Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = fusogenic gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3005 KiB  
Article
SARS-CoV-2 XEC: A Genome-Based Survey
by Fabio Scarpa, Francesco Branda, Giancarlo Ceccarelli, Chiara Romano, Chiara Locci, Noemi Pascale, Ilenia Azzena, Pier Luigi Fiori, Marco Casu, Stefano Pascarella, Miriana Quaranta, Domenico Benvenuto, Roberto Cauda, Massimo Ciccozzi and Daria Sanna
Microorganisms 2025, 13(2), 253; https://doi.org/10.3390/microorganisms13020253 - 24 Jan 2025
Cited by 2 | Viewed by 1817
Abstract
Recombination, a process of genetic exchange between distinct organisms, has played a critical role in the emergence of SARS-CoV-2 variants such as the XEC recombinant. This study provides a detailed genomic and structural characterization of XEC, derived from the recombination of lineages KP.3.3 [...] Read more.
Recombination, a process of genetic exchange between distinct organisms, has played a critical role in the emergence of SARS-CoV-2 variants such as the XEC recombinant. This study provides a detailed genomic and structural characterization of XEC, derived from the recombination of lineages KP.3.3 (donor) and KS.1.1 (acceptor). Phylogenomic analyses reveal that XEC and its descendant XEC.1 form a monophyletic clade with close evolutionary ties to KP.3.3. The genomic breakpoint, spanning nucleotide positions 22,363–22,463, marks the shift from KS.1.1 to KP.3.3 within the spike protein gene. Mutational analysis highlights shared traits with its parental lineages, including mutations associated with immune evasion, receptor affinity, and fusogenicity. Notable changes, such as Q493E and L455S, may confer unique immunogenic properties, though XEC’s overall immune escape potential is limited by the absence of new mutations in conserved epitopes. Despite these mutations, XEC demonstrates restricted geographical spread, low genetic variability, and an evolutionary trajectory indicative of an evolutionary dead-end. Bayesian Skyline Plot analysis corroborates this, showing stable but declining population size. These findings underscore the need for ongoing genomic surveillance to monitor recombinant variants’ characteristics and public health impact. This study contributes to understanding viral evolution and highlights the importance of distinguishing variants of concern from those with minimal epidemiological significance. Full article
Show Figures

Figure 1

27 pages, 5078 KiB  
Review
Boosting Lipofection Efficiency Through Enhanced Membrane Fusion Mechanisms
by Rais V. Pavlov, Sergey A. Akimov, Erdem B. Dashinimaev and Pavel V. Bashkirov
Int. J. Mol. Sci. 2024, 25(24), 13540; https://doi.org/10.3390/ijms252413540 - 18 Dec 2024
Cited by 2 | Viewed by 2295
Abstract
Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the [...] Read more.
Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the fusion of the vector and cellular membranes, which enables hydrophilic polynucleic acids to traverse the hydrophobic barriers of two intervening membranes. This review examines the critical role of membrane fusion in lipofection efficiency, with a particular focus on the molecular mechanisms that govern lipoplex–membrane interactions. This analysis will examine the key challenges inherent to the fusion process, from achieving initial membrane proximity to facilitating final content release through membrane remodeling. In contrast to viral vectors, which utilize specialized fusion proteins, lipid vectors necessitate a strategic formulation and environmental optimization to enhance their fusogenicity. This review discusses recent advances in vector design and fusion-promoting strategies, emphasizing their potential to improve gene delivery yield. It highlights the importance of understanding lipoplex–membrane fusion mechanisms for developing next-generation delivery systems and emphasizes the need for continued fundamental research to advance lipid-mediated transfection technology. Full article
(This article belongs to the Special Issue Molecular Advances in Liposome-Based Drug Delivery Systems)
Show Figures

