, dieldrin, endrin, HCB, heptachlor, o,p’-DDT, p,p’-DDD, p,p’-DDT, p,p’-DDE and β-HCH, could pose health risks. (4) Conclusion: These results show that there is an urgent need of pesticide usage regulation, effective application of pesticide bans and management of obsolete pesticide stocks in Cameroon. Full article
(This article belongs to the Special Issue Pesticide Risk Assessment: Human and Environmental)
Show Figures

Graphical abstract

18 pages, 2064 KB  
Article
Halogenated Volatile Organic Compounds in Water Samples and Inorganic Elements Levels in Ores for Characterizing a High Anthropogenic Polluted Area in the Northern Latium Region (Italy)
by Mario Vincenzo Russo, Ivan Notardonato, Alberto Rosada, Giuseppe Ianiri and Pasquale Avino
Int. J. Environ. Res. Public Health 2021, 18(4), 1628; https://doi.org/10.3390/ijerph18041628 - 8 Feb 2021
Cited by 8 | Viewed by 3071
Abstract
This paper shows a characterization of the organic and inorganic fraction of river waters (Tiber and Marta) and ores/soil samples collected in the Northern Latium region of Italy for evaluating the anthropogenic/natural source contribution to the environmental pollution of this area. For organic [...] Read more.
This paper shows a characterization of the organic and inorganic fraction of river waters (Tiber and Marta) and ores/soil samples collected in the Northern Latium region of Italy for evaluating the anthropogenic/natural source contribution to the environmental pollution of this area. For organic compounds, organochloride volatile compounds in Tiber and Marta rivers were analyzed by two different clean-up methods (i.e., liquid–liquid extraction and static headspace) followed by gas chromatography–electron capture detector (GC-ECD) analysis. The results show very high concentrations of bromoform (up to 1.82 and 3.2 µg L−1 in Tiber and Marta rivers, respectively), due to the presence of greenhouse crops, and of chloroform and tetrachloroethene, due to the presence of handicrafts installations. For the qualitative and quantitative assessment of the inorganic fraction, it is highlighted the use of a nuclear analytical method, instrumental neutron activation analysis, which allows having more information as possible from the sample without performing any chemical-physical pretreatment. The results have evidenced high levels of mercury (mean value 88.6 µg g−1), antimony (77.7 µg g−1), strontium (12,039 µg g−1) and zinc (103 µg g−1), whereas rare earth elements show levels similar to the literature data. Particular consideration is drawn for arsenic (414 µg g−1): the levels found in this paper (ranging between 1 and 5100 µg g−1) explain the high content of such element (as arsenates) in the aquifer, a big issue in this area. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

17 pages, 3396 KB  
Article
Assessment of Pesticide Residue Content in Polish Agricultural Soils
by Aleksandra Ukalska-Jaruga, Bożena Smreczak and Grzegorz Siebielec
Molecules 2020, 25(3), 587; https://doi.org/10.3390/molecules25030587 - 29 Jan 2020
Cited by 56 | Viewed by 6008
Abstract
Pesticides belong to a group of xenobiotics harmful to humans and wildlife, whose fate and activity depends on their susceptibility to degradation. Therefore, the monitoring of their residue level in agricultural soils is very important because it provides very valuable information on the [...] Read more.
Pesticides belong to a group of xenobiotics harmful to humans and wildlife, whose fate and activity depends on their susceptibility to degradation. Therefore, the monitoring of their residue level in agricultural soils is very important because it provides very valuable information on the actual level of soil contamination and environmental risk resulting from their application. The aim of this study was to evaluate contemporary concentrations of organochlorine (OCPs) and non-chlorinated pesticides (NCPs) in arable soils of Poland as an example of Central and Eastern European countries. The results were assessed in relation to Polish regulations, which are more restrictive compared to those of other European countries. The sampling area covered the territory of arable lands in Poland (216 sampling points). The distribution of sampling points aimed to reflect different geographical districts, conditions of agricultural production, and various soil properties. The collected soil samples were extracted with organic solvents in an accelerated solvent extractor (ASE 2000). The OCPs, including α-HCH, β-HCH, γ-HCH, and p,p’DDT, p,p’DDE, and p,p’DDD, were extracted with a hexane/acetone mixture (70:30 v/v) and determined by gas chromatography with an electron capture detector (GC-μECD). NCPs included atrazine, carbaryl, and carbofuran were extracted with a dichloromethane/acetone mixture (50:50 v/v), while maneb was extracted by intensive shaking the sample with acetone (1:1 v/v) and ethylenediamine-tertraacetic acid. The NCPs were identified by a dual mass- spectrometry (GC-MS/MS). The total content of individual OCPs ranged from 0.61 to 1031.64 µg kg−1, while the NCP concentrations were significantly lower, from 0.01 to 43.92 µg kg−1. DDTs were detected in all soils samples (p,p’DDD (23.60 µg kg−1) > p,p’DDT (18.23 µg kg−1) > p,p’DDE (4.06 µg kg−1), while HCHs were only in 4% of the analyzed samples (β-HCH (339.55 µg kg−1) > α-HCH (96.96 µg kg−1) > γ-HCH (3.04 µg kg−1)), but in higher values than DDTs. Among NCPs, higher concentration was observed for carbaryl (<0.01–28.07 µg kg−1) and atrazine (<0.01–15.85 µg kg−1), while the lower for carbofuran (<0.01–0.54 µg kg−1). Maneb was not detected in analyzed soils. Assessment of the level of soil pollution based on Polish regulations indicated that several percentages of the samples exceeded the criterion for OCPs, such as ∑3DDTs (14 samples; 6.5% of soils) and HCH congeners (α-HCH in one sample; 0.5% of soils), while NCP concentration, such as for atrazine, carbaryl and carbofuran were below the permissible levels or were not detected in the analyzed soils, e.g., maneb. The obtained results indicated that residues of the analyzed pesticides originate from historical agricultural deposition and potentially do not pose a direct threat to human and animal health. The behavior and persistence of pesticides in the soils depend on their properties. Significantly lower NCP concentration in the soils resulted from their lower hydrophobicity and higher susceptibility to leaching into the soil profile. OCPs are characterized by a high half-life time, which affect their significantly higher persistence in soils resulting from affinity to the soil organic phase. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

