Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = fungal barcoding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 8654 KiB  
Article
Hidden Treasures of Colombia’s Pacific Mangrove: New Fungal Species and Records of Macrofungi (Basidiomycota)
by Viviana Motato-Vásquez, Lina Katherine Vinasco-Diaz, Jorge M. Londoño-Caicedo and Ana C. Bolaños-Rojas
J. Fungi 2025, 11(6), 459; https://doi.org/10.3390/jof11060459 - 17 Jun 2025
Viewed by 908
Abstract
Mangrove-associated fungi represent a diverse but understudied group of eukaryotic organisms, especially in the Neotropics. The Colombian Pacific region, with approximately 1300 km of coastline covered with 194,880 ha of mangrove forests that remain largely unexplored for macrofungal diversity, is recognized as a [...] Read more.
Mangrove-associated fungi represent a diverse but understudied group of eukaryotic organisms, especially in the Neotropics. The Colombian Pacific region, with approximately 1300 km of coastline covered with 194,880 ha of mangrove forests that remain largely unexplored for macrofungal diversity, is recognized as a global biodiversity hotspot. This study aimed to catalog the macrofungi associated with mangrove ecosystems in Colombia, integrating morphological characterization and molecular phylogenetics, focusing on three Valle del Cauca Pacific coast localities. A total of 81 specimens were collected from both living trees and decaying wood. Detailed macroscopic and microscopic analyses were conducted, and DNA sequences from two ribosomal DNA barcode regions (ITS and LSU) were generated for 43 specimens. Three new species—Neohypochnicium manglarense, Phlebiopsis colombiana, and Porogramme bononiae—were documented. In addition, eight species were reported as new records for both Colombia and mangrove ecosystems, including Microporus affinis, Paramarasmius palmivorus, Phlebiopsis flavidoalba, Porogramme brasiliensis, Resinicium grandisporum, Trametes ellipsospora, T. menziesii, and T. polyzona. Although previously recorded in Colombian terrestrial ecosystems, Lentinus scleropus and Oudemansiella platensis are globally reported here for the first time from mangrove habitats. Furthermore, Fomitopsis nivosella and Punctularia strigosozonata were documented for the first time in Colombia. This study addresses the first exploration of mangrove-associated macrofungi in the country and provides new insights into the hidden fungal diversity and potential of mangrove ecosystems as a latent niche for basidiomycete dispersal along Colombia’s Pacific coast. Full article
(This article belongs to the Special Issue Fungal Diversity in Various Environments, 4th Edition)
Show Figures

Figure 1

26 pages, 42762 KiB  
Article
Diversity and the Origin of Perlodinella Klapálek 1912 (Plecoptera: Perlodidae) in Qinghai Province, China
by Qing-Bo Huo, Shi-Xiong Fan, Ya-Fei Zhu and Yu-Zhou Du
Insects 2025, 16(5), 520; https://doi.org/10.3390/insects16050520 - 14 May 2025
Viewed by 471
Abstract
The article presents integrative research of the perlodid genus Perlodinella in Qinghai Province, northwestern China. P. tatunga Wu, 1973 is considered a junior synonym of P. kozlovi Klapálek, 1912, with a further description of intraspecific morphological variability, while P. unimacula Klapálek, 1912 is [...] Read more.
The article presents integrative research of the perlodid genus Perlodinella in Qinghai Province, northwestern China. P. tatunga Wu, 1973 is considered a junior synonym of P. kozlovi Klapálek, 1912, with a further description of intraspecific morphological variability, while P. unimacula Klapálek, 1912 is considered to be nomen dubium. The COI barcodes of the three valid species in Qinghai, P. epiproctalis (Zwick, 1997), P. kozlovi Klapálek, 1912, and P. microlobata Wu, 1938 are firstly sequenced, enabling adult–larva matching and the analysis of genetic diversity. The larval morphology of P. kozlovi and P. microlobata is described for the first time. Additionally, the biology, ecological adaptability, and fungal infections of Perlodinella are firstly recorded with an environment-related comparison. The discussion of the origin and immigration of the genus is also provided. Full article
(This article belongs to the Special Issue Aquatic Insects Biodiversity and eDNA Monitoring)
Show Figures