Figure 1

27 pages, 16898 KiB  
Article
αvβ3 Integrin and Folate-Targeted pH-Sensitive Liposomes with Dual Ligand Modification for Metastatic Breast Cancer Treatment
by Prashant Pandey, Dilip Kumar Arya, Payal Deepak, Daoud Ali, Saud Alarifi, Saurabh Srivastava, Afsaneh Lavasanifar and Paruvathanahalli Siddalingam Rajinikanth
Bioengineering 2024, 11(8), 800; https://doi.org/10.3390/bioengineering11080800 - 7 Aug 2024
Cited by 13 | Viewed by 2965
Abstract
The advent of pH-sensitive liposomes (pHLips) has opened new opportunities for the improved and targeted delivery of antitumor drugs as well as gene therapeutics. Comprising fusogenic dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS), these nanosystems harness the acidification in the tumor microenvironment and endosomes [...] Read more.
The advent of pH-sensitive liposomes (pHLips) has opened new opportunities for the improved and targeted delivery of antitumor drugs as well as gene therapeutics. Comprising fusogenic dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS), these nanosystems harness the acidification in the tumor microenvironment and endosomes to deliver drugs effectively. pH-responsive liposomes that are internalized through endocytosis encounter mildly acidic pH in the endosomes and thereafter fuse or destabilize the endosomal membrane, leading to subsequent cargo release into the cytoplasm. The extracellular tumor matrix also presents a slightly acidic environment that can lead to the enhanced drug release and improved targeting capabilities of the nano-delivery system. Recent studies have shown that folic acid (FA) and iRGD-coated nanocarriers, including pH-sensitive liposomes, can preferentially accumulate and deliver drugs to breast tumors that overexpress folate receptors and αvβ3 and αvβ5 integrins. This study focuses on the development and characterization of 5-Fluorouracil (5-FU)-loaded FA and iRGD surface-modified pHLips (FA-iRGD-5-FU-pHLips). The novelty of this research lies in the dual targeting mechanism utilizing FA and iRGD peptides, combined with the pH-sensitive properties of the liposomes, to enhance selective targeting and uptake by cancer cells and effective drug release in the acidic tumor environment. The prepared liposomes were small, with an average diameter of 152 ± 3.27 nm, uniform, and unilamellar, demonstrating efficient 5-FU encapsulation (93.1 ± 2.58%). Despite surface functionalization, the liposomes maintained their pH sensitivity and a neutral zeta potential, which also conferred stability and reduced aggregation. Effective pH responsiveness was demonstrated by the observation of enhanced drug release at pH 5.5 compared to physiological pH 7.4. (84.47% versus 46.41% release at pH 5.5 versus pH 7.4, respectively, in 72 h). The formulations exhibited stability for six months and were stable when subjected to simulated biological settings. Blood compatibility and cytotoxicity studies on MDA-MB-231 and SK-BR3 breast cancer cell lines revealed an enhanced cytotoxicity of the liposomal formulation that was modified with FA and iRGD compared to free 5-FU and minimal hemolysis. Collectively, these findings support the potential of FA and iRGD surface-camouflaged, pH-sensitive liposomes as a promising drug delivery strategy for breast cancer treatment. Full article
(This article belongs to the Special Issue Natural Peptides/Proteins and Their Applications in Bioengineering)
Show Figures

Graphical abstract

17 pages, 7222 KiB  
Article
Insights from the Construction of Adenovirus-Based Vaccine Candidates against SARS-CoV-2: Expecting the Unexpected
by Denice Weklak, Julian Tisborn, Maurin Helen Mangold, Raphael Scheu, Harald Wodrich, Claudia Hagedorn, Franziska Jönsson and Florian Kreppel
Viruses 2023, 15(11), 2155; https://doi.org/10.3390/v15112155 - 25 Oct 2023
Viewed by 1946
Abstract
To contain the spread of the SARS-CoV-2 pandemic, rapid development of vaccines was required in 2020. Rational design, international efforts, and a lot of hard work yielded the market approval of novel SARS-CoV-2 vaccines based on diverse platforms such as mRNA or adenovirus [...] Read more.
To contain the spread of the SARS-CoV-2 pandemic, rapid development of vaccines was required in 2020. Rational design, international efforts, and a lot of hard work yielded the market approval of novel SARS-CoV-2 vaccines based on diverse platforms such as mRNA or adenovirus vectors. The great success of these technologies, in fact, contributed significantly to control the pandemic. Consequently, most scientific literature available in the public domain discloses the results of clinical trials and reveals data of efficaciousness. However, a description of processes and rationales that led to specific vaccine design is only partially available, in particular for adenovirus vectors, even though it could prove helpful for future developments. Here, we disclose our insights from the endeavors to design compatible functional adenoviral vector platform expression cassettes for the SARS-CoV-2 spike protein. We observed that contextualizing genes from an ssRNA virus into a DNA virus provides significant challenges. Besides affecting physical titers, expression cassette design of adenoviral vaccine candidates can affect viral propagation and spike protein expression. Splicing of mRNAs was affected, and fusogenicity of the spike protein in ACE2-overexpressing cells was enhanced when the ER retention signal was deleted. Full article
(This article belongs to the Special Issue Novel Viral Vectors for Gene Therapy 2023)
Show Figures

