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Abstract: Vitamin D, a fat-soluble vitamin, is an important nutrient for tissue homeostasis and is
recently gaining attention for its role in sarcopenia. Although several studies have focused on the
role of vitamin D in muscle homeostasis, the molecular mechanism underlying its action on skeletal
muscle remains unclear. This study investigated the role of vitamin D in myogenesis and muscle
fiber maintenance in an immortalized mouse myogenic cell line. A high concentration of active
vitamin D, 1α,25(OH)2D3, decreased the expression of myogenic regulatory factors (MRFs), myf5
and myogenin in proliferating myoblasts. In addition, high concentration of vitamin D reduced
myoblast-to-myoblast and myoblast-to-myotube fusion through the inhibition of Tmem8c (myomaker)
and Gm7325 (myomerger), which encode muscle-specific fusion-related micropeptides. A similar
inhibitory effect of vitamin D was also observed in immortalized human myogenic cells. A high
concentration of vitamin D also induced hypertrophy of multinucleated myotubes by stimulating
protein anabolism. The results from this study indicated that vitamin D had both positive and negative
effects on muscle homeostasis, such as in muscle regeneration and myofiber maintenance. Elderly
individuals face a higher risk of falling and suffering fractures; hence, administration of vitamin D for
treating fractures in the elderly could actually promote fusion impairment and, consequently, severe
defects in muscle regeneration. Therefore, our results suggest that vitamin D replacement therapy
should be used for prevention of age-related muscle loss, rather than for treatment of sarcopenia.
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1. Introduction

Skeletal muscle is one of largest tissues in the body, and its volume and function are well
maintained during life until middle age. However, from middle age, the maintenance system for
muscle homeostasis gradually declines, resulting in sarcopenia, an age-related muscular phenotype
with evident loss of muscle mass and strength [1]. Sarcopenia is currently recognized as an independent
age-related muscle disorder and is diagnosed in about 5–10% of individuals over 65 years of age [2,3].
Although the mechanisms behind the onset and progress of sarcopenia have not been fully understood,
it is believed to be a result of several factors such as diseases, decreased caloric intake, mitochondrial
dysfunction, and increase in oxidative stress. Furthermore, humoral changes resulting from decreased
circulation of some vitamins, cytokines, and growth factors are also known to be contributing factors
in the occurrence of sarcopenia in elderlies [4]. Among humoral factors, the level of vitamin D in
circulation is considered to be a sarcopenia-related factor; this is because there is some evidence
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suggesting that a decrease or deficiency in vitamin D in circulation in the blood of most elderlies results
in muscle loss and decline of muscle strength [5]. However, the relationship between vitamin D and
sarcopenia is yet to be proven scientifically, and further scientific research is needed for clarification.

Vitamin D, a fat-soluble vitamin, is endogenously produced in the skin on exposure to sunlight
and can also be obtained from foods and dietary supplements. Firstly, vitamin D is metabolized to
25-hydroxyvitamin D (25OHD) in liver, and then 25OHD is further hydroxylated in the kidneys to
the active form 1,25-dihydroxyvitamin D (1,25(OH)2D). In liver, vitamin D is metabolized to 25OHD
by cytochrome P450 oxidases, CYP2R1 and CYP27B1, and 25OHD is metabolized to 1,25(OH)2D
by CYP27B1 in the kidneys, and 25OHD and 1,25(OH)2D are catabolized by CYP24A1. Although
25OHD and 1,25(OH)2D circulate with vitamin D binding protein (DBP), the blood level of 25OHD
is higher than the active form vitamin D (1,25(OH)2D) [6,7]. An active form of vitamin D binds to
vitamin D receptor (VDR), which is a nuclear receptor and heterodimerize with retinoid X receptor
(RXR) following binding to active vitamin D, and then the VDR-RXR heterodimer binds to vitamin
D response element (VDRE) in the promoter region of target genes [8]. Although one of the most
known effects of vitamin D is on the bone and in mineral homeostasis, it is thought that vitamin D also
plays a role in myogenesis, including in the proliferation and differentiation of myoblasts [9–11]. For
instance, proliferation of chick myoblasts is inhibited by treatment with vitamin D, and vitamin D
downregulates the expression of myogenin, which is a necessary factor in the terminal differentiation of
murine myoblast [9,10,12,13]. Additionally, vitamin D treatment stimulates the Akt-mTOR-mediated
pathway and varies the diameter of murine myotubes through the regulation of an anabolic and a
catabolic pathway [14]. Taken together, it is expected that vitamin D signaling has certain effects on
myogenesis and muscle fiber maintenance through multiple pathways. However, the effects of vitamin
D in skeletal muscle are still controversial because both positive and negative results of its effects
have been reported [15]. For example, high-dose supplementation of vitamin D causes inadequate
differentiation of myogenic cells in regenerating muscle [16] and increases the risk of falls [17,18].