Figure 1

9 pages, 7578 KiB  
Communication
First Report of Fusarium annulatum Causing Bulb Rot Disease of Tulip
by Quanhong Liu, Shu Miura, Tianlan Liao, Jinyan Luo, Ying Shen, Lei Chen, Chengkai Li, Bin Li and Qianli An
Horticulturae 2025, 11(5), 518; https://doi.org/10.3390/horticulturae11050518 - 11 May 2025
Viewed by 492
Abstract
Bulb rot is one of the most destructive diseases of tulip (Tulipa gesneriana L.). In November 2022, rotten tulip bulbs and terminal buds were found in Songjiang District, Shanghai, China. Fungal isolates were isolated from the rotten bulbs and identified as Fusarium [...] Read more.
Bulb rot is one of the most destructive diseases of tulip (Tulipa gesneriana L.). In November 2022, rotten tulip bulbs and terminal buds were found in Songjiang District, Shanghai, China. Fungal isolates were isolated from the rotten bulbs and identified as Fusarium based on colony morphology and ITS sequences. Further analyses of tef1, rpb1, and rpb2 barcoding sequences and conidial micromorphology identified the Fusarium isolates as F. annulatum. The pathogenicity of the F. annulatum isolates was verified with Koch’s postulates. This is the first report of F. annulatum causing bulb rot disease of tulip. Full article
(This article belongs to the Special Issue Fungal Diseases in Horticultural Crops)
Show Figures

Figure 1

14 pages, 1963 KiB  
Article
DNA Barcoding as a Tool for Surveying Cytospora Species Associated with Branch Dieback and Canker Diseases of Woody Plants in Canada
by Evgeny Ilyukhin and Svetlana Markovskaja
DNA 2025, 5(2), 20; https://doi.org/10.3390/dna5020020 - 21 Apr 2025
Viewed by 524
Abstract
Background/Objectives: Branch dieback and canker diseases caused by Cytospora species adversely impact the health of woody plants worldwide. Results: During this survey, 59 Cytospora isolates were obtained from symptomatic trees and shrubs growing in southwest Ontario and Saskatchewan, Canada. A DNA barcoding approach [...] Read more.
Background/Objectives: Branch dieback and canker diseases caused by Cytospora species adversely impact the health of woody plants worldwide. Results: During this survey, 59 Cytospora isolates were obtained from symptomatic trees and shrubs growing in southwest Ontario and Saskatchewan, Canada. A DNA barcoding approach combined with morphological characterization identified 15 known species of Cytospora associated with these diseases: C. chrysosperma, C. curvata, C. euonymina, C. hoffmannii, C. kantschavelii, C. leucosperma, C. leucostoma, C. nitschkeana, C. piceae, C. populina, C. pruinopsis, C. pruinosa, C. ribis, C. schulzeri, and C. sorbina. The most common species isolated from multiple hosts were C. sorbina (10), C. chrysosperma (8), C. nitschkeana (6), and C. pruinosa (6). A wide range of host associations, including non-conifer species, was observed for C. piceae. Conclusions: The obtained results contribute to the study of diversity, host affiliation, geographical distribution, and pathogenicity of Cytospora species occurring on woody plants in both natural habitats and agricultural systems. The findings support the effectiveness of using DNA barcodes in fungal taxonomy and plant pathology studies. Full article
Show Figures