Figure 1

18 pages, 1005 KiB  
Article
Interaction between Long Noncoding RNAs and Syncytin-1/Syncytin-2 Genes and Transcripts: How Noncoding RNAs May Affect Pregnancy in Patients with Systemic Lupus Erythematosus
by Rossella Talotta
Int. J. Mol. Sci. 2023, 24(3), 2259; https://doi.org/10.3390/ijms24032259 - 23 Jan 2023
Cited by 3 | Viewed by 2847
Abstract
Background: Patients with systemic lupus erythematosus (SLE) often suffer from obstetric complications not necessarily associated with the antiphospholipid syndrome. These events may potentially result from the reduced placental synthesis of the fusogenic proteins syncytin-1 and syncytin-2, observed in women with pregnancy-related disorders. SLE [...] Read more.
Background: Patients with systemic lupus erythematosus (SLE) often suffer from obstetric complications not necessarily associated with the antiphospholipid syndrome. These events may potentially result from the reduced placental synthesis of the fusogenic proteins syncytin-1 and syncytin-2, observed in women with pregnancy-related disorders. SLE patients have an aberrant noncoding (nc)RNA signature that may in turn dysregulate the expression of syncytin-1 and syncytin-2 during placentation. The aim of this research is to computationally evaluate and characterize the interaction between syncytin-1 and syncytin-2 genes and human ncRNAs and to discuss the potential implications for SLE pregnancy adverse outcomes. Methods: The FASTA sequences of the syncytin-1 and syncytin-2 genes were used as inputs to the Ensembl.org library to find any alignments with human ncRNA genes and their transcripts, which were characterized for their tissue expression, regulatory activity on adjacent genes, biological pathways, and potential association with human disease. Results: BLASTN analysis revealed a total of 100 hits with human long ncRNAs (lncRNAs) for the syncytin-1 and syncytin-2 genes, with median alignment scores of 151 and 66.7, respectively. Only lncRNAs TP53TG1, TTTY14, and ENSG00000273328 were reported to be expressed in placental tissue. Dysregulated expression of lncRNAs TP53TG1, LINC01239, and LINC01320 found in this analysis has previously been described in SLE patients as well as in women with a high-risk pregnancy. In addition, some of the genes adjacent to lncRNAs aligned with syncytin-1 or syncytin-2 in a regulatory region might increase the risk of pregnancy complications or SLE. Conclusions: This is the first computational study showing alignments between syncytin-1 and syncytin-2 genes and human lncRNAs. Whether this mechanism affects syncytiotrophoblast morphogenesis in SLE females is unknown and requires further investigation. Full article
(This article belongs to the Special Issue Technological and Molecular Advances in Systemic Lupus Erythematosus)
Show Figures