In this study, we examined the effect of vitamin D on myogenesis and muscle fiber maintenance of
immortalized mouse myogenic cells. Consistent with previous studies, the expression of muscle-related
factors (MRFs) and terminal differentiation were inhibited in proliferating mouse myoblasts by a
high concentration of vitamin D. Intriguingly, a high concentration of vitamin D inhibited both
myoblast-to-myoblast and myoblast-to-myotube fusions, which are necessary for the formation of
multinucleated mature myotubes. In this study, on the one hand, a decrease in the expression
of fusogenic genes, Tmem8c (myomaker) and Gm7325 (myomerger, also known as myomixer or
minion), was also observed in vitamin D-treated myoblasts, suggesting that vitamin D inhibited the
differentiation of myogenic cells through the regulation of muscle-specific fusogenic micropeptides.
On the other hand, vitamin D stimulated an anabolic pathway in multinucleated myotubes resulting in
hypertrophy. Taken together, these results suggest that vitamin D possesses dual roles in myogenesis
and in muscle fiber homeostasis.

2. Materials and Methods

2.1. Cell Culture

The immortalized mouse myogenic cell clone Ric10 and human myogenic cell clone Hu5KD3

were kindly gifted from Dr. Naohiro Hashimoto [19,20]. The Ric10 and Hu5KD3 cells were plated
on a type I collagen-coated cell culture dish and cultivated in 20% FBS/DMEM supplemented with
2% Ultroser G serum substitute (Pall Corp, Port Washington, NY, USA). For proliferation assay,
3 × 104 cells were seeded onto the cell culture dish (24-well cell culture dish, 1.8 cm2 culture area)
and cultivated with 1α,25(OH)2D3 (1 µM; Cayman Chemical, Ann Arbor, MI, USA) for 24 h. At 18 h
cultivation, 5-ethynyl-2′-deoxyuridine (EdU; Thermo Fisher Scientific, Waltham, MA, USA) was added
into the medium for pulse chase of myoblast proliferation, and cells were further incubated for 6 h.
For differentiation, the medium was changed to 2% HS/DMEM when the Ric10 myoblasts reached
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confluence. At 0 and 24 h of differentiation condition, vitamin D (1 µM) was added into the medium to
study its effect on myotube formation, and cells were collected after 48 h of vitamin D treatment for
gene or protein expression analysis. In addition, vitamin D was added into the medium at 48 h of
differentiation and cultivated for another 48 h to study its effect on anabolic/catabolic pathways. PA452
(2.5 µM; Tocris Bioscience, Bristol, UK), which is an RXR antagonist, was co-administered with vitamin
D in the fusion experiments.

2.2. Quantitative RT-PCR

Total RNA was extracted from Ric10 myoblasts or myotubes at appropriate timing, and cDNA was
synthesized using a SuperPrep II Cell Lysis Kit (TOYOBO, Osaka, Japan). Polymerase chain reaction
was performed using a CFX96 real-time PCR detection system (Bio-Rad, Santa Rosa, CA, USA) and
PowerUp SYBR Green Master Mix (Thermo Fisher Scientific). Primer sequences are listed in Table S1.

