Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = functionally graded electrodes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 5420 KiB  
Article
Modeling Porosity Distribution Strategies in PEM Water Electrolyzers: A Comparative Analytical and Numerical Study
by Ali Bayat, Prodip K. Das and Suvash C. Saha
Mathematics 2025, 13(13), 2077; https://doi.org/10.3390/math13132077 - 23 Jun 2025
Viewed by 546
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for green hydrogen production. However, the adoption of PEMWE-based hydrogen production systems remains limited due to several challenges, including high material costs, limited performance and durability, and difficulties in scaling the technology. Computational [...] Read more.
Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for green hydrogen production. However, the adoption of PEMWE-based hydrogen production systems remains limited due to several challenges, including high material costs, limited performance and durability, and difficulties in scaling the technology. Computational modeling serves as a powerful tool to address these challenges by optimizing system design, improving material performance, and reducing overall costs, thereby accelerating the commercial rollout of PEMWE technology. Despite this, conventional models often oversimplify key components, such as porous transport and catalyst layers, by assuming constant porosity and neglecting the spatial heterogeneity found in real electrodes. This simplification can significantly impact the accuracy of performance predictions and the overall efficiency of electrolyzers. This study develops a mathematical framework for modeling variable porosity distributions—including constant, linearly graded, and stepwise profiles—and derives analytical expressions for permeability, effective diffusivity, and electrical conductivity. These functions are integrated into a three-dimensional multi-domain COMSOL simulation to assess their impact on electrochemical performance and transport behavior. The results reveal that although porosity variations have minimal effect on polarization at low voltages, they significantly influence internal pressure, species distribution, and gas evacuation at higher loads. A notable finding is that reversing stepwise porosity—placing high porosity near the membrane rather than the channel—can alleviate oxygen accumulation and improve current density. A multi-factor comparison highlights this reversed configuration as the most favorable among the tested strategies. The proposed modeling approach effectively connects porous media theory and system-level electrochemical analysis, offering a flexible platform for the future design of porous electrodes in PEMWE and other energy conversion systems. Full article
Show Figures

Figure 1

11 pages, 4459 KiB  
Article
Impact of Cochlear Trauma Degree and Localization on Intracochlear Electrocochleographic Recordings
by David Bächinger, Merlin Schär, Ahmet Kunut, Rahel Bertschinger, Ivo Dobrev, Leanne Sijgers, Andreas H. Eckhard and Adrian Dalbert
Audiol. Res. 2025, 15(3), 74; https://doi.org/10.3390/audiolres15030074 - 19 Jun 2025
Cited by 1 | Viewed by 288
Abstract
Background/Objectives: Electrocochleography (ECochG) is a promising tool to monitor preservation of cochlear structures and function during cochlear implant (CI) surgery. However, the interpretation of ECochG signal changes during insertion of the CI electrode array remains controversial. This study investigates the influence of the [...] Read more.
Background/Objectives: Electrocochleography (ECochG) is a promising tool to monitor preservation of cochlear structures and function during cochlear implant (CI) surgery. However, the interpretation of ECochG signal changes during insertion of the CI electrode array remains controversial. This study investigates the influence of the degree and localization of cochlear trauma on ECochG signal changes using a mouse model. Methods: C57BL/6J-Crl1 mice underwent intracochlear ECochG recordings during the insertion of a platinum–iridium electrode. Results: In case of grade 1 and 2 cochlear trauma, as determined by post-mortem histological analysis, we found that a reduction in intracochlear cochlear microphonic (CM) amplitude correlates more significantly with the location of the trauma than with its severity. The more basally a trauma is located, the larger the CM amplitude drop. Furthermore, the results revealed that grade 1 or 2 trauma was detectable through ECochG before more severe trauma developed. Conclusions: These findings suggest that intracochlear ECochG can serve as a reliable intraoperative tool for detecting early and possibly reversible cochlear trauma, preventing more severe damage and aiding hearing preservation. The results emphasize the need for a nuanced interpretation of CM signal drops, considering trauma location and cochlear structure integrity at the site of trauma and apical to it. Full article
(This article belongs to the Special Issue Hearing Loss: Causes, Symptoms, Diagnosis, and Treatment)
Show Figures