Figure 1

9 pages, 1247 KiB  
Brief Report
A Barcoded ITS Primer-Based Nanopore Sequencing Protocol for Detection of Alternaria Species and Other Fungal Pathogens in Diverse Plant Hosts
by Vladimer Baramidze, Luca Sella, Tamar Japaridze, Nino Dzotsenidze, Daviti Lamazoshvili, Nino Abashidze, Maka Basilidze and Giorgi Tomashvili
J. Fungi 2025, 11(4), 249; https://doi.org/10.3390/jof11040249 - 25 Mar 2025
Viewed by 1816
Abstract
Alternaria is a genus that contains several important plant pathogens affecting nearly 400 plant species worldwide, including economically important crops such as grapes, citrus, and ornamental plants. Rapid, scalable, and efficient methods of pathogen detection are crucial for managing plant diseases and ensuring [...] Read more.
Alternaria is a genus that contains several important plant pathogens affecting nearly 400 plant species worldwide, including economically important crops such as grapes, citrus, and ornamental plants. Rapid, scalable, and efficient methods of pathogen detection are crucial for managing plant diseases and ensuring agricultural productivity. Current amplicon sequencing protocols for Alternaria detection often require the enzymatic barcoding of amplicons, increasing hands-on time, cost, and contamination risk. We present a proof-of-concept study using custom barcoded primers, combining universal primers targeting ITS1 and ITS2 regions (600 bp) coupled with Oxford Nanopore Technologies (ONT) barcode sequences. Sequencing was performed on infected grapevine, mandarin orange, thuja, and maple tree samples. In total, we analyzed 38 samples using qPCR; 8 tested positive for Alternaria, which were sequenced using a newly developed protocol. As a result, we could identify Alternaria in every positive sample, and besides the pathogen of interest, we could identify the associated mycobiome. This protocol reduces hands-on time and cost, making a significant advancement over current sequencing methods. Future work will focus on optimizing our approach for high-throughput sequencing of up to 96 samples and determining the method’s applicability for large-scale mycobiome analysis. Full article
Show Figures

Figure 1

18 pages, 1111 KiB  
Article
DNA Metabarcoding Using Indexed Primers: Workflow to Characterize Bacteria, Fungi, Plants, and Arthropods from Environmental Samples
by Teresa M. Tiedge, Jorden T. Rabasco and Kelly A. Meiklejohn
Diversity 2025, 17(2), 137; https://doi.org/10.3390/d17020137 - 17 Feb 2025
Cited by 1 | Viewed by 1815
Abstract
Environmental DNA from bulk materials can be analyzed to gain an understanding of the bacterial, fungal, plant, and/or arthropod communities present. DNA metabarcoding is widely used to characterize these biological communities, by amplifying “barcode” regions and sequencing these amplicons via next-generation sequencing. The [...] Read more.
Environmental DNA from bulk materials can be analyzed to gain an understanding of the bacterial, fungal, plant, and/or arthropod communities present. DNA metabarcoding is widely used to characterize these biological communities, by amplifying “barcode” regions and sequencing these amplicons via next-generation sequencing. The Earth Microbiome Project (EMP) adopted the use of indexed primers, PCR primers containing Illumina® adapter sequences and a unique 12-nucleotide Golay barcode to simplify the identification of bacterial taxa via the 16S barcode. We sought to develop a wet laboratory workflow utilizing indexed primers that could cost-effectively reduce bench time while simultaneously targeting multiple DNA barcode regions to characterize bacterial (16S), fungal (ITS1), plant (ITS2, trnL p6 loop), and arthropod (COI) communities. The EMP primer constructs for 16S were modified to accommodate our DNA barcode regions of interest while also permitting successful demultiplexing following sequencing. A single indexed primer pair was designed for ITS1 and trnL p6 loop, and two primer pairs were developed for ITS2 and COI. To test the workflow, a total of 648 soil and 336 dust samples were processed, with key steps including DNA isolation, total DNA quantification, amplification with indexed primers, library purification and quantification, and Illumina MiSeq sequencing. Based on raw read counts and analysis of positive controls, the trnL p6 loop and ITS2 a primer pairs performed comparably to the originally designed 16S primers. Both COI primers pairs, ITS1 and ITS2 b primers, had lower raw reads compared to the other three primer pairs. The combination of the three plant targets successfully recovered all plant taxa in the positive controls except for Nephrolepis exaltata [Nephrolepidaceae] and the COI primers recovered all arthropod taxa except for the beetle. Notably, none of the taxa in the fungal positive control were recovered using ITS1. For environmental samples, sequencing was successful for all primers except COI c, and primer biases were observed for all three plant primers, in which a small number of families were uniquely amplified for each primer pair. This workflow can be applied to many disciplines that utilize DNA metabarcoding given its customizability and flexibility with Illumina sequencing chemistry. Full article
Show Figures

