Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = galanin receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3235 KB  
Review
Galanin Receptors: G Protein-Dependent Signaling and Beyond
by Judit Oláh, Eszter Soltész-Katona, Hana Kaci, Gábor Turu and László Hunyady
Biomolecules 2026, 16(2), 236; https://doi.org/10.3390/biom16020236 - 3 Feb 2026
Abstract
The G protein-coupled galanin receptors include three different subtypes: galanin receptor 1, 2 and 3 (GalR1, GalR2, GalR3). The neuropeptide galanin is the principal natural agonist of the galanin receptors, the so-called galaninergic system. Galanin-like peptide and spexin have also been identified as [...] Read more.
The G protein-coupled galanin receptors include three different subtypes: galanin receptor 1, 2 and 3 (GalR1, GalR2, GalR3). The neuropeptide galanin is the principal natural agonist of the galanin receptors, the so-called galaninergic system. Galanin-like peptide and spexin have also been identified as natural ligands of the galanin receptors. Galanin receptors are widely expressed in the brain; however, they can be found in other tissues, such as the skeletal muscle, the heart, and the gastrointestinal tract. The galaninergic system regulates diverse biological processes, including feeding behavior, neuroprotection, learning, memory, cardiovascular and renal function, and nociception. Its dysregulation is associated with various diseases, such as Alzheimer’s disease, diabetes mellitus, epilepsy, depression, and cancer. The stimulation of GalR1 and GalR3 leads to the Gαi/o-type G protein-mediated inhibition of cyclic AMP/protein kinase A, whereas GalR2 stimulation initiates phospholipase C activation via Gαq/11-type G proteins. A galanin-activated β-arrestin-dependent pathway has also been described for GalR2. In this review, we summarize the recent advances concerning galanin receptor signaling, including both the G protein-dependent and -independent pathways. A better understanding of the complex interplay of the signaling molecules, receptors, and various signaling pathways is crucial for the future development of specific agonists with therapeutic potential. Full article
Show Figures

Figure 1

16 pages, 1556 KB  
Article
Spexin-Mediated Dietary Adaptation in Siniperca chuatsi: Molecular Characterisation and Functional Insights into FABP2 Interaction
by Xiao Chen, Yunyun Yan, Junjian Dong, Hetong Zhang, Yuan Zhang, Fengying Gao, Xing Ye and Chengfei Sun
Animals 2025, 15(20), 2944; https://doi.org/10.3390/ani15202944 - 10 Oct 2025
Viewed by 592
Abstract
Neuropeptide Q (spexin, spx) is a pleiotropic signalling molecule that regulates appetite and metabolism primarily via activation of galanin and melanocortin receptors. Here, we cloned the open reading frame (ORF) of spx from Siniperca chuatsi (Scspx), characterised its spatiotemporal expression, [...] Read more.
Neuropeptide Q (spexin, spx) is a pleiotropic signalling molecule that regulates appetite and metabolism primarily via activation of galanin and melanocortin receptors. Here, we cloned the open reading frame (ORF) of spx from Siniperca chuatsi (Scspx), characterised its spatiotemporal expression, elucidated spx regulatory features during starvation and feed adaptation, and identified SPX-interacting proteins using glutathione S-transferase pull-down and mass spectrometry. The Scspx ORF was 312 bp, encoding 103 amino acids. The predominant expression of spx was found in the liver of feed-trained S. chuatsi, where it was 17.36-fold greater than in muscle. During fasting (0, 3, 5, and 7 d), spx expression in the muscle, liver, and intestine initially increased and then declined, whereas brain and stomach tissues exhibited the opposite tendency. Compared to the smallest individuals, hepatic and brain spx expression was substantially lower in the largest individuals, whereas stomach expression was higher (p < 0.05). Fatty acid binding protein 2 was identified as a novel SPX-interacting partner, implicating SPX in feed adaptation through lipid metabolic regulation via the peroxisome proliferator-activated receptor signalling pathway. Our results provide the first evidence of a direct SPX-FABP2 interaction in fish, pointing to a coordinated role in downstream gene regulation. This work hereby uncovers a novel regulatory axis within the piscine energy metabolism network. These findings provide new insight into the regulatory role of SPX in feed adaptation in S. chuatsi, offering a foundation for genetic analysis. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