Figure 1

19 pages, 10977 KiB  
Article
Comparison of EEG Signal Spectral Characteristics Obtained with Consumer- and Research-Grade Devices
by Dmitry Mikhaylov, Muhammad Saeed, Mohamed Husain Alhosani and Yasser F. Al Wahedi
Sensors 2024, 24(24), 8108; https://doi.org/10.3390/s24248108 - 19 Dec 2024
Cited by 2 | Viewed by 3204
Abstract
Electroencephalography (EEG) has emerged as a pivotal tool in both research and clinical practice due to its non-invasive nature, cost-effectiveness, and ability to provide real-time monitoring of brain activity. Wearable EEG technology opens new avenues for consumer applications, such as mental health monitoring, [...] Read more.
Electroencephalography (EEG) has emerged as a pivotal tool in both research and clinical practice due to its non-invasive nature, cost-effectiveness, and ability to provide real-time monitoring of brain activity. Wearable EEG technology opens new avenues for consumer applications, such as mental health monitoring, neurofeedback training, and brain–computer interfaces. However, there is still much to verify and re-examine regarding the functionality of these devices and the quality of the signal they capture, particularly as the field evolves rapidly. In this study, we recorded the resting-state brain activity of healthy volunteers via three consumer-grade EEG devices, namely PSBD Headband Pro, PSBD Headphones Lite, and Muse S Gen 2, and compared the spectral characteristics of the signal obtained with that recorded via the research-grade Brain Product amplifier (BP) with the mirroring montages. The results showed that all devices exhibited higher mean power in the low-frequency bands, which are characteristic of dry-electrode technology. PSBD Headband proved to match BP most precisely among the other examined devices. PSBD Headphones displayed a moderate correspondence with BP and signal quality issues in the central group of electrodes. Muse demonstrated the poorest signal quality, with extremely low alignment with BP. Overall, this study underscores the importance of considering device-specific design constraints and emphasizes the need for further validation to ensure the reliability and accuracy of wearable EEG devices. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

22 pages, 5766 KiB  
Article
Machine-Learning-Based Depression Detection Model from Electroencephalograph (EEG) Data Obtained by Consumer-Grade EEG Device
by Kei Suzuki, Tipporn Laohakangvalvit and Midori Sugaya
Brain Sci. 2024, 14(11), 1107; https://doi.org/10.3390/brainsci14111107 - 30 Oct 2024
Cited by 3 | Viewed by 2867
Abstract
Background/Objectives: There have been attempts to detect depression using medical-grade electroencephalograph (EEG) data based on a machine learning approach. EEG has garnered interest as a method for assessing brainwaves by attaching electrodes to the scalp to obtain electrical activity in the brain. Recently, [...] Read more.
Background/Objectives: There have been attempts to detect depression using medical-grade electroencephalograph (EEG) data based on a machine learning approach. EEG has garnered interest as a method for assessing brainwaves by attaching electrodes to the scalp to obtain electrical activity in the brain. Recently, machine learning has been applied to the EEG data to detect depression, with encouraging results. Specifically, studies using medical-grade EEG data have shown that depression can be accurately detected. However, there is a need to expand the range of applications by achieving a score with machine learning using simpler consumer-grade brain wave sensors. At present, a sufficient score has not been achieved.; Methods: To improve the score of depression detection, we quantified various EEG indices to train models such as power spectrum, asymmetry, complexity, and functional connectivity. In addition, feature selection was performed to ensure that the model learns only promising EEG indices for depression detection. The feature selection methods were Light Gradient Boosting Machine (LightGBM) feature importance, mutual information, ReliefF and ElasticNet coefficients. The selected EEG indices were learned by the LightGBM model, which is reported to be as accurate as the latest deep learning models. In cross-validation, the independence of test and training data was ensured to avoid excessively calculated score; Results: The results showed that the Macro F1 score was 91.59%, suggesting that a consumer-grade EEG can detect depression. In addition, analysis of the EEG indices selected by feature selection indicated that the Macro F1 score was about 80% for single EEG indices such as differential entropy in the frequency band β and functional connectivity in the left frontal region in the frequency band 1–128 Hz; Conclusions: Although the data were obtained from a consumer-grade EEG, the results suggest that these EEG indices are promising for detection depression. Full article
(This article belongs to the Special Issue Challenges and Perspectives of Neurological Disorders: Series II)
Show Figures

Figure 1

63 pages, 7584 KiB  
Review
A Review of Ionic Liquids and Their Composites with Nanoparticles for Electrochemical Applications
by José Pereira, Reinaldo Souza and Ana Moita
Inorganics 2024, 12(7), 186; https://doi.org/10.3390/inorganics12070186 - 3 Jul 2024
Cited by 11 | Viewed by 4779
Abstract
The current study focuses on reviewing the actual progress of the use of ionic liquids and derivatives in several electrochemical application. Ionic liquids can be prepared at room temperature conditions and by including a solution that can be a salt in water, or [...] Read more.
The current study focuses on reviewing the actual progress of the use of ionic liquids and derivatives in several electrochemical application. Ionic liquids can be prepared at room temperature conditions and by including a solution that can be a salt in water, or a base or acid, and are composed of organic cations and many charge-delocalized organic or inorganic anions. The electrochemical properties, including the ionic and electronic conductivities of these innovative fluids and hybrids, are addressed in depth, together with their key influencing parameters including type, fraction, functionalization of the nanoparticles, and operating temperature, as well as the incorporation of surfactants or additives. Also, the present review assesses the recent applications of ionic liquids and corresponding hybrids with the addition of nanoparticles in diverse electrochemical equipment and processes, together with a critical evaluation of the related feasibility concerns in different applications. Those ranging from the metal-ion batteries, in which ionic liquids possess a prominent role as electrolytes and reference electrodes passing through the dye of sensitized solar cells and fuel cells, to finishing processes like the ones related with low-grade heat harvesting and supercapacitors. Moreover, the overview of the scientific articles on the theme resulted in the comparatively brief examination of the benefits closely linked with the use of ionic fluids and corresponding hybrids, such as improved ionic conductivity, thermal and electrochemical stabilities, and tunability, in comparison with the traditional solvents, electrolytes, and electrodes. Finally, this work analyzes the fundamental limitations of such novel fluids such as their corrosivity potential, elevated dynamic viscosity, and leakage risk, and highlights the essential prospects for the research and exploration of ionic liquids and derivatives in various electrochemical devices and procedures. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Energy Storage Devices)
Show Figures

Figure 1

18 pages, 3728 KiB  
Communication
A Circular, Wireless Surface-Electromyography Array
by Kenneth Deprez, Eliah De Baecke, Mauranne Tijskens, Ruben Schoeters, Maarten Velghe and Arno Thielens
Sensors 2024, 24(4), 1119; https://doi.org/10.3390/s24041119 - 8 Feb 2024
Cited by 4 | Viewed by 2957
Abstract
Commercial, high-tech upper limb prostheses offer a lot of functionality and are equipped with high-grade control mechanisms. However, they are relatively expensive and are not accessible to the majority of amputees. Therefore, more affordable, accessible, open-source, and 3D-printable alternatives are being developed. A [...] Read more.
Commercial, high-tech upper limb prostheses offer a lot of functionality and are equipped with high-grade control mechanisms. However, they are relatively expensive and are not accessible to the majority of amputees. Therefore, more affordable, accessible, open-source, and 3D-printable alternatives are being developed. A commonly proposed approach to control these prostheses is to use bio-potentials generated by skeletal muscles, which can be measured using surface electromyography (sEMG). However, this control mechanism either lacks accuracy when a single sEMG sensor is used or involves the use of wires to connect to an array of multiple nodes, which hinders patients’ movements. In order to mitigate these issues, we have developed a circular, wireless s-EMG array that is able to collect sEMG potentials on an array of electrodes that can be spread (not) uniformly around the circumference of a patient’s arm. The modular sEMG system is combined with a Bluetooth Low Energy System on Chip, motion sensors, and a battery. We have benchmarked this system with a commercial, wired, state-of-the-art alternative and found an r = 0.98 (p < 0.01) Spearman correlation between the root-mean-squared (RMS) amplitude of sEMG measurements measured by both devices for the same set of 20 reference gestures, demonstrating that the system is accurate in measuring sEMG. Additionally, we have demonstrated that the RMS amplitudes of sEMG measurements between the different nodes within the array are uncorrelated, indicating that they contain independent information that can be used for higher accuracy in gesture recognition. We show this by training a random forest classifier that can distinguish between 6 gestures with an accuracy of 97%. This work is important for a large and growing group of amputees whose quality of life could be improved using this technology. Full article
Show Figures

Figure 1

10 pages, 2920 KiB  
Proceeding Paper
Prediction of Machining Characteristics and Machining Performance for Grade 2 Titanium Material in a Wire Electric Discharge Machine Using Group Method of Data Handling and Artificial Neural Network
by Sudhir Jain Prathik, Athimoolam Sundaramahalingam, Maddur Eswara Nithyashree, Addamani Rudreshi and Gonchikar Ugrasen
Eng. Proc. 2023, 59(1), 9085; https://doi.org/10.3390/engproc2023059085 - 19 Dec 2023
Cited by 1 | Viewed by 955
Abstract
The present research focuses on the machining of grade 2 titanium material using the Wire Electric Discharge Machining (WEDM) process by means of L16 Orthogonal Array (OA). This study investigates numerous process parameters, including pulse on time, current, pulse off time, voltage, [...] Read more.
The present research focuses on the machining of grade 2 titanium material using the Wire Electric Discharge Machining (WEDM) process by means of L16 Orthogonal Array (OA). This study investigates numerous process parameters, including pulse on time, current, pulse off time, voltage, bed speed and flush rate. The voltage and flush rate were kept constant throughout the experiment, while the other four parameters were varied for the machining process. In this study, a 0.18 mm molybdenum wire was utilized as the electrode material. Initially, this research aimed to optimize the process parameters to discern their impact on machining characteristics (Surface Roughness and Electrode Wear) as well as on machining performance (Acoustic Emission Signals). Subsequently, simpler functional relationship plots were generated between these parameters to recognize the potential information about the machining characteristics and machining performance. The straightforward approach lacks the capability to furnish information regarding the condition of the material (Surface Roughness), the tool (Electrode Wear) and the signals (Acoustic Emission). Hence, to estimate the experimental values the numerical tools viz., Group Method of Data Handling (GMDH) and Artificial Neural Network (ANN) were used. Upon comparing the predictive performance of ANN and GMDH, it became evident that the ANN’s predictions using 70% of the data for training displayed a higher correlation with the experimental values compared to the GMDH. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

12 pages, 9036 KiB  
Article
The Effect of Nanostructured Functional Ceramics Additives on the Properties of Welding Electrodes
by Saidov Mannapovich Rustam, Rakhimov Khakimovich Rustam and Kamel Touileb
Metals 2023, 13(11), 1849; https://doi.org/10.3390/met13111849 - 4 Nov 2023
Cited by 4 | Viewed by 1649
Abstract
The present work aimed to develop a new coated electrode weld based on ceramic materials. Photocatalysts of nanostructured functional ceramics (PNFCs) were synthesized by means of concentrated solar radiation on ceramic materials. This new process allows the efficient conversion of the energy of [...] Read more.
The present work aimed to develop a new coated electrode weld based on ceramic materials. Photocatalysts of nanostructured functional ceramics (PNFCs) were synthesized by means of concentrated solar radiation on ceramic materials. This new process allows the efficient conversion of the energy of the primary source into pulsed radiation, through the adjustable and judicious choice of parameters. The photocatalysts also showed high activity when they were introduced into an electrode coating. The main problem is the complexity of the production of NFC photocatalysts on an industrial scale. A new method was developed for producing ZB-1-grade NFC catalysts using conventional technology, with