Figure 1

17 pages, 2248 KiB  
Article
Species Identification and Orthologous Allergen Prediction and Expression in the Genus Aspergillus
by Maria C. Zuleta, Oscar M. Gómez, Elizabeth Misas, Susana Torres, Álvaro L. Rúa-Giraldo, Juan G. McEwen, Ana M. Garcia, Clayton L. Borges, Orville Hernández and Angela M. López
J. Fungi 2025, 11(2), 98; https://doi.org/10.3390/jof11020098 - 27 Jan 2025
Cited by 1 | Viewed by 1297
Abstract
The genus Aspergillus comprises a diverse group of fungi that can cause a range of health issues, including systemic infections and allergic reactions. In this regard, A. fumigatus has been recognized as the most prevalent allergen-producing species. This genus taxonomic classification has been [...] Read more.
The genus Aspergillus comprises a diverse group of fungi that can cause a range of health issues, including systemic infections and allergic reactions. In this regard, A. fumigatus has been recognized as the most prevalent allergen-producing species. This genus taxonomic classification has been subject to frequent updates, which has generated considerable difficulties for its classification when traditional identification methodologies are employed. To demonstrate the feasibility of this approach, we sequenced the whole genomes of 81 Aspergillus isolates and evaluated a WGS-based pipeline for precise species identification. This pipeline employed two methodologies: (i) BLASTn web using four barcode genes and (ii) species tree inference by OrthoFinder. Furthermore, we conducted a prediction of allergenic capacity based on a homology analysis across all the isolated species and confirmed by RT-qPCR the expression of three orthologous allergens (Asp f 1, Asp f 3 and Asp f 22) in fifteen different Aspergillus species. The species-level identification rate with the barcoding and the species tree were calculated at 64.2% and 100%, respectively. The results demonstrated that A. fumigatus, A. flavus and A. niger were the most prevalent species. The species A. hortae, A. uvarum, A. spinulosporus, A. sydowii, A. westerdijkiae, A. amoenus and A. rhizopodus identified in this study represent the inaugural report of their presence in our region. The results of the homology analysis indicated the presence of orthologous allergens in a wide range of non-fumigatus species. This study presents a novel approach based on WGS that enables the classification of new species within the genus Aspergillus and reports the genomic sequences of a great diversity of species isolated in our geographic area that had never been reported before. Additionally, this approach enables the prediction of allergens in species other than A. fumigatus and demonstrates their genetic expression, thereby contributing to the understanding of the allergenic potential of different species within this fungal genus. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

24 pages, 3921 KiB  
Article
Ex Situ Conservation, DNA Barcoding and Enzymatic Potential Evaluation of Macrofungi (Basidiomycota, Ascomycota) from Vietnam
by Nadezhda V. Psurtseva, Anna A. Kiyashko, Svetlana V. Senik and Thi Ha Giang Pham
J. Fungi 2025, 11(1), 34; https://doi.org/10.3390/jof11010034 - 4 Jan 2025
Viewed by 1504
Abstract
The diversity and resource potential of macroscopic fungi in tropical regions remain understudied. Vietnam, being in a biodiversity hotspot, has a large number of new fungal species that are of interest for biotechnology and medicine. The presence of a large number of protected [...] Read more.
The diversity and resource potential of macroscopic fungi in tropical regions remain understudied. Vietnam, being in a biodiversity hotspot, has a large number of new fungal species that are of interest for biotechnology and medicine. The presence of a large number of protected areas in Vietnam creates favorable opportunities for the study and ex situ conservation of tropical biodiversity. From 2012 to 2023, 785 strains of macrofungi from National Parks of Vietnam were preserved in the LE-BIN collection, 327 of which were barcoded with the sequences deposited in the NCBI GenBank. A taxonomic analysis demonstrated that many of the preserved isolates are potentially new or poorly studied species, representing a useful resource for taxonomical studies and a search for new medicinal mushrooms. More than 180 strains were studied for the first time for growth rate and enzymatic activities. Of these, 53 strains showed high growth rate, 43—high cellulolytic activity, 73—high oxidative enzymes activity, and 27 showed high proteolytic activity, making them promising candidates for biotechnological and medical applications and opening new opportunities for sustainable biomass management, discovery of new enzymes and bioactive substances, development of new drugs and efficient plant waste treatment technologies. The results confirm the importance of the ex situ conservation of fungal diversity in tropical regions as a valuable source for scientific and commercial applications and suggest certain new active strains for biotechnological study. Full article
Show Figures