Figure 1

18 pages, 3812 KiB  
Article
Myomaker and Myomixer Characterization in Gilthead Sea Bream under Different Myogenesis Conditions
by Miquel Perelló-Amorós, Aitor Otero-Tarrazón, Violeta Jorge-Pedraza, Isabel García-Pérez, Albert Sánchez-Moya, Jean-Charles Gabillard, Fatemeh Moshayedi, Isabel Navarro, Encarnación Capilla, Jaume Fernández-Borràs, Josefina Blasco, Josep Chillarón, Daniel García de la serrana and Joaquim Gutiérrez
Int. J. Mol. Sci. 2022, 23(23), 14639; https://doi.org/10.3390/ijms232314639 - 24 Nov 2022
Cited by 8 | Viewed by 3204
Abstract
Skeletal muscle is formed by multinucleated myofibers originated by waves of hyperplasia and hypertrophy during myogenesis. Tissue damage triggers a regeneration process including new myogenesis and muscular remodeling. During myogenesis, the fusion of myoblasts is a key step that requires different genes’ expression, [...] Read more.
Skeletal muscle is formed by multinucleated myofibers originated by waves of hyperplasia and hypertrophy during myogenesis. Tissue damage triggers a regeneration process including new myogenesis and muscular remodeling. During myogenesis, the fusion of myoblasts is a key step that requires different genes’ expression, including the fusogens myomaker and myomixer. The present work aimed to characterize these proteins in gilthead sea bream and their possible role in in vitro myogenesis, at different fish ages and during muscle regeneration after induced tissue injury. Myomaker is a transmembrane protein highly conserved among vertebrates, whereas Myomixer is a micropeptide that is moderately conserved. myomaker expression is restricted to skeletal muscle, while the expression of myomixer is more ubiquitous. In primary myocytes culture, myomaker and myomixer expression peaked at day 6 and day 8, respectively. During regeneration, the expression of both fusogens and all the myogenic regulatory factors showed a peak after 16 days post-injury. Moreover, myomaker and myomixer were present at different ages, but in fingerlings there were significantly higher transcript levels than in juveniles or adult fish. Overall, Myomaker and Myomixer are valuable markers of muscle growth that together with other regulatory molecules can provide a deeper understanding of myogenesis regulation in fish. Full article
(This article belongs to the Special Issue Oxidative Stress and Skeletal Muscle Function)
Show Figures

Figure 1

22 pages, 3610 KiB  
Article
Broadly Applicable, Virus-Free Dual Reporter Assay to Identify Compounds Interfering with Membrane Fusion: Performance for HSV-1 and SARS-CoV-2
by Nica Classen, Diana Ulrich, Arne Hofemeier, Marc Tim Hennies, Wali Hafezi, Aleksandra Pettke, Marie-Luise Romberg, Eva U. Lorentzen, Andreas Hensel and Joachim E. Kühn
Viruses 2022, 14(7), 1354; https://doi.org/10.3390/v14071354 - 21 Jun 2022
Cited by 7 | Viewed by 2816
Abstract
Membrane fusion constitutes an essential step in the replication cycle of numerous viral pathogens, hence it represents an important druggable target. In the present study, we established a virus-free, stable reporter fusion inhibition assay (SRFIA) specifically designed to identify compounds interfering with virus-induced [...] Read more.
Membrane fusion constitutes an essential step in the replication cycle of numerous viral pathogens, hence it represents an important druggable target. In the present study, we established a virus-free, stable reporter fusion inhibition assay (SRFIA) specifically designed to identify compounds interfering with virus-induced membrane fusion. The dual reporter assay is based on two stable Vero cell lines harboring the third-generation tetracycline (Tet3G) transactivator and a bicistronic reporter gene cassette under the control of the tetracycline responsive element (TRE3G), respectively. Cell–cell fusion by the transient transfection of viral fusogens in the presence of doxycycline results in the expression of the reporter enzyme secreted alkaline phosphatase (SEAP) and the fluorescent nuclear localization marker EYFPNuc. A constitutively expressed, secreted form of nanoluciferase (secNLuc) functioned as the internal control. The performance of the SRFIA was tested for the quantification of SARS-CoV-2- and HSV-1-induced cell–cell fusion, respectively, showing high sensitivity and specificity, as well as the reliable identification of known fusion inhibitors. Parallel quantification of secNLuc enabled the detection of cytotoxic compounds or insufficient transfection efficacy. In conclusion, the SRFIA reported here is well suited for high-throughput screening for new antiviral agents and essentially will be applicable to all viral fusogens causing cell–cell fusion in Vero cells. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