34 pages, 1598 KB  
Review
Neuroendocrine Regulation and Neural Circuitry of Parenthood: Integrating Neuropeptides, Brain Receptors, and Maternal Behavior
by Philippe Leff-Gelman, Gabriela Pellón-Díaz, Ignacio Camacho-Arroyo, Nadia Palomera-Garfias and Mónica Flores-Ramos
Int. J. Mol. Sci. 2025, 26(18), 9007; https://doi.org/10.3390/ijms26189007 - 16 Sep 2025
Viewed by 2429
Abstract
Maternal behavior encompasses a range of biologically driven responses whose expression and duration vary across species. Maternal responses rely on robust adaptive changes in the female brain, enabling mothers to engage in caregiving, nourishing, and offspring protection. Morphological and functional changes in the [...] Read more.
Maternal behavior encompasses a range of biologically driven responses whose expression and duration vary across species. Maternal responses rely on robust adaptive changes in the female brain, enabling mothers to engage in caregiving, nourishing, and offspring protection. Morphological and functional changes in the maternal brain enhance sensitivity to offspring cues, eliciting maternal behaviors, rewarding responses, and social processing stimuli essential for parenting. Maternal behavior comprises a range of biological responses that extend beyond basic actions, reflecting a complex, evolutionarily shaped neurobiological adaptation. These behaviors can be broadly categorized into direct behaviors, which are explicitly aimed at the care of the offspring, and indirect behaviors that, overall, ensure the protection, nourishment, and survival of the newborn. The secretion of main neuropeptide hormones, such as oxytocin (OT), prolactin (PRL), and placental lactogens (PLs), during the peripartum period, is relevant for inducing and regulating maternal responses to offspring cues, including suckling behavior. Although PRL is primarily associated with reproductive and parental functions in vertebrates, it also modulates distinct neural functions during pregnancy that extend from lactogenesis to adult neurogenesis, neuroprotection, and neuroplasticity, all of which contribute to preparing the maternal brain for motherhood and parenting interactions. Parvocellular OT-containing neurons in the paraventricular nucleus (PVN) and in the anterior hypothalamic nucleus (AHN) project axon collaterals to the medial preoptic area, which, in turn, projects to the nucleus accumbens (NACC) and lateral habenula (lHb) via the retrorubral field (RRF) and the ventral tegmental area (VTA), which mediate the motivational aspects of maternal responses to offspring cues. The reshaping process of the brain and neural networks implicated in motherhood depends on several factors, such as up- and downregulation of neuronal gene expression of bioactive peptide hormones (i.e., OT, PRL, TIP-39, galanin, spexin, pituitary adenylate cyclase-activating polypeptide (PACAP), corticotropin-releasing hormone (CRH), peptide receptors, and transcription factors (i.e., c-fos and pSTAT)) in target neurons in hypothalamic nuclei, mesolimbic areas, the hippocampus, and the brainstem, which, overall, regulate the expression of maternal behavior to offspring cues, as shown in postpartum female rodents. In this review, we describe the modulatory neuropeptides, the neural networks underlying peptide transmission systems, and cell signaling involved in parenthood. We highlight the dysregulation of neuropeptide hormones and their receptors in the central nervous system in relation to psychiatric disorders. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

12 pages, 3295 KB  
Review
The Anatomy, Histology, and Function of the Major Pelvic Ganglion
by Jessica Natalia Landa-García, María de la Paz Palacios-Arellano, Miguel Angel Morales, Gonzalo Emiliano Aranda-Abreu, Fausto Rojas-Durán, Deissy Herrera-Covarrubias, María Rebeca Toledo-Cárdenas, Jorge Manuel Suárez-Medellín, Genaro Alfonso Coria-Avila, Jorge Manzo and Maria Elena Hernández-Aguilar
Animals 2024, 14(17), 2570; https://doi.org/10.3390/ani14172570 - 4 Sep 2024
Cited by 4 | Viewed by 4769
Abstract
This review provides a comprehensive analysis of the pelvic plexus and its regulation across various mammalian species, including rats, cats, dogs, and pigs. The pelvic and hypogastric nerves play crucial roles in regulating pelvic functions such as micturition, defecation, and erection. The anatomical [...] Read more.
This review provides a comprehensive analysis of the pelvic plexus and its regulation across various mammalian species, including rats, cats, dogs, and pigs. The pelvic and hypogastric nerves play crucial roles in regulating pelvic functions such as micturition, defecation, and erection. The anatomical organization of these nerves varies, forming either well-defined ganglia or complex plexuses. Despite these variations, the neurons within these structures are consistently regulated by key neurotransmitters, norepinephrine and acetylcholine. These neurons also possess receptors for testosterone and prolactin, particularly in rats, indicating the significant role of these hormones in neuronal function and development. Moreover, neuropeptides such as vasoactive intestinal peptide (VIP), substance P, neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL), and calcitonin gene-related peptide (CGRP) are co-released with neurotransmitters to modulate pelvic functions. This review highlights the complex interplay between neurotransmitters, neuropeptides, and hormones in regulating pelvic physiology and emphasizes the importance of hormonal regulation in maintaining the functionality and health of the pelvic plexus across different species. Full article
(This article belongs to the Special Issue Comparative Neuroanatomy and Neurobiology in Animals)
Show Figures