Figure 1

25 pages, 16303 KiB  
Article
Assembly, Annotation, and Comparative Analysis of Mitochondrial Genomes in Trichoderma
by Xiaoting Wang, Zhiyin Wang, Fanxing Yang, Runmao Lin and Tong Liu
Int. J. Mol. Sci. 2024, 25(22), 12140; https://doi.org/10.3390/ijms252212140 - 12 Nov 2024
Viewed by 1692
Abstract
Trichoderma is a widely studied ascomycete fungal genus, including more than 400 species. However, genetic information on Trichoderma is limited, with most species reporting only DNA barcodes. Mitochondria possess their own distinct DNA that plays a pivotal role in molecular function and evolution. [...] Read more.
Trichoderma is a widely studied ascomycete fungal genus, including more than 400 species. However, genetic information on Trichoderma is limited, with most species reporting only DNA barcodes. Mitochondria possess their own distinct DNA that plays a pivotal role in molecular function and evolution. Here, we report 42 novel mitochondrial genomes (mitogenomes) combined with 18 published mitogenomes of Trichoderma. These circular mitogenomes exhibit sizes of 26,276–94,608 bp, typically comprising 15 core protein-coding genes (PCGs), 2 rRNAs, and 16–30 tRNAs; however, the number of endonucleases and hypothetical proteins encoded in the introns of PCGs increases with genome size enlargement. According to the result of phylogenetic analysis of the whole mitogenome, these strains diverged into six distinct evolutionary branches, supported by the phylogeny based on 2830 single-copy nuclear genes. Comparative analysis revealed that dynamic Trichoderma mitogenomes exhibited variations in genome size, gene number, GC content, tRNA copy, and intron across different branches. We identified three mutation hotspots near the regions encoding nad3, cox2, and nad5 that caused major changes in the mitogenomes. Evolutionary analysis revealed that atp9, cob, nad4L, nad5, and rps3 have been influenced by positive selection during evolution. This study provides a valuable resource for exploring the important roles of the genetic and evolutionary dynamics of Trichoderma mitogenome in the adaptive evolution of biocontrol fungi. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 1023 KiB  
Communication
The Diversity of Seed-Borne Fungi Associated with Soybean Grown in Southern Poland
by Hanna Olszak-Przybyś and Grażyna Korbecka-Glinka
Pathogens 2024, 13(9), 769; https://doi.org/10.3390/pathogens13090769 - 6 Sep 2024
Cited by 2 | Viewed by 1431
Abstract
Fungi have the potential to colonize soybean seeds in the field, during their maturation in the pods and after harvest, during storage. The aim of this study was to identify fungi inhabiting soybean seeds after storage with varying germination capacity and to evaluate [...] Read more.
Fungi have the potential to colonize soybean seeds in the field, during their maturation in the pods and after harvest, during storage. The aim of this study was to identify fungi inhabiting soybean seeds after storage with varying germination capacity and to evaluate their chemical composition. The research material consisted of twelve soybean seed lots collected from the fields in southern Poland and stored over winter. The germination percentage of these lots ranged between 20.67% and 81.33%. The seeds were subjected to analyses of the main chemical components and mycological analysis. Fungal isolates were subjected to taxonomic identification using microscopic methods and DNA sequencing (using internal transcribed spacer region and secondary barcoding regions). A total number of 355 fungal isolates from 16 genera were identified, with Aspergillus, Alternaria, and Fusarium being the most common. Species were successfully identified in 94% of isolates. Twelve examined seed lots varied significantly in the number of isolated fungal species (from 1 to 17). Moreover, they also differed in the isolated species composition. Highly significant positive correlation was found between the number of Aspergillus psedudoglaucus isolates and the content of free fatty acids. In turn, the number of Fusarium spp. isolates correlated negatively with protein and nitrogen content. Similarly, highly significant negative correlation was found between the number of all fungal isolates and the 1000-seed weight, indicating that smaller seeds are more vulnerable to fungal infection. The results obtained in this study identify species of fungi which may be responsible for lowering quality of the seeds obtained in southern Poland. Full article
(This article belongs to the Special Issue Fungal Pathogens of Crops)
Show Figures