18 pages, 3754 KiB  
Review
The Viral Class II Membrane Fusion Machinery: Divergent Evolution from an Ancestral Heterodimer
by Pablo Guardado-Calvo and Félix A. Rey
Viruses 2021, 13(12), 2368; https://doi.org/10.3390/v13122368 - 26 Nov 2021
Cited by 25 | Viewed by 4190
Abstract
A key step during the entry of enveloped viruses into cells is the merger of viral and cell lipid bilayers. This process is driven by a dedicated membrane fusion protein (MFP) present at the virion surface, which undergoes a membrane–fusogenic conformational change triggered [...] Read more.
A key step during the entry of enveloped viruses into cells is the merger of viral and cell lipid bilayers. This process is driven by a dedicated membrane fusion protein (MFP) present at the virion surface, which undergoes a membrane–fusogenic conformational change triggered by interactions with the target cell. Viral MFPs have been extensively studied structurally, and are divided into three classes depending on their three-dimensional fold. Because MFPs of the same class are found in otherwise unrelated viruses, their intra-class structural homology indicates horizontal gene exchange. We focus this review on the class II fusion machinery, which is composed of two glycoproteins that associate as heterodimers. They fold together in the ER of infected cells such that the MFP adopts a conformation primed to react to specific clues only upon contact with a target cell, avoiding premature fusion in the producer cell. We show that, despite having diverged in their 3D fold during evolution much more than the actual MFP, the class II accompanying proteins (AP) also derive from a distant common ancestor, displaying an invariant core formed by a β-ribbon and a C-terminal immunoglobulin-like domain playing different functional roles—heterotypic interactions with the MFP, and homotypic AP/AP contacts to form spikes, respectively. Our analysis shows that class II APs are easily identifiable with modern structural prediction algorithms, providing useful information in devising immunogens for vaccine design. Full article
(This article belongs to the Special Issue Biology of Viral Surface Glycoproteins)
Show Figures

Figure 1

13 pages, 2187 KiB  
Article
Could the Human Endogenous Retrovirus-Derived Syncytialization Inhibitor, Suppressyn, Limit Heterotypic Cell Fusion Events in the Decidua?
by Jun Sugimoto, Sehee Choi, Megan A. Sheridan, Iemasa Koh, Yoshiki Kudo and Danny J. Schust
Int. J. Mol. Sci. 2021, 22(19), 10259; https://doi.org/10.3390/ijms221910259 - 23 Sep 2021
Cited by 9 | Viewed by 3464
Abstract
Proper placental development relies on tightly regulated trophoblast differentiation and interaction with maternal cells. Human endogenous retroviruses (HERVs) play an integral role in modulating cell fusion events in the trophoblast cells of the developing placenta. Syncytin-1 (ERVW-1) and its receptor, solute-linked carrier family [...] Read more.
Proper placental development relies on tightly regulated trophoblast differentiation and interaction with maternal cells. Human endogenous retroviruses (HERVs) play an integral role in modulating cell fusion events in the trophoblast cells of the developing placenta. Syncytin-1 (ERVW-1) and its receptor, solute-linked carrier family A member 5 (SLC1A5/ASCT2), promote fusion of cytotrophoblast (CTB) cells to generate the multi-nucleated syncytiotrophoblast (STB) layer which is in direct contact with maternal blood. Another HERV-derived protein known as Suppressyn (ERVH48-1/SUPYN) is implicated in anti-fusogenic events as it shares the common receptor with ERVW-1. Here, we explore primary tissue and publicly available datasets to determine the distribution of ERVW-1, ERVH48-1 and SLC1A5 expression at the maternal-fetal interface. While SLC1A5 is broadly expressed in placental and decidual cell types, ERVW-1 and ERVH48-1 are confined to trophoblast cell types. ERVH48-1 displays higher expression levels in CTB and extravillous trophoblast, than in STB, while ERVW-1 is generally highest in STB. We have demonstrated through gene targeting studies that suppressyn has the ability to prevent ERVW-1-induced fusion events in co-culture models of trophoblast cell/maternal endometrial cell interactions. These findings suggest that differential HERV expression is vital to control fusion and anti-fusogenic events in the placenta and consequently, any imbalance or dysregulation in HERV expression may contribute to adverse pregnancy outcomes. Full article
(This article belongs to the Special Issue Endogenous Retroviruses: Functions at Molecular Level)
Show Figures