13 pages, 999 KB  
Article
PCBs in Older Buildings: Measuring PCB Levels in Caulk and Window Glazing Materials in Older Buildings
by Lantis I. Osemwengie and Jade Morgan
Environments 2019, 6(2), 15; https://doi.org/10.3390/environments6020015 - 31 Jan 2019
Cited by 4 | Viewed by 5891
Abstract
A method for the determination of polychlorinated biphenyls (PCBs) in caulk and glazing materials was developed and evaluated by application to a combination of 36 samples of caulk and glazing materials, from four schools in the northeastern area of the United States. Quality [...] Read more.
A method for the determination of polychlorinated biphenyls (PCBs) in caulk and glazing materials was developed and evaluated by application to a combination of 36 samples of caulk and glazing materials, from four schools in the northeastern area of the United States. Quality control analysis showed a range of 45 to 170% for spike recovery from the various samples and a range of 10.9 to 20.1% difference in precision among replicates. The result for the samples analyzed showed that three of the four schools sampled contained caulking and glazing materials with levels of PCBs >50 μg/g (range 54.6 μg/g to 445,000 μg/g). Across the four schools, 24% of collected caulk and glazing samples contained elevated PCB levels relative to the U.S. Environmental Protection Agency’s (EPA) bulk product waste criterion of 50 μg/g under “The Frank R. Lautenberg Chemical Safety for the 21st Century Act.” The PCBs determined in the samples, exhibited characteristic chromatographic patterns similar to those of Aroclors 1242, 1248, 1254, 1260, 1262, and a 1016/1254 mix. Full article
(This article belongs to the Special Issue Analysis of Environmental Pollutants)
Show Figures

Figure 1

16 pages, 794 KB  
Article
Determination of Selected Priority Pesticides in High Water Fruits and Vegetables by Modified QuEChERS and GC-ECD with GC-MS/MS Confirmation
by Maciej Tankiewicz
Molecules 2019, 24(3), 417; https://doi.org/10.3390/molecules24030417 - 24 Jan 2019
Cited by 49 | Viewed by 8163
Abstract
A modified quick, easy, cheap, efficient, rugged and safe (QuEChERS) method coupled to gas chromatography with electron capture detector (GC-ECD) was developed for simultaneous determination of selected electronegative pesticides in fruits and vegetables with high water content. The chosen compounds are commonly detected [...] Read more.
A modified quick, easy, cheap, efficient, rugged and safe (QuEChERS) method coupled to gas chromatography with electron capture detector (GC-ECD) was developed for simultaneous determination of selected electronegative pesticides in fruits and vegetables with high water content. The chosen compounds are commonly detected in fruit and vegetable crops, and some of their metabolites have even been found in human urine. In addition, some of them are known or suspected carcinogens according to the International Agency for Research of Cancer. Extraction and clean up parameters were optimized, thus the original QuEChERS method was modified to decrease solvent usage, in accordance with ‘green chemistry’ principles. The proposed methodology was validated in terms of selectivity, specificity, linearity, precision and accuracy. The obtained limits of detection (LODs) for all investigated pesticides ranged from 5.6 µg·kg−1 to 15 µg·kg−1 and limits of quantification (LOQs) from 17 µg·kg−1 to 45 µg·kg−1. The obtained data demonstrated the good reproducibility and stability of the procedure in the tested concentration range up to 10 mg·kg−1, with relative standard deviations (RSDs) lower than 10%. Recoveries for spiked pear samples at LOQ level for each pesticide were from 90% to 107% with RSDs lower than 9.6%. The suitability of the developed procedure was tested on various fruit and vegetable samples available on the market at different seasons. The proposed methodology is applicable for detection and monitoring of selected pesticides not only in fruits and vegetables with high water content, but also in samples containing large amounts of pigments and dyes. Full article
(This article belongs to the Special Issue Analysis of Residues in Food and Environment)
Show Figures