Figure 1

23 pages, 1005 KB  
Review
The Constellation of Risk Factors and Paraneoplastic Syndromes in Cholangiocarcinoma: Integrating the Endocrine Panel Amid Tumour-Related Biology (A Narrative Review)
by Mihai-Lucian Ciobica, Bianca-Andreea Sandulescu, Liana-Maria Chicea, Mihaela Iordache, Maria-Laura Groseanu, Mara Carsote, Claudiu Nistor and Ana-Maria Radu
Biology 2024, 13(9), 662; https://doi.org/10.3390/biology13090662 - 26 Aug 2024
Cited by 1 | Viewed by 4284
Abstract
Cholangiocarcinomas (CCAs), a heterogeneous group of challenging malignant tumours which originate from the biliary epithelium, are associated with an alarming increasing incidence during recent decades that varies between different regions of the globe. Thus, awareness represents the key operating factor. Our purpose was [...] Read more.
Cholangiocarcinomas (CCAs), a heterogeneous group of challenging malignant tumours which originate from the biliary epithelium, are associated with an alarming increasing incidence during recent decades that varies between different regions of the globe. Thus, awareness represents the key operating factor. Our purpose was to overview the field of CCAs following a double perspective: the constellation of the risk factors, and the presence of the paraneoplastic syndromes, emphasizing the endocrine features amid the entire multidisciplinary panel. This is a narrative review. A PubMed-based search of English-language original articles offered the basis of this comprehensive approach. Multiple risk factors underlying different levels of statistical evidence have been listed such as chronic biliary diseases and liver conditions, inflammatory bowel disease, parasitic infections (e.g., Opisthorchis viverrini, Clonorchis sinensis), lifestyle influence (e.g., alcohol, smoking), environmental exposure (e.g., thorotrast, asbestos), and certain genetic and epigenetic interplays. With regard to the endocrine panel, a heterogeneous spectrum should be taken into consideration: non-alcoholic fatty liver disease, obesity, type 2 diabetes mellitus, and potential connections with vitamin D status, glucagon-like peptide 1 receptor, or the galanin system, respectively, with exposure to sex hormone therapy. Amid the numerous dermatologic, hematologic, renal, and neurologic paraneoplastic manifestations in CCAs, the endocrine panel is less described. Humoral hypercalcaemia of malignancy stands as the most frequent humoral paraneoplastic syndrome in CCAs, despite being exceptional when compared to other paraneoplastic (non-endocrine) manifestations and to its reported frequency in other (non-CCAs) cancers (it accompanies 20–30% of all cancers). It represents a poor prognosis marker in CCA; it may be episodic once the tumour relapses. In addition to the therapy that targets the originating malignancy, hypercalcaemia requires the administration of bisphosphonates (e.g., intravenous zoledronic acid) or denosumab. Early detection firstly helps the general wellbeing of a patient due to a prompt medical control of high serum calcium and it also provides a fine biomarker of disease status in selected cases that harbour the capacity of PTHrP secretion. The exact molecular biology and genetic configuration of CCAs that display such endocrine traits is still an open matter, but humoral hypercalcaemia adds to the overall disease burden. Full article
(This article belongs to the Special Issue Biology of Liver Diseases)
Show Figures