Figure 1

14 pages, 1968 KiB  
Article
Lipoplexes to Deliver Oligonucleotides in Gram-Positive and Gram-Negative Bacteria: Towards Treatment of Blood Infections
by Sara Pereira, Rita Sobral Santos, Luís Moreira, Nuno Guimarães, Mariana Gomes, Heyang Zhang, Katrien Remaut, Kevin Braeckmans, Stefaan De Smedt and Nuno Filipe Azevedo
Pharmaceutics 2021, 13(7), 989; https://doi.org/10.3390/pharmaceutics13070989 - 29 Jun 2021
Cited by 14 | Viewed by 5623
Abstract
Bacterial resistance to antibiotics threatens the ability to treat life-threatening bloodstream infections. Oligonucleotides (ONs) composed of nucleic acid mimics (NAMs) able to inhibit essential genes can become an alternative to traditional antibiotics, as long as they are safely transported in human serum upon [...] Read more.
Bacterial resistance to antibiotics threatens the ability to treat life-threatening bloodstream infections. Oligonucleotides (ONs) composed of nucleic acid mimics (NAMs) able to inhibit essential genes can become an alternative to traditional antibiotics, as long as they are safely transported in human serum upon intravenous administration and they are carried across the multilayered bacterial envelopes, impermeable to ONs. In this study, fusogenic liposomes were considered to transport the ONs and promote their internalization in clinically relevant bacteria. Locked nucleic acids and 2′-OMethyl RNA were evaluated as model NAMs and formulated into DOTAP–DOPE liposomes followed by post-PEGylation. Our data showed a complexation stability between the post-PEGylated liposomes and the ONs of over 82%, during 24 h in native human serum, as determined by fluorescence correlation spectroscopy. Quantification by a lipid-mixing assay showed that liposomes, with and without post-PEGylation, fused with all bacteria tested. Such fusion promoted the delivery of a fraction of the ONs into the bacterial cytosol, as observed by fluorescence in situ hybridization and bacterial fractionation. In short, we demonstrated for the first time that liposomes can safely transport ONs in human serum and intracellularly deliver them in both Gram-negative and -positive bacteria, which holds promise towards the treatment of bloodstream infections. Full article
(This article belongs to the Special Issue Nanomaterials and Novel Biologics to Manage Bacterial Infections)
Show Figures

Graphical abstract

16 pages, 3941 KiB  
Article
Modular Lentiviral Vectors for Highly Efficient Transgene Expression in Resting Immune Cells
by Christina Fichter, Anupriya Aggarwal, Andrew Kam Ho Wong, Samantha McAllery, Vennila Mathivanan, Bailey Hao, Hugh MacRae, Melissa J. Churchill, Paul R. Gorry, Michael Roche, Lachlan R. Gray and Stuart Turville
Viruses 2021, 13(6), 1170; https://doi.org/10.3390/v13061170 - 18 Jun 2021
Cited by 6 | Viewed by 6491
Abstract
Gene/cell therapies are promising strategies for the many presently incurable diseases. A key step in this process is the efficient delivery of genes and gene-editing enzymes to many cell types that may be resistant to lentiviral vector transduction. Herein we describe tuning of [...] Read more.
Gene/cell therapies are promising strategies for the many presently incurable diseases. A key step in this process is the efficient delivery of genes and gene-editing enzymes to many cell types that may be resistant to lentiviral vector transduction. Herein we describe tuning of a lentiviral gene therapy platform to focus on genetic modifications of resting CD4+ T cells. The motivation for this was to find solutions for HIV gene therapy efforts. Through selection of the optimal viral envelope and further modification to its expression, lentiviral fusogenic delivery into resting CD4+ T cells exceeded 80%, yet Sterile Alpha Motif and HD domain 1 (SAMHD1) dependent and independent intracellular restriction factors within resting T cells then dominate delivery and integration of lentiviral cargo. Overcoming SAMHD1-imposed restrictions, only observed up to 6-fold increase in transduction, with maximal gene delivery and expression of 35%. To test if the biologically limiting steps of lentiviral delivery are reverse transcription and integration, we re-engineered lentiviral vectors to simply express biologically active mRNA to direct transgene expression in the cytoplasm. In this setting, we observed gene expression in up to 65% of resting CD4+ T cells using unconcentrated MS2 lentivirus-like particles (MS2-LVLPs). Taken together, our findings support a gene therapy platform that could be readily used in resting T cell gene editing. Full article
(This article belongs to the Special Issue Novel Developments and Perspectives in Viral Vector Technology)
Show Figures