2.3. Western Blotting

Protein was extracted from Ric10 myoblasts or myotubes with SDS-HBS (1% SDS/150 mM NaCl/10
mM HEPES, pH 7.4). After heat denaturing and sonication, the protein extract was mixed with the
Laemmli sample buffer and boiled at 95 ◦C, for 5 min. Twenty micrograms of each sample were used
for polyacrylamide gel electrophoresis, and then electroblotted using PVDF membrane. Following
blocking with 5% skim milk/PBS-Tween20 (PBST), for 1 h at room temperature, the membrane was
incubated with the primary antibody overnight at 4 ◦C. The following primary antibodies were used
in this study: phosphorylated Smad2/3, Smad2/3, phosphorylated Foxo1a, phosphorylated Foxo3a,
phosphorylated p70S6K, p70S6K, phosphorylated Akt, Akt, cleaved caspase-3, β-actin (1:1000, Cell
Signaling Technologies, Danvers, MA, USA), Bax (1:500, Merck Millipore, Bedford, MA, USA), Myf5,
and myogenin (1:200, Santa Cruz, CA, USA). The secondary antibodies used in this study were
HRP-conjugated anti-rabbit IgG and anti-mouse IgG (1:4000, Cell Signaling Technologies).

2.4. Immunocytochemistry

For immunocytochemistry, cells were crosslinked with 4% paraformaldehyde (PFA), for 15 min at
room temperature. After washing with phosphate-buffered saline (PBS), cells were blocked with 4%
normal goat serum/0.1% Tween 20/PBS, for 1 h at room temperature, and then incubated overnight
with anti-myosin heavy chain antibody (MF20, 1:100; eBioscience, San Diego, CA, USA) at 4 ◦C. After
washing with PBS, cells were further reacted with goat anti-mouse IgG AlexaFluor 488 or 594 (1:400,
Abcam, Cambridge, UK), for 1 h at room temperature. DAPI in anti-fading reagent was used for
nuclear staining. The myotube diameter was measured in 449 and 537 MHC+ myotubes for control
and vitamin D-treated groups, respectively. In this experiment, multinucleated myotubes were defined
as ≥3 nuclei of MHC+ cells.

2.5. Lipid and Content Mixing Assay

To analyze the effect of vitamin D on cell fusion, a fusion synchronization approach, previously
described [21–23], was utilized. Briefly, Ric10 myoblasts were labeled with fluorescent lipid Dil-Red
(lipid probe) or membrane-permeant Green CMFDA cell tracker (content probe), respectively, and Ric10
myotubes were labeled with Green CMFDA cell tracker. To assay myoblast-to-myoblast fusion, equal
numbers of labeled Ric10 myoblasts (2 × 104 cells) were co-cultured under the differentiation condition
with or without vitamin D for 48 h, and then cells were observed under a fluorescence microscope.
The number of labeled myotubes was counted, and the ratio of dual-labeled myotubes (red+/green+)
was calculated from the total myotubes including single (red+ or green+) and dual-labeled myotubes.
To assay myoblast-to-myotube fusion, red labeled-Ric10 myoblasts (2 × 104 cells) were added into the
culture including green-labeled myotubes, which were cultivated under the differentiation condition,
for 48 h. After 48 h with or without vitamin D, cells were observed under a fluorescence microscope, and
the ratio of green-labeled myotubes with lipid probe was calculated from total green-labeled myotubes.
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2.6. Statistical Analysis

To quantify each experiment, at least 3 independent experiments were performed and 5–7
randomly chosen fields were imaged and cells counted for each experimental group. To determine
statistical significance, a nonparametric two-tailed t-test was used for two-group comparison and
one-way ANOVA for three-group comparison. Statistical analyses were performed using the GraphPad
Prism 7 software. The criterion for statistical significance was p < 0.05.

3. Results

3.1. Vitamin D Does Not Influence the Proliferation of Mouse Immortalized Myoblasts, Whereas Some
Myogenic Genes Are Inhibited

The immortalized mouse myoblast cell line Ric10 was chosen to study the effect of vitamin D on
proliferation and differentiation of myoblast during myogenesis because of its stability in vitro [19]. To
investigate vitamin D’s action on proliferating myoblasts, a relatively high concentration of vitamin
D (1 µM: 1α,25(OH)2D3) was added into the culture of proliferating Ric10 myoblasts. Following
cultivation with EdU thymidine analog for 24 h, the number of EdU+ myoblasts was compared between
vitamin D-treated and untreated groups. The results showed that there was no significant difference in
EdU-positive cells, suggesting that vitamin D did not influence myoblast proliferation (Figure 1A).
The effect of a high concentration of vitamin D on the expression of MRFs in proliferating myoblasts
was also investigated. Consistent with previous results performed with a moderate concentration of
vitamin D [10], a high concentration of vitamin D decreased the expression of muscle-specific bHLH
factors, myf5 and myogenin, except for myoD in Ric10 myoblasts (Figure 1B).
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Figure 1. Effect of vitamin D on the proliferation and myogenic regulatory factor (MRF) expression of
mouse immortalized myoblasts. (A) High concentration of vitamin D (vitD) did not affect myoblast
proliferation. EdU was added to the growth medium 6 h before fixation in order to visualize proliferating
myoblasts. Red arrowhead indicates EdU-negative myoblasts; (B) Expression of both myf5 and myogenin
was decreased in vitamin D-treated proliferating myoblasts. Scale bar = 100 µm. Mb, myoblast and
N.D., no statistical significance. p < 0.01 is statistically significant.
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3.2. Vitamin D Inhibits Fusogenic Gene Expression and Myotube Formation