Graphical abstract

12 pages, 1460 KB  
Article
Organochlorine Pesticide Residues and Microbiological Quality Assessment of Dried Barb, Puntius sophore, from the Northeastern Part of Bangladesh
by Md. Ashraf Hussain, Md. Lutful Kabir, Md. Abu Sayeed, A.T.M. Mahbub-E-Elahi, Md. Sultan Ahmed and Md Jakiul Islam
Fishes 2018, 3(4), 44; https://doi.org/10.3390/fishes3040044 - 9 Nov 2018
Cited by 14 | Viewed by 6672
Abstract
The present study was carried out in the northeastern part of Bangladesh to investigate organochlorine pesticide (OCP) residues in and microbiological quality of dried barb (Puntius sophore). Samples were collected from both producers and retailers from December 2016 to April 2017. [...] Read more.
The present study was carried out in the northeastern part of Bangladesh to investigate organochlorine pesticide (OCP) residues in and microbiological quality of dried barb (Puntius sophore). Samples were collected from both producers and retailers from December 2016 to April 2017. A control sample was also prepared in the laboratory with the same raw fish used by the producers to compare the results. Gas chromatography with electron capture detector (GC-ECD) was used to detect and quantify OCP residues. Six samples out of 27 (about 22%) were found to be contaminated with OCP residues. Among these six adulterated samples, four were from retailers and two from producers. Only aldrin was detected in four samples, and in the other two samples both aldrin + dieldrin and aldrin + endrin were detected. Aldrin was found in quantities between 0.332 and 0.967 ppm, dieldrin 0.762 ppm, and endrin 0.828 ppm. All these values were much higher than the maximum residual limit (MRL) of 0.1 ppm. Total plate count (TPC) of producer samples ranged from 5.3 ± 0.02 log cfu g−1 to 5.4 ± 0.03 log cfu g−1 and 6.2 ± 0.02 log cfu g−1 to 6.4 ± 0.02 log cfu g−1 for retailer samples and 5.0 ± 0.03 log cfu g−1 to 5.2 ± 0.04 log cfu g−1 for control samples. Fungal count ranged from 3.2 ± 0.04 log cfu g−1 to 3.5 ± 0.04 log cfu g−1, 3.4 ± 0.04 log cfu g−1 to 3.6 ± 0.03 log cfu g−1, and 2.2 ± 0.05 log cfu g−1 to 2.5 ± 0.03 log cfu g−1 for producer, retailer, and control samples, respectively. All the producer and retailer samples and one-third of the control samples were found to be contaminated with Escherichia coli, whereas Salmonella spp. were detected in amounts of 13.3% in producer samples and 20% in retailer samples and none in the control. In case of Vibrio spp., maximum count was found in retailer samples (13.3%), whereas producer and control samples showed none. The findings of the present study show that the presence of pesticides and poor microbiological quality of dried barb are alarming for consumers in Bangladesh and might cause prolonged disease and impending longstanding risk to human health. Full article
Show Figures