Figure 1

13 pages, 1873 KiB  
Review
Exaptation of Retroviral Syncytin for Development of Syncytialized Placenta, Its Limited Homology to the SARS-CoV-2 Spike Protein and Arguments against Disturbing Narrative in the Context of COVID-19 Vaccination
by Malgorzata Kloc, Ahmed Uosef, Jacek Z. Kubiak and Rafik M. Ghobrial
Biology 2021, 10(3), 238; https://doi.org/10.3390/biology10030238 - 19 Mar 2021
Cited by 27 | Viewed by 24371
Abstract
Human placenta formation relies on the interaction between fused trophoblast cells of the embryo with uterine endometrium. The fusion between trophoblast cells, first into cytotrophoblast and then into syncytiotrophoblast, is facilitated by the fusogenic protein syncytin. Syncytin derives from an envelope glycoprotein (ENV) [...] Read more.
Human placenta formation relies on the interaction between fused trophoblast cells of the embryo with uterine endometrium. The fusion between trophoblast cells, first into cytotrophoblast and then into syncytiotrophoblast, is facilitated by the fusogenic protein syncytin. Syncytin derives from an envelope glycoprotein (ENV) of retroviral origin. In exogenous retroviruses, the envelope glycoproteins coded by env genes allow fusion of the viral envelope with the host cell membrane and entry of the virus into a host cell. During mammalian evolution, the env genes have been repeatedly, and independently, captured by various mammalian species to facilitate the formation of the placenta. Such a shift in the function of a gene, or a trait, for a different purpose during evolution is called an exaptation (co-option). We discuss the structure and origin of the placenta, the fusogenic and non-fusogenic functions of syncytin, and the mechanism of cell fusion. We also comment on an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin and the SARS-CoV-2 spike protein. Full article
Show Figures

Figure 1

16 pages, 970 KiB  
Perspective
Across the Hall from Pioneers
by Alan Rein
Viruses 2021, 13(3), 491; https://doi.org/10.3390/v13030491 - 16 Mar 2021
Cited by 4 | Viewed by 2080
Abstract
I was fortunate to be associated with the lab of Stephen Oroszlan at the US National Cancer Institute from ~1982 until his conversion to Emeritus status in 1995. His lab made groundbreaking discoveries on retroviral proteins during that time, including many features that [...] Read more.
I was fortunate to be associated with the lab of Stephen Oroszlan at the US National Cancer Institute from ~1982 until his conversion to Emeritus status in 1995. His lab made groundbreaking discoveries on retroviral proteins during that time, including many features that could not have been inferred or anticipated from straightforward sequence information. Building on the Oroszlan lab results, my colleagues and I demonstrated that the zinc fingers in nucleocapsid proteins play a crucial role in genomic RNA encapsidation; that the N-terminal myristylation of the Gag proteins of many retroviruses is important for their association with the plasma membrane before particle assembly is completed; and that gammaretroviruses initially synthesize their Env protein as an inactive precursor and then truncate the cytoplasmic tail of the transmembrane protein, activating Env fusogenicity, during virus maturation. We also elucidated several aspects of the mechanism of translational suppression in pol gene expression in gammaretroviruses; amazingly, this is a fundamentally different mechanism of suppression from that in most other retroviral genera. Full article
(This article belongs to the Special Issue In Memory of Stephen Oroszlan)
Show Figures