The effect of vitamin D on myotube formation and fusogenic gene expression was investigated
because myogenin expression was inhibited in proliferating myoblasts (as shown in Figure 1B). When
Ric10 myoblasts reached confluence, the medium was changed from a proliferating medium to a
differentiation medium, and then Ric10 myoblasts were cultivated under conditions of high vitamin D
concentration, for 48 h. The results indicated that myotube formation was significantly inhibited by
vitamin D treatment (Figure 2A). Two fusogenic genes, Tmem8c (myomaker) and Gm7325 (myomerger),
were also downregulated in vitamin D-treated Ric10 myotubes (Figure 2B and Supplemental Figure
S1), and Gm7325 and also myogenin expression were recovered by the administration of RXR antagonist,
PA452 (Figure 2C,D). Interestingly, downregulation of fusogenic genes by vitamin D treatment was also
induced in proliferating myoblasts (Supplemental Figure S1C,D). Taken together with these results,
the incomplete formation of myotubes in vitamin D-treated myogenic cells could be caused by the
inhibition of fusogenic gene expression, although further detailed investigations are needed.

Nutrients 2020, 12, x FOR PEER REVIEW 5 of 13 

 

Figure 1. Effect of vitamin D on the proliferation and myogenic regulatory factor (MRF) expression 
of mouse immortalized myoblasts. (A) High concentration of vitamin D (vitD) did not affect myoblast 
proliferation. EdU was added to the growth medium 6 h before fixation in order to visualize 
proliferating myoblasts. Red arrowhead indicates EdU-negative myoblasts; (B) Expression of both 
myf5 and myogenin was decreased in vitamin D-treated proliferating myoblasts. Scale bar = 100 μm. 
Mb, myoblast and N.D., no statistical significance. p < 0.01 is statistically significant.  

3.2. Vitamin D Inhibits Fusogenic Gene Expression and Myotube Formation 

The effect of vitamin D on myotube formation and fusogenic gene expression was investigated 
because myogenin expression was inhibited in proliferating myoblasts (as shown in Figure 1B). When 
Ric10 myoblasts reached confluence, the medium was changed from a proliferating medium to a 
differentiation medium, and then Ric10 myoblasts were cultivated under conditions of high vitamin 
D concentration, for 48 h. The results indicated that myotube formation was significantly inhibited 
by vitamin D treatment (Figure 2A). Two fusogenic genes, Tmem8c (myomaker) and Gm7325 
(myomerger), were also downregulated in vitamin D-treated Ric10 myotubes (Figure 2B and 
Supplemental Figure S1), and Gm7325 and also myogenin expression were recovered by the 
administration of RXR antagonist, PA452 (Figure 2C,D). Interestingly, downregulation of fusogenic 
genes by vitamin D treatment was also induced in proliferating myoblasts (Supplemental Figure 
S1C,D). Taken together with these results, the incomplete formation of myotubes in vitamin D-treated 
myogenic cells could be caused by the inhibition of fusogenic gene expression, although further 
detailed investigations are needed. 