Figure 1

15 pages, 2186 KB  
Article
Comparison of the Influence of Bisphenol A and Bisphenol S on the Enteric Nervous System of the Mouse Jejunum
by Krystyna Makowska and Sławomir Gonkowski
Int. J. Mol. Sci. 2024, 25(13), 6941; https://doi.org/10.3390/ijms25136941 - 25 Jun 2024
Cited by 2 | Viewed by 2183
Abstract
Bisphenols are dangerous endocrine disruptors that pollute the environment. Due to their chemical properties, they are globally used to produce plastics. Structural similarities to oestrogen allow bisphenols to bind to oestrogen receptors and affect internal body systems. Most commonly used in the plastic [...] Read more.
Bisphenols are dangerous endocrine disruptors that pollute the environment. Due to their chemical properties, they are globally used to produce plastics. Structural similarities to oestrogen allow bisphenols to bind to oestrogen receptors and affect internal body systems. Most commonly used in the plastic industry is bisphenol A (BPA), which also has negative effects on the nervous, immune, endocrine, and cardiovascular systems. A popular analogue of BPA-bisphenol S (BPS) also seems to have harmful effects similar to BPA on living organisms. Therefore, with the use of double immunofluorescence labelling, this study aimed to compare the effect of BPA and BPS on the enteric nervous system (ENS) in mouse jejunum. The study showed that both studied toxins impact the number of nerve cells immunoreactive to substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), the neuronal isoform of nitric oxide synthase (nNOS), and vesicular acetylcholine transporter (VAChT). The observed changes were similar in the case of both tested bisphenols. However, the influence of BPA showed stronger changes in neurochemical coding. The results also showed that long-term exposure to BPS significantly affects the ENS. Full article
Show Figures

Figure 1

24 pages, 4720 KB  
Article
Galanin System in the Human Bile Duct and Perihilar Cholangiocarcinoma
by Sara Huber, Theresia Fitzner, René G. Feichtinger, Sarah Hochmann, Theo Kraus, Karl Sotlar, Barbara Kofler and Martin Varga
Cells 2023, 12(13), 1678; https://doi.org/10.3390/cells12131678 - 21 Jun 2023
Cited by 5 | Viewed by 2268
Abstract
Background: Perihilar cholangiocarcinoma (pCCA) is characterised by poor outcomes. Early diagnosis is essential for patient survival. The peptide galanin (GAL) and its receptors GAL1–3 are expressed in various tumours. Detailed characterisation of the GAL system in pCCA is lacking. Our study sought [...] Read more.
Background: Perihilar cholangiocarcinoma (pCCA) is characterised by poor outcomes. Early diagnosis is essential for patient survival. The peptide galanin (GAL) and its receptors GAL1–3 are expressed in various tumours. Detailed characterisation of the GAL system in pCCA is lacking. Our study sought to characterise GAL and GAL1–3 receptor (GAL1–3–R) expression in the healthy human bile duct, in cholestasis and pCCA. Methods: Immunohistochemical staining was performed in healthy controls (n = 5) and in the peritumoural tissues (with and without cholestasis) (n = 20) and tumour tissues of pCCA patients (n = 33) using validated antibodies. The score values of GAL and GAL1–3–R expression were calculated and statistically evaluated. Results: GAL and GAL1–R were expressed in various bile duct cell types. GAL2–R was only slightly but still expressed in almost all the examined tissues, and GAL3–R specifically in cholangiocytes and capillaries. In a small pCCA patient cohort (n = 18), high GAL expression correlated with good survival, whereas high GAL3–R correlated with poor survival. Conclusions: Our in-depth characterisation of the GAL system in the healthy human biliary duct and pCCA in a small patient cohort revealed that GAL and GAL3–R expression in tumour cells of pCCA patients could potentially represent suitable biomarkers for survival. Full article
Show Figures