Figure 1

13 pages, 4094 KiB  
Article
Partial Sperm beta1 Integrin Subunit Deletion Proves Its Involvement in Mouse Gamete Adhesion/Fusion
by Virginie Barraud-Lange, Côme Ialy-Radio, Céline Chalas, Isabelle Holtzmann, Jean-Philippe Wolf, Sandrine Barbaux and Ahmed Ziyyat
Int. J. Mol. Sci. 2020, 21(22), 8494; https://doi.org/10.3390/ijms21228494 - 11 Nov 2020
Cited by 11 | Viewed by 2563
Abstract
We have previously shown, using antibodies, that the sperm alpha6beta1 integrin is involved in mouse gamete fusion in vitro. Here we report the conditional knockdown of the sperm Itgb1 gene. It induced a drastic failure of sperm fusogenic ability with sperm accumulation in [...] Read more.
We have previously shown, using antibodies, that the sperm alpha6beta1 integrin is involved in mouse gamete fusion in vitro. Here we report the conditional knockdown of the sperm Itgb1 gene. It induced a drastic failure of sperm fusogenic ability with sperm accumulation in the perivitelline space of in vitro inseminated oocytes deleted or not for the Itgb1 gene. These data demonstrate that sperm, but not oocyte, beta1 integrin subunit is involved in gamete adhesion/fusion. Curiously, knockdown males were fertile in vivo probably because of the incomplete Cre-mediated deletion of the sperm Itgb1 floxed gene. Indeed, this was shown by Western blot analysis and confirmed by both the viability and litter size of pups obtained by mating partially sperm Itgb1 deleted males with females producing completely deleted Itgb1 oocytes. Because of the total peri-implantation lethality of Itgb1 deletion in mice, we assume that sperm that escaped the Itgb1 excision seemed to be preferentially used to fertilize in vivo. Here, we showed for the first time that the deletion, even partial, of the sperm Itgb1 gene makes the sperm unable to normally fertilize oocytes. However, to elucidate the question of the essentiality of its role during fertilization, further investigations using a mouse expressing a recombinase more effective in male germ cells are necessary. Full article
(This article belongs to the Special Issue Sperm-Egg Adhesion and Fusion)
Show Figures

Figure 1

13 pages, 1430 KiB  
Article
Vitamin D Inhibits Myogenic Cell Fusion and Expression of Fusogenic Genes
by Tohru Hosoyama, Hiroki Iida, Minako Kawai-Takaishi and Ken Watanabe
Nutrients 2020, 12(8), 2192; https://doi.org/10.3390/nu12082192 - 23 Jul 2020
Cited by 11 | Viewed by 5273
Abstract
Vitamin D, a fat-soluble vitamin, is an important nutrient for tissue homeostasis and is recently gaining attention for its role in sarcopenia. Although several studies have focused on the role of vitamin D in muscle homeostasis, the molecular mechanism underlying its action on [...] Read more.
Vitamin D, a fat-soluble vitamin, is an important nutrient for tissue homeostasis and is recently gaining attention for its role in sarcopenia. Although several studies have focused on the role of vitamin D in muscle homeostasis, the molecular mechanism underlying its action on skeletal muscle remains unclear. This study investigated the role of vitamin D in myogenesis and muscle fiber maintenance in an immortalized mouse myogenic cell line. A high concentration of active vitamin D, 1α,25(OH)2D3, decreased the expression of myogenic regulatory factors (MRFs), myf5 and myogenin in proliferating myoblasts. In addition, high concentration of vitamin D reduced myoblast-to-myoblast and myoblast-to-myotube fusion through the inhibition of Tmem8c (myomaker) and Gm7325 (myomerger), which encode muscle-specific fusion-related micropeptides. A similar inhibitory effect of vitamin D was also observed in immortalized human myogenic cells. A high concentration of vitamin D also induced hypertrophy of multinucleated myotubes by stimulating protein anabolism. The results from this study indicated that vitamin D had both positive and negative effects on muscle homeostasis, such as in muscle regeneration and myofiber maintenance. Elderly individuals face a higher risk of falling and suffering fractures; hence, administration of vitamin D for treating fractures in the elderly could actually promote fusion impairment and, consequently, severe defects in muscle regeneration. Therefore, our results suggest that vitamin D replacement therapy should be used for prevention of age-related muscle loss, rather than for treatment of sarcopenia. Full article
Show Figures

Figure 1

Back to TopTop