 

Figure 2. High concentration of vitamin D inhibits terminal differentiation and expression of 
fusogenic genes. (A) Formation of multinucleated myotubes (% myotubes with ≥3 nuclei in MHC+ 

Figure 2. High concentration of vitamin D inhibits terminal differentiation and expression of fusogenic
genes. (A) Formation of multinucleated myotubes (% myotubes with ≥3 nuclei in MHC+ cells) was
suppressed by a high concentration of vitamin D; (B) High concentration of vitamin D decreased the
expression of two fusogenic genes, Tmem8c (myomaker) and Gm7325S (myomerger-S, a short form of
myomerger); (C) Decreased expression of fusogenic genes in vitamin D-treated myogenic cells was
partially canceled by co-administration of RXR antagonist (PA452); (D) Vitamin D treatment caused
downregulation of myogenin expression in differentiating myoblasts, and this inhibitory effect was
canceled by PA452 administration. Scale bar = 100 µm. p < 0.01 and p < 0.05 are statistically significant.
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3.3. Vitamin D Inhibits both Myoblast-to-Myoblast and Myoblast-to-Myotube Fusion

Myotube formation is roughly divided into two steps as follows: One is myoblast-to-myoblast
fusion for nascent myotubes, and the other is myoblast-to-myotube fusion to form secondary
myotubes [24]; both steps are under the control of myomaker and myomerger [25,26]. This study
examined whether a high concentration of vitamin D inhibited either or both steps. To check the effect
on myoblast-to-myoblast fusion, Ric10 myoblasts were prelabeled with lipid or content probes, and
then equal numbers of cells labeled with each color were mixed and cultured with or without vitamin D
under differentiation conditions. Consequently, the ratio of double-colored myotubes calculated from
all-labeled myotubes significantly decreased in the vitamin D-treated group, indicating that vitamin D
inhibited fusion between myoblasts (Figure 3A). A similar result was observed also in human myogenic
cells (Hu5KD3) [20] with decreased Myogenin expression (Supplemental Figure S2). Furthermore,
this study investigated if a high concentration of vitamin D inhibited myoblast-to-myotube fusion.
Lipid-probed myoblasts were added into the culture of content-probed myotubes, followed by further
culture with or without vitamin D. Similar to the result obtained for myoblast-to-myoblast fusion,
vitamin D treatment significantly decreased the number of double-colored myotubes, and this inhibition
was canceled by the presence of RXR antagonist (Figure 3B,C). Thus, the incomplete formation of
myotubes in vitamin D-treated myoblasts resulted from the inhibition of cell fusion caused by the
suppression of fusogenic micropeptides.

3.4. Vitamin D Induces Myotube Hypertrophy through Stimulation of an Anabolic Pathway

Some reports have suggested that vitamin D was directly or indirectly involved in the maintenance
of myofibers. In the present study, the effect of a high concentration of vitamin D on gene expression
associated with neuromuscular junction, a catabolic, and an anabolic pathway was evaluated using
Ric10 myotubes. Consequently, the results showed that vitamin D treatment did not influence the
expression of neuromuscular junction-related genes (MuSK and AChR), suggesting that vitamin D was
not directly involved in their expression (Figure 4A). On the other hand, vitamin D treatment had some
impact on protein turnover-related pathways. In a catabolic pathway, a high concentration of vitamin
D reduced the expression of myostatin, a negative regulator for muscle growth [27], while atrogin-1
expression was not influenced (Figure 4B). However, vitamin D treatment did not activate the Smad
pathway, which is known as the downstream of myostatin signaling [28], in Ric10 myotubes (Figure 4C).
In an anabolic pathway, a high concentration of vitamin D accelerated both the Akt-p70S6K axis and
the Akt-Foxo3 axis, which are protein synthesis and protein degradation inhibitory pathways [14],
in myotubes (Figure 4D,E). These results indicated that vitamin D had a positive effect on protein
anabolism in myotubes or myofibers. The diameters of myotubes were significantly increased by a
high concentration of vitamin D (Figure 4F). We also checked cytotoxicity of vitamin D, because it was
indicated that high-dose vitamin D treatment caused toxic effects [29]. As a consequence, expression of
typical apoptotic-related factors, Bax and cleaved caspase 3, were not influenced in vitamin D-treated
Ric10 myotubes (Supplemental Figure S3).
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of vitamin D inhibited myoblast-to-myoblast fusion. Two fluorescently labeled myoblasts were
co-cultured for 48 h with or without high concentration of vitamin D; (B,C) High concentration
of vitamin D suppressed secondary myotube formation. Mononuclear myoblasts labeled with a
lipid probe (red fluorescence) were added into the culture of multinucleated myotubes labeled with
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co-administration of RXR antagonist. White arrowhead and asterisks indicate expected nuclei from
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Figure 4. High concentration of vitamin D induces hypertrophy of myotubes via stimulation of an
anabolic pathway. A high concentration of vitamin D was added to the culture of multinucleated
myotubes for 48 h. (A) Vitamin D treatment caused no change in expression of neuromuscular
junction-related genes, MuSK and AChR, in multinucleated myotubes; (B) A high concentration of
vitamin D reduced the expression of myostatin but not atrogin-1; (C) Myostatin signaling was not
affected by vitamin D treatment despite decreased myostatin expression; (D,E) High concentration of
vitamin D increased the phosphorylation of Akt, p70S6K, and Foxo3a in multinucleated myotubes,
indicating stimulation of the Akt-dependent anabolic pathway; (F) High concentration of vitamin
D induced hypertrophy of myotubes (MHC+). Scale bar = 100 µm. N.D., no statistical significance.
p < 0.01 and p < 0.05 are statistically significant.