Figure 1

31 pages, 1038 KB  
Review
The Role of Hypothalamic Neuropeptides in Regulation of Liver Functions in Health and Disease
by Anca D. Petrescu, Su Yeon An, Juliet Venter, Matthew McMillin and Sharon DeMorrow
Endocrines 2023, 4(2), 457-487; https://doi.org/10.3390/endocrines4020034 - 20 Jun 2023
Cited by 1 | Viewed by 8048
Abstract
The communication between brain and peripheral tissues is mediated by neuropeptides that coordinate the functions of each organ with the activities of the entire body in specific environmental conditions. Hypothalamic neuropeptides act as neurotransmitters and hormones to regulate the physiology of food intake, [...] Read more.
The communication between brain and peripheral tissues is mediated by neuropeptides that coordinate the functions of each organ with the activities of the entire body in specific environmental conditions. Hypothalamic neuropeptides act as neurotransmitters and hormones to regulate the physiology of food intake, digestion, and metabolism, having a direct or indirect impact on the liver. Investigations on liver pathologies found that dysfunctions of neuropeptides and their receptors are associated with liver disorders such as non-alcoholic fatty liver disease, steatohepatitis, cholestasis, cirrhosis, and liver cancer. In this article, we reviewed neuropeptides that regulate energy homeostasis and lipid and glucose metabolism in the liver and are associated with liver injuries. Firstly, peptides involved in regulatory processes in the brain and liver, such as neuropeptide Y, agouti-related protein, and the galanin family, are related to obesity and its comorbidities, including type 2 diabetes and metabolic syndrome, are presented. Secondly, a comprehensive review of neuropeptides such as secretin, vasoactive intestinal peptide, substance P, and somatostatin, which are involved in liver injuries unrelated to obesity; i.e., cholestasis-induced biliary hyperplasia, cirrhosis, hepatocellular carcinoma, and cholangiocarcinoma, is also presented. The cellular and molecular mechanisms underlining liver injuries related to the dysfunction of these neuropeptides and receptors are also described. Full article
(This article belongs to the Special Issue Hypothalamic Involvement in Human Health)
Show Figures

Figure 1

9 pages, 1003 KB  
Communication
Galanin 2 Receptor: A Novel Target for a Subset of Pancreatic Ductal Adenocarcinoma
by Pawel Namsolleck, Barbara Kofler and Gert N. Moll
Int. J. Mol. Sci. 2023, 24(12), 10193; https://doi.org/10.3390/ijms241210193 - 15 Jun 2023
Cited by 5 | Viewed by 2124
Abstract
Galanin is a 30 amino acid peptide that stimulates three subtype receptors (GAL1–3R). M89b is a lanthionine-stabilized, C-terminally truncated galanin analog that specifically stimulates GAL2R. We investigated the potential of M89b as a therapeutic for pancreatic ductal adenocarcinoma (PDAC) [...] Read more.
Galanin is a 30 amino acid peptide that stimulates three subtype receptors (GAL1–3R). M89b is a lanthionine-stabilized, C-terminally truncated galanin analog that specifically stimulates GAL2R. We investigated the potential of M89b as a therapeutic for pancreatic ductal adenocarcinoma (PDAC) and assessed its safety. The anti-tumor activity of subcutaneously injected M89b on the growth of patient-derived xenografts of PDAC (PDAC–PDX) in mice was investigated. In addition, the safety of M89b was assessed in vitro using a multi-target panel to measure the off-target binding and modulation of enzyme activities. In a PDAC–PDX with a high GAL2R expression, M89b completely inhibited the growth of the tumor (p < 0.001), while in two PDAC–PDXs with low GAL2R expression, low or negligeable inhibition of tumor growth was measured, and in the PDX without GAL2R expression no influence on the tumor growth was observed. The M89b treatment of the GAL2R high-PDAC–PDX-bearing mice led to a reduction in the expression of RacGap1 (p < 0.05), PCNA (p < 0.01), and MMP13 (p < 0.05). In vitro studies involving a multi-target panel of pharmacologically relevant targets revealedexcellent safety of M89b. Our data indicated that GAL2R is a safe and valuable target for treating PDACs with high GAL2R expression. Full article
(This article belongs to the Special Issue Therapeutic Targets in Pancreatic Cancer)
Show Figures