Figure 1

21 pages, 2480 KiB  
Article
Hidden Secrets of Mangrove Swamp Rice Stored Seeds in Guinea-Bissau: Assessment of Fungal Communities and Implications for Food Security
by Sofia Conde, Amidu Barai, Sílvia Catarino, Gonçalo J. Costa, Sónia Ferreira, Idília Tavares, Maria Rosa Ferreira, Marina Padrão Temudo and Filipa Monteiro
Agronomy 2024, 14(8), 1870; https://doi.org/10.3390/agronomy14081870 - 22 Aug 2024
Cited by 3 | Viewed by 1711
Abstract
Rice cultivation is one of the most important agro-economic activities in many countries, and the correct seed storage between production cycles is essential for crop success. In Guinea-Bissau, mangrove swamp rice (MSR) is a highly productive rice cropping system, thus providing surplus for [...] Read more.
Rice cultivation is one of the most important agro-economic activities in many countries, and the correct seed storage between production cycles is essential for crop success. In Guinea-Bissau, mangrove swamp rice (MSR) is a highly productive rice cropping system, thus providing surplus for sale. Depending on storage conditions, rice grains may present moisture, insects, or the development of fungi that might affect crop productivity. Considering different rice varieties and storage conditions, samples were collected from 30 farmers within 13 villages across the main MSR-producing regions. Stored rice was used to isolate and identify seed-borne fungi through DNA barcoding, to test aflatoxin content, and to evaluate seed germination rates. Polyethylene bags (the container), raised wooden platforms, and storage rooms (the structures) are the most used facilities. Hermetic containers were recorded mainly in Oio. A total fungal richness of 18 genera was found, and 16 different species were identified. The most represented fungal genera are Aspergillus, Curvularia, and Bipolaris. Despite the presence of aflatoxin-producing fungal samples, they did not present concerning levels for human consumption, and the germination rate was not affected regardless of storage structures. These results provide a baseline on fungi occurrence in stored MSR seeds from traditional facilities in Guinea-Bissau. Full article
(This article belongs to the Special Issue Seeds for Future: Conservation and Utilization of Germplasm Resources)
Show Figures