4. Discussion

In this study, we demonstrated that a high concentration of active vitamin D, 1α,25(OH)2D3,
affected terminal differentiation of myoblasts. Consistent with previous studies, it was confirmed
that vitamin D decreased the expression of MRFs such as Myf5 and myogenin. Previous studies
have reported that this inhibitory effect on MRF expression resulted in the inhibition of terminal
differentiation, because myogenin is necessary for myotube formation [30]. In this study, vitamin D
inhibited myoblast-to-myoblast fusion, confirming the assertion that vitamin D inhibited terminal
differentiation. It is important to note that vitamin D also inhibited the fusion of myoblasts to myotubes,
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indicating that vitamin D affected nascent and also mature myotube formation. Furthermore, this
inhibitory effect on myogenic cell fusion was reduced by RXR antagonist, indicating the specificity
of the VDR signaling. Although there are no previous studies which have explained the detailed
molecular mechanisms underlying the effects of vitamin D on terminal differentiation, results from this
study indicated that vitamin D inhibits the expression of two fusogenic genes, Tmem8c (myomaker)
and Gm7325 (myomerger), in addition to myogenin. These muscle specific micropeptides are necessary
for myogenic cell fusion [25,26]; hence, the negative effect of vitamin D on the expression of these
fusogenic genes is believed to inhibit the terminal differentiation of myogenic cells. Recently, it has been
reported that myogenin directory regulates the expression of these fusogenic genes, on the one hand,
by binding to E-box on their promotor regions [31], indicating that vitamin D could inhibit myogenic
cell fusion through downregulation of myogenin and, consequently, fusogenic micropeptides. On the
other hand, it was assumed that vitamin D inhibited the expression of myomaker and myomerger via
different pathways, because, although the administration of RXR antagonist stopped the inhibitory
effect of vitamin D on the expression of Gm7325 (myomerger), it did not stop the inhibitory effect of
vitamin D on the expression of Tmem8c (myomaker). Although the role of vitamin D in the fusion
of satellite cells to multinucleated myogenic cells (myotubes and myofibers) [32] was a concern, it
was not investigated in the present study. Satellite cell fusion to myofiber is important because it
induces muscle hypertrophy resulting from overloaded exercise [33]; however, further investigations
are needed to clarify these uncertain underlying mechanisms of vitamin D and myogenic cell fusion.

In the present study, vitamin D did not negatively affect the proliferation of myoblasts. Similar
results were observed in C2C12 myoblasts [34], suggesting that vitamin D did not influence the mobility
of mononuclear myoblasts. However, another study demonstrated that the proliferation and viability
of C2C12 cells were influenced by vitamin D treatment [35]. Although there is no clear explanation for
this discrepancy in results, it is possible that the effect of vitamin D on the proliferation of myoblasts is
dose dependent and cell type dependent such as species and cell mortality. For this point, additional
detailed studies using different cell types, vitamin D dosages, and time courses are needed to lead
the conclusion.

Postnatal skeletal muscle is appropriately maintained in size and functions. This maintenance
system is based on innervation in addition to the balance between anabolism and catabolism of
muscle proteins. It has been reported that elderlies with vitamin D deficiency experienced decreased
neuromuscular function [36], suggesting the importance of vitamin D in neuromuscular junction (NMJ)
maintenance. A recent publication reported that vitamin D in combination with agrin administration
increased acetylcholine receptor clustering and rapsyn expression in C2C12 myotubes [37]. This
indicated that vitamin D and VDR signaling contributed to NMJ formation. In the present study,
there was no alteration in the expression of NMJ-related genes in Ric10 myotubes subjected to a
high concentration of vitamin D; thus, it was assumed that vitamin D was not directly involved in
the expression of NMJ-related genes but acted synergistically with an additional component such as
extracellular matrix on NMJ functions. Nonetheless, because the present study only focusing on gene
expression, further investigations in protein level are necessary to clarify the importance of vitamin D
and the VDR signaling in neuromuscular function and maintenance.