Figure 1

11 pages, 3417 KB  
Article
Spexin2 Is a Novel Food Regulator in Gallus gallus
by Fengyan Meng, Yuping Wu, Yu Yu, Guixian Bu, Xiaogang Du, Qiuxia Liang, Xiaohan Cao, Anqi Huang, Xianyin Zeng, Linyan Huang, Fanli Kong, Yunkun Li and Xingfa Han
Int. J. Mol. Sci. 2023, 24(5), 4821; https://doi.org/10.3390/ijms24054821 - 2 Mar 2023
Cited by 6 | Viewed by 2481
Abstract
Spexin2 (SPX2), a paralog of SPX1, is a newly identified gene in non-mammalian vertebrates. Limited studies in fish have evidenced its important role in food intake and energy balance modulation. However, little is known about its biological functions in birds. [...] Read more.
Spexin2 (SPX2), a paralog of SPX1, is a newly identified gene in non-mammalian vertebrates. Limited studies in fish have evidenced its important role in food intake and energy balance modulation. However, little is known about its biological functions in birds. Using the chicken (c-) as a model, we cloned the full-length cDNA of SPX2 by using RACE-PCR. It is 1189 base pair (bp) in length and predicted to generate a protein of 75 amino acids that contains a 14 amino acids mature peptide. Tissue distribution analysis showed that cSPX2 transcripts were detected in a wide array of tissues, with abundant expression in the pituitary, testis, and adrenal gland. cSPX2 was also observed to be ubiquitously expressed in chicken brain regions, with the highest expression in the hypothalamus. Its expression was significantly upregulated in the hypothalamus after 24 or 36 h of food deprivation, and the feeding behavior of chicks was obviously suppressed after peripheral injection with cSPX2. Mechanistically, further studies evidenced that cSPX2 acts as a satiety factor via upregulating cocaine and amphetamine regulated transcript (CART) and downregulating agouti-related neuropeptide (AGRP) in hypothalamus. Using a pGL4-SRE-luciferase reporter system, cSPX2 was demonstrated to effectively activate a chicken galanin II type receptor (cGALR2), a cGALR2-like receptor (cGALR2L), and a galanin III type receptor (cGALR3), with the highest binding affinity for cGALR2L. Collectively, we firstly identified that cSPX2 serves as a novel appetite monitor in chicken. Our findings will help clarify the physiological functions of SPX2 in birds as well as its functional evolution in vertebrates. Full article
Show Figures

Figure 1

13 pages, 2053 KB  
Article
Immunodetection of P2X2 Receptor in Enteric Nervous System Neurons of the Small Intestine of Pigs
by Sylwia Mozel and Marcin B. Arciszewski
Animals 2022, 12(24), 3576; https://doi.org/10.3390/ani12243576 - 17 Dec 2022
Viewed by 2564
Abstract
Extracellular adenosine 5′-triphosphate (ATP) is one of the best-known and frequently studied neurotransmitters. Its broad spectrum of biological activity is conditioned by the activation of purinergic receptors, including the P2X2 receptor. The P2X2 receptor is present in the central and peripheral nervous system [...] Read more.
Extracellular adenosine 5′-triphosphate (ATP) is one of the best-known and frequently studied neurotransmitters. Its broad spectrum of biological activity is conditioned by the activation of purinergic receptors, including the P2X2 receptor. The P2X2 receptor is present in the central and peripheral nervous system of many species, including laboratory animals, domestic animals, and primates. However, the distribution of the P2X2 receptor in the nervous system of the domestic pig, a species increasingly used as an experimental model, is as yet unknown. Therefore, this study aimed to determine the presence of the P2X2 receptor in the neurons of the enteric nervous system (ENS) of the pig small intestine (duodenum, jejunum, and ileum) by the immunofluorescence method. In addition, the chemical code of P2X2-immunoreactive (IR) ENS neurons of the porcine small intestine was analysed by determining the coexistence of selected neuropeptides, i.e., vasoactive intestinal polypeptide (VIP), substance P (sP), and galanin. P2X2-IR neurons were present in the myenteric plexus (MP), outer submucosal plexus (OSP), and inner submucosal plexus (ISP) of all sections of the small intestine (duodenum, jejunum, and ileum). From 44.78 ± 2.24% (duodenum) to 63.74 ± 2.67% (ileum) of MP neurons were P2X2-IR. The corresponding ranges in the OSP ranged from 44.84 ± 1.43% (in the duodenum) to 53.53 ± 1.21% (in the jejunum), and in the ISP, from 53.10 ± 0.97% (duodenum) to 60.57 ± 2.24% (ileum). Immunofluorescence staining revealed the presence of P2X2-IR/galanin-IR and P2X2-IR/VIP-IR neurons in the MP, OSP, and ISP of the sections of the small intestine. The presence of sP was not detected in the P2X2-IR neurons of any ganglia tested in the ENS. Our results indicate for the first time that the P2X2 receptor is present in the MP, ISP, and OSP neurons of all small intestinal segments in pigs, which may suggest that its activation influences the action of the small intestine. Moreover, there is a likely functional interaction between P2X2 receptors and galanin or VIP, but not sP, in the ENS of the porcine small intestine. Full article
(This article belongs to the Special Issue Microscopic Structure Research in Animals)
Show Figures