Figure 1

22 pages, 2894 KiB  
Article
Genotypic Identification of Trees Using DNA Barcodes and Microbiome Analysis of Rhizosphere Microbial Communities
by Liliana Hopkins, Kayla Yim, Ana Rumora, Melissa F. Baykus, Luisa Martinez and Luis Jimenez
Genes 2024, 15(7), 865; https://doi.org/10.3390/genes15070865 - 1 Jul 2024
Cited by 2 | Viewed by 1593
Abstract
DNA barcodes can provide accurate identification of plants. We used previously reported DNA primers targeting the internal transcribed spacer (ITS1) region of the nuclear ribosomal cistron, internal transcribed spacer (ITS2), and chloroplast trnL (UAA) intron to identify four trees at Bergen Community College. [...] Read more.
DNA barcodes can provide accurate identification of plants. We used previously reported DNA primers targeting the internal transcribed spacer (ITS1) region of the nuclear ribosomal cistron, internal transcribed spacer (ITS2), and chloroplast trnL (UAA) intron to identify four trees at Bergen Community College. Two of the four trees were identified as Acer rubrum and Fagus sylvatica. However, Quercus was only identified at the genus level, and the fourth tree did not show similar identification between barcodes. Next-generation sequencing of 16S rRNA genes showed that the predominant bacterial communities in the rhizosphere mainly consisted of the Pseudomonadota, Actinomycetota, Bacteroidota, and Acidobacteriota. A. rubrum showed the most diverse bacterial community while F. sylvatica was less diverse. The genus Rhodoplanes showed the highest relative bacterial abundance in all trees. Fungal ITS sequence analysis demonstrated that the communities predominantly consisted of the Ascomycota and Basidiomycota. Quercus showed the highest fungi diversity while F. sylvatica showed the lowest. Russula showed the highest abundance of fungi genera. Average similarity values in the rhizosphere for fungi communities at the phylum level were higher than for bacteria. However, at the genus level, bacterial communities showed higher similarities than fungi. Similarity values decreased at lower taxonomical levels for both bacteria and fungi, indicating each tree has selected for specific bacterial and fungal communities. This study confirmed the distinctiveness of the microbial communities in the rhizosphere of each tree and their importance in sustaining and supporting viability and growth but also demonstrating the limitations of DNA barcoding with the primers used in this study to identify genus and species for some of the trees. The optimization of DNA barcoding will require additional DNA sequences to enhance the resolution and identification of trees at the study site. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

15 pages, 6586 KiB  
Article
Axenic Culture and DNA Barcode Identification of Wood Decay Fungi from the Maltese Islands
by Marco Iannaccone, Mario Amalfi and Joseph A. Buhagiar
Forests 2024, 15(5), 850; https://doi.org/10.3390/f15050850 - 13 May 2024
Viewed by 1729
Abstract
Wood-decaying fungi are important study subjects for their ecological role as well as for their biotechnological applications. They break down lignin, cellulose, and hemicelluloses using enzymes that modify the chemical structure of these complex macromolecules. Due to their ability to degrade wood, these [...] Read more.
Wood-decaying fungi are important study subjects for their ecological role as well as for their biotechnological applications. They break down lignin, cellulose, and hemicelluloses using enzymes that modify the chemical structure of these complex macromolecules. Due to their ability to degrade wood, these fungi can create structural damage to wooden structures and to trees, especially those with very low level of fitness. Previous studies on wood decay fungi in the Maltese Islands are limited to records and checklists described by a handful of authors. The aim of this study was to provide a comprehensive description of wood decay fungal diversity in the Maltese Islands including an updated checklist based on DNA barcoding, as well as to establish the first wood-decay fungal culture collection at the Biology Department Seed Bank of the University of Malta. Several surveys were carried out during the rainy season along wooded areas of the Maltese Islands as well as in historical gardens. Isolates were identified using macro- and micro-morphological features, dichotomous keys, as well as molecular data. Basidiomes were recorded growing on 14 different host plant species, 11 axenic cultures have been made and 9 species of wood decay fungi have been conclusively identified by DNA barcoding. The collection of the axenic isolates includes one of Aurificaria cf. euphoria, three of Ganoderma resinaceum sl., two of Laetiporus sulphureus, one of Inonotus sp., one of Inonotus rickii anamorph, one of Inocutis tamaricis, one of Stereum hirsutum, and one of Pleurotus eryngii. However, the mycelium of Coriolopsis gallica, though collected and identified, could not be isolated. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