The balance in protein turnover is a critical factor in maintaining myofiber size, and the
ubiquitin-proteasome system (UPS) is one of the major regulatory systems for protein catabolism [38].
In this study, on the one hand, expression of UPS-related gene, atrogin-1, was not altered by vitamin D
treatment, indicating that an excess of vitamin D did not affect catabolic activities in myotubes. On the
other hand, a high concentration of vitamin D accelerated the phosphorylation of Akt, p70S6K, and
Foxo3a, indicating that vitamin D influenced anabolic activities in myotubes, because these molecules
were involved in protein synthesis [39]. Akt phosphorylates p70S6K under the regulation of PI3K,
accelerating muscle protein synthesis combined with mTOR. In addition, Akt can inactivate UPS by the
induction of Foxo3a phosphorylation, inhibiting protein degradation in myogenic cells [40]. Therefore,
it was assumed that a high concentration of vitamin D activated the Akt-dependent anabolic pathway,
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and consequently induced hypertrophy of myotubes in the present study. However, the expression
atrogin-1, which is a downstream target of Akt-Foxo3a axis, was unchanged in response to a high
concentration of vitamin D. Another pathway such as the Foxo3a-associated lysosomal pathway can
be present in vitamin D-induced muscle hypertrophy [41]. Both catabolic and anabolic pathways
are complicated, and further investigations are necessary to clarify the mechanism of the vitamin D
signaling in muscle protein turnover.

The myostatin signaling is another muscle atrophy inducing system [28,42]. Although the
relationship between vitamin D and the myostatin signaling has not been well investigated, a negative
effect of vitamin D on myostatin expression has been reported in a previous study using C2C12 cells [11].
In this study, we found that myostatin was suppressed in vitamin D-treated Ric10 myotubes, indicating
the consistency of this work with previous studies. These results suggest that vitamin D-induced
myostatin suppression induces hypertrophy of myotubes or myofibers. However, phosphorylation
of Smad2/3, which is an essential event in myostatin signaling [28], was unchanged by vitamin D
treatment, indicating that in spite of decreased gene expression, the myostatin signaling pathway
was not affected in myotubes treated with a high concentration of vitamin D. Considering this,
the data from this study suggest that a high concentration of vitamin D predominantly accelerates
the Akt-dependent pathway to induce muscle hypertrophy, but does not utilize inhibition of the
myostatin-related atrophic pathway.

In this study, it was demonstrated that a high concentration of vitamin D positively affected
multinucleated myotubes, suggesting that vitamin D replacement therapy is a promising approach
to cure age-related muscle decline, sarcopenia. However, vitamin D treatment also affected terminal
differentiation negatively. In elderlies, the risk of falling is increased because of declined-motor
activity and muscle strength, causing muscle injury and, consequently, morbidity and disability.
Because an event of myogenic cell fusion in postnatal muscle typically occurs in a situation of
exercise-induced hypertrophy or recovery from injury, a high concentration of vitamin D could cause
prohibition of myofiber reconstruction particularly during the cell fusion step. A clinical trial revealed
that an annual high-dose vitamin D supplementation increased the risk of falling and fractures in
elderlies [17], indicating the possibility that a high concentration of vitamin D promotes incomplete
muscle regeneration after injury, and then causes decline of muscle performance in elderlies. Putting
these in perspective, vitamin D has both positive and negative effects on myogenic cells; hence, vitamin
D treatment should probably be used for the prevention of age-related muscle loss rather than for
sarcopenia treatment. However, a number of clinical studies demonstrated an improvement of muscle
strength in vitamin D-treated elderlies, suggesting that vitamin D supplementation is an effective
therapeutic approach for sarcopenia [43]. In this study, we did not perform the functional study to
clarify the vitamin D’s action on muscle strength. Therefore, the effect of vitamin D on muscle function
needs to be clarified in further investigations.
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