Figure 1

18 pages, 4265 KB  
Article
Galanin Receptors (GALR1, GALR2, and GALR3) Immunoexpression in Enteric Plexuses of Colorectal Cancer Patients: Correlation with the Clinico-Pathological Parameters
by Jacek Kiezun, Marta Kiezun, Bartlomiej Emil Krazinski, Lukasz Paukszto, Anna Koprowicz-Wielguszewska, Zbigniew Kmiec and Janusz Godlewski
Biomolecules 2022, 12(12), 1769; https://doi.org/10.3390/biom12121769 - 27 Nov 2022
Cited by 12 | Viewed by 3201
Abstract
Galanin (GAL) is an important neurotransmitter released by the enteric nervous system (ENS) neurons located in the muscularis externa and submucosa enteric plexuses that acts by binding to GAL receptors 1, 2 and 3 (GALR1, 2 and 3). In our previous studies, the [...] Read more.
Galanin (GAL) is an important neurotransmitter released by the enteric nervous system (ENS) neurons located in the muscularis externa and submucosa enteric plexuses that acts by binding to GAL receptors 1, 2 and 3 (GALR1, 2 and 3). In our previous studies, the GAL immunoexpression was compared in colorectal cancer (CRC) tissue and the adjacent parts of the large intestine wall including myenteric and submucosal plexuses. Recently we have also found that expression levels of GALR1 and GALR3 proteins are elevated in CRC tissue as compared with their expression in epithelial cells of unchanged mucosa. Moreover, higher GALR3 immunoreactivity in CRC cells correlated with better prognosis of CRC patients. To understand the distribution of GALRs in enteric plexuses distal and close to CRC invasion, in the present study we decided to evaluate GALRs expression within the myenteric and submucosal plexuses located proximally and distally to the cancer invasion and correlated the GALRs expression levels with the clinico-pathological data of CRC patients. The immunohistochemical and immunofluorescent methods showed only slightly decreased immunoexpression of GALR1 and GALR3 in myenteric plexuses close to cancer but did not reveal any correlation in the immunoexpression of all three GAL receptors in myenteric plexuses and tumour progression. No significant changes were found between the expression levels of GALRs in submucosal plexuses distal and close to the tumour. However, elevated GALR1 expression in submucosal plexuses in vicinity of CRC correlated with poor prognosis, higher tumour grading and shorter overall survival. When myenteric plexuses undergo morphological and functional alterations characteristic for atrophy, GALRs maintain or only slightly decrease their expression status. In contrast, the correlation between high expression of GALR1 in the submucosal plexuses and overall survival of CRC patients suggest that GAL and GALRs can act as a components of local neuro-paracrine pro-proliferative pathways accelerating the invasion and metastasis of cancer cell. The obtained results suggest an important role of GALR1 in submucosal plexuses function during the progression of CRC and imply that GALR1 expression in submucosal plexuses of ENS could be an important predictive factor for CRC progression. Full article
(This article belongs to the Special Issue Enteric Nervous System: Normal Functions and Enteric Neuropathies)
Show Figures

Figure 1

38 pages, 4098 KB  
Review
The Galaninergic System: A Target for Cancer Treatment
by Manuel Lisardo Sánchez and Rafael Coveñas
Cancers 2022, 14(15), 3755; https://doi.org/10.3390/cancers14153755 - 1 Aug 2022
Cited by 31 | Viewed by 4994
Abstract
The aim of this review is to show the involvement of the galaninergic system in neuroendocrine (phaeochromocytomas, insulinomas, neuroblastic tumors, pituitary tumors, small-cell lung cancer) and non-neuroendocrine (gastric cancer, colorectal cancer, head and neck squamous cell carcinoma, glioma) tumors. The galaninergic system is [...] Read more.
The aim of this review is to show the involvement of the galaninergic system in neuroendocrine (phaeochromocytomas, insulinomas, neuroblastic tumors, pituitary tumors, small-cell lung cancer) and non-neuroendocrine (gastric cancer, colorectal cancer, head and neck squamous cell carcinoma, glioma) tumors. The galaninergic system is involved in tumorigenesis, invasion/migration of tumor cells and angiogenesis, and this system has been correlated with tumor size/stage/subtypes, metastasis and recurrence rate. In the galaninergic system, epigenetic mechanisms have been related with carcinogenesis and recurrence rate. Galanin (GAL) exerts both proliferative and antiproliferative actions in tumor cells. GAL receptors (GALRs) mediate different signal transduction pathways and actions, depending on the particular G protein involved and the tumor cell type. In general, the activation of GAL1R promoted an antiproliferative effect, whereas the activation of GAL2R induced antiproliferative or proliferative actions. GALRs could be used in certain tumors as therapeutic targets and diagnostic markers for treatment, prognosis and surgical outcome. The current data show the importance of the galaninergic system in the development of certain tumors and suggest future potential clinical antitumor applications using GAL agonists or antagonists. Full article
Show Figures