Figure 1

15 pages, 654 KB  
Article
Malting of Fusarium Head Blight-Infected Rye (Secale cereale): Growth of Fusarium graminearum, Trichothecene Production, and the Impact on Malt Quality
by Zhao Jin, James Gillespie, John Barr, Jochum J. Wiersma, Mark E. Sorrells, Steve Zwinger, Thomas Gross, Jaime Cumming, Gary C. Bergstrom, Robert Brueggeman, Richard D. Horsley and Paul B. Schwarz
Toxins 2018, 10(9), 369; https://doi.org/10.3390/toxins10090369 - 11 Sep 2018
Cited by 16 | Viewed by 4501
Abstract
This project was initiated with the goal of investigating the malt quality of winter rye cultivars and hybrids grown in the United States in 2014 and 2015, but high levels of deoxynivalenol (DON) were subsequently found in many of the malt samples. DON [...] Read more.
This project was initiated with the goal of investigating the malt quality of winter rye cultivars and hybrids grown in the United States in 2014 and 2015, but high levels of deoxynivalenol (DON) were subsequently found in many of the malt samples. DON levels in 75% of the investigated rye samples (n = 117) were actually below 1.0 mg/kg, as quantified by a gas chromatography combined with electron capture detector (GC-ECD). However, 83% of the samples had DON in excess of 1.0 mg/kg following malting, and the average DON level in malted rye was 10.6 mg/kg. In addition, relatively high levels of 3-acetate DON (3-ADON), 15-acetate DON (15-ADON), nivalenol (NIV), and DON-3-glucoside (D3G) were observed in some rye malts. Our results show that rye grain DON is likely a poor predicator of type B trichothecenes in malt in practice, because high levels of malt DON, 15-ADONm and D3G were produced, even when the rye samples with DON levels below 0.50 mg/kg were processed. Fusarium Tri5 DNA content in rye was highly associated with malt DON levels (r = 0.83) in a small subset of samples (n = 55). The impact of Fusarium infection on malt quality was demonstrated by the significant correlations between malt DON levels and wort viscosity, β-glucan content, wort color, wort p-coumaric acid content, and total phenolic content. Additional correlations of rye Fusarium Tri5 DNA contents with malt diastatic power (DP), wort free amino nitrogen (FAN) content, and arabinoxylan content were observed. Full article
(This article belongs to the Collection Fusarium Toxins – Relevance for Human and Animal Health)
Show Figures

Figure 1

7 pages, 453 KB  
Article
Persistent Organochlorine Pesticide Residues in Some Selected Cocoa Beverages in Nigeria
by Olayinka A. Ibigbami and Adefusisoye A. Adebawore
Beverages 2017, 3(4), 60; https://doi.org/10.3390/beverages3040060 - 11 Dec 2017
Cited by 5 | Viewed by 4954
Abstract
This study evaluates the quality of the cocoa beverages produced in Nigeria with respect to the occurrence and levels of organochlorine pesticides OCPs residues in order to ascertain the potential health risks to the general public. Seven cocoa-based beverages were analysed for 17 [...] Read more.
This study evaluates the quality of the cocoa beverages produced in Nigeria with respect to the occurrence and levels of organochlorine pesticides OCPs residues in order to ascertain the potential health risks to the general public. Seven cocoa-based beverages were analysed for 17 OCP residues using gas chromatography coupled with an Electron Captured Detector (GC-ECD) after extraction and silica-gel clean-up. The study reveals the presence of ten OCP residues in the cocoa beverages, with a concentration range from not detected ND—0.256 mg/kg, while α-BHC, β-BHC, methoxychlor, p,p′-DDE, dieldrin, endrin aldehyde, and endosulfan sulphate were not detected in any of the analysed samples. The contamination pattern of OCPs in the beverages was in the following order: Ovaltine > Milo > Cadbury-choco > Bournvita > Cowbell-coffee > Richoco > Oluji, with p,p′-DDT being the most frequently found pesticide. Heptachlor and endosulfan II showeda residual level above the European Union (EU) Maximum Residual Limits (MRLs) in only one sample. Full article
(This article belongs to the Special Issue Beverage Powder)
Show Figures

Figure 1

7 pages, 1342 KB  
Article
Migration and Accumulation of Octachlorodipropyl Ether in Soil-Tea Systems in Young and Old Tea Gardens
by Min Liao, Yan-Hong Shi, Hai-Qun Cao, Qing-Kui Fang, Jin-Jing Xiao and Ri-Mao Hua
Int. J. Environ. Res. Public Health 2017, 14(9), 1033; https://doi.org/10.3390/ijerph14091033 - 8 Sep 2017
Viewed by 4844
Abstract
The migration and accumulation of octachlorodipropyl ether (OCDPE) in soil-tea systems were investigated using a gas chromatography-electron capture detector (GC-ECD) method in young and old tea gardens. When the residual concentration of OCDPE was 100 g a.i. hm−2 in soils, the peak [...] Read more.
The migration and accumulation of octachlorodipropyl ether (OCDPE) in soil-tea systems were investigated using a gas chromatography-electron capture detector (GC-ECD) method in young and old tea gardens. When the residual concentration of OCDPE was 100 g a.i. hm−2 in soils, the peak concentrations of OCDPE in fresh leaves of young and old tea plants were 0.365 mg/kg and 0.144 mg/kg, taking 45 days and 55 days, respectively. Equations for the accumulation curves of OCDPE in fresh leaves of young and old tea plants were Ct = 0.0227e0.0566t (R2 = 0.9154) and Ct = 0.0298e−0.0306t (R2 = 0.7156), and were Ct = 3.8435e0.055t (R2 = 0.9698) and Ct = 1.5627e−0.048t (R2 = 0.9634) for dissipation curves, with a half-life of 14.4 days and 12.6 days, respectively. These results have practical guiding significance for controlling tea food safety. Full article
Show Figures

Figure 1

Back to TopTop