9 pages, 2039 KiB  
Brief Report
Malian Children’s Core Gut Mycobiome
by Abdourahim Abdillah, Aly Kodio and Stéphane Ranque
Microorganisms 2024, 12(5), 926; https://doi.org/10.3390/microorganisms12050926 - 1 May 2024
Cited by 1 | Viewed by 1525
Abstract
Because data on the fungal gut community structure of African children are scarce, we aimed to describe it by reanalysing rRNA ITS1 and ITS2 metabarcoding data from a study designed to assess the influence of microbiota in malaria susceptibility in Malian children from [...] Read more.
Because data on the fungal gut community structure of African children are scarce, we aimed to describe it by reanalysing rRNA ITS1 and ITS2 metabarcoding data from a study designed to assess the influence of microbiota in malaria susceptibility in Malian children from the Dogon country. More specifically, we aimed to establish the core gut mycobiome and compare the gut fungal community structure of breastfed children, aged 0–2 years, with other age groups. Briefly, DNA was extracted from 296 children’s stool samples. Both rRNA ITS1 and ITS2 genomic barcodes were amplified and subjected to Illumina MiSeq sequencing. The ITS2 barcode generated 1,975,320 reads and 532 operational taxonomic units (OTUs), while the ITS1 barcode generated 647,816 reads and 532 OTUs. The alpha diversity was significantly higher by using the ITS1 compared to the ITS2 barcode (p < 0.05); but, regardless of the ITS barcode, we found no significant difference between breastfed children, aged 0–2 years, compared to the other age groups. The core gut mycobiome of the Malian children included Saccharomyces cerevisiae, Candida albicans, Pichia kudriavzevii, Malassezia restricta, Candida tropicalis and Aspergillus section Aspergillus, which were present in at least 50% of the 296 children. Further studies in other African countries are warranted to reach a global view of African children’s core gut mycobiome. Full article
(This article belongs to the Special Issue Gut Microbiome and Children’s Health)
Show Figures

Figure 1

29 pages, 27808 KiB  
Article
Sunken Riches: Ascomycete Diversity in the Western Mediterranean Coast through Direct Plating and Flocculation, and Description of Four New Taxa
by Daniel Guerra-Mateo, José F. Cano-Lira, Ana Fernández-Bravo and Josepa Gené
J. Fungi 2024, 10(4), 281; https://doi.org/10.3390/jof10040281 - 11 Apr 2024
Cited by 2 | Viewed by 2641
Abstract
The Mediterranean Sea stands out as a hotspot of biodiversity, whose fungal composition remains underexplored. Marine sediments represent the most diverse substrate; however, the challenge of recovering fungi in culture hinders the precise identification of this diversity. Concentration techniques like skimmed milk flocculation [...] Read more.
The Mediterranean Sea stands out as a hotspot of biodiversity, whose fungal composition remains underexplored. Marine sediments represent the most diverse substrate; however, the challenge of recovering fungi in culture hinders the precise identification of this diversity. Concentration techniques like skimmed milk flocculation (SMF) could represent a suitable solution. Here, we compare the effectiveness in recovering filamentous ascomycetes of direct plating and SMF in combination with three culture media and two incubation temperatures, and we describe the fungal diversity detected in marine sediments. Sediments were collected at different depths on two beaches (Miracle and Arrabassada) on the Spanish western Mediterranean coast between 2021 and 2022. We recovered 362 strains, and after a morphological selection, 188 were identified primarily with the LSU and ITS barcodes, representing 54 genera and 94 species. Aspergillus, Penicillium, and Scedosporium were the most common genera, with different percentages of abundance between both beaches. Arrabassada Beach was more heterogeneous, with 42 genera representing 60 species (Miracle Beach, 28 genera and 54 species). Although most species were recovered with direct plating (70 species), 20 species were exclusively obtained using SMF as a sample pre-treatment, improving our ability to detect fungi in culture. In addition, we propose three new species in the genera Exophiala, Nigrocephalum, and Queenslandipenidiella, and a fourth representing the novel genus Schizochlamydosporiella. We concluded that SMF is a useful technique that, in combination with direct plating, including different culture media and incubation temperatures, improves the chance of recovering marine fungal communities in culture-dependent studies. Full article
Show Figures

Figure 1

Back to TopTop