Figure 1

18 pages, 4360 KB  
Article
Brain Delivery of IGF1R5, a Single-Domain Antibody Targeting Insulin-like Growth Factor-1 Receptor
by Alvaro Yogi, Greg Hussack, Henk van Faassen, Arsalan S. Haqqani, Christie E. Delaney, Eric Brunette, Jagdeep K. Sandhu, Melissa Hewitt, Traian Sulea, Kristin Kemmerich and Danica B. Stanimirovic
Pharmaceutics 2022, 14(7), 1452; https://doi.org/10.3390/pharmaceutics14071452 - 12 Jul 2022
Cited by 35 | Viewed by 6269
Abstract
The ability of drugs and therapeutic antibodies to reach central nervous system (CNS) targets is greatly diminished by the blood–brain barrier (BBB). Receptor-mediated transcytosis (RMT), which is responsible for the transport of natural protein ligands across the BBB, was identified as a way [...] Read more.
The ability of drugs and therapeutic antibodies to reach central nervous system (CNS) targets is greatly diminished by the blood–brain barrier (BBB). Receptor-mediated transcytosis (RMT), which is responsible for the transport of natural protein ligands across the BBB, was identified as a way to increase drug delivery to the brain. In this study, we characterized IGF1R5, which is a single-domain antibody (sdAb) that binds to insulin-like growth factor-1 receptor (IGF1R) at the BBB, as a ligand that triggers RMT and could deliver cargo molecules that otherwise do not cross the BBB. Surface plasmon resonance binding analyses demonstrated the species cross-reactivity of IGF1R5 toward IGF1R from multiple species. To overcome the short serum half-life of sdAbs, we fused IGF1R5 to the human (hFc) or mouse Fc domain (mFc). IGF1R5 in both N- and C-terminal mFc fusion showed enhanced transmigration across a rat BBB model (SV-ARBEC) in vitro. Increased levels of hFc-IGF1R5 in the cerebrospinal fluid and vessel-depleted brain parenchyma fractions further confirmed the ability of IGF1R5 to cross the BBB in vivo. We next tested whether this carrier was able to ferry a pharmacologically active payload across the BBB by measuring the hypothermic and analgesic properties of neurotensin and galanin, respectively. The fusion of IGF1R5-hFc to neurotensin induced a dose-dependent reduction in the core temperature. The reversal of hyperalgesia by galanin that was chemically linked to IGF1R5-mFc was demonstrated using the Hargreaves model of inflammatory pain. Taken together, our results provided a proof of concept that appropriate antibodies, such as IGF1R5 against IGF1R, are suitable as RMT carriers for the delivery of therapeutic cargos for CNS applications. Full article
(This article belongs to the Special Issue Advanced Blood-Brain Barrier Drug Delivery)
Show Figures

Figure 1

40 pages, 2174 KB  
Review
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders
by Miguel Pérez de la Mora, Dasiel O. Borroto-Escuela, Minerva Crespo-Ramírez, José del Carmen Rejón-Orantes, Daniel Alejandro Palacios-Lagunas, Magda K. Martínez-Mata, Daniela Sánchez-Luna, Emiliano Tesoro-Cruz and Kjell Fuxe
Cells 2022, 11(11), 1826; https://doi.org/10.3390/cells11111826 - 2 Jun 2022
Cited by 16 | Viewed by 5627
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and [...] Read more.
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders. Full article
Show Figures

Figure 1

Back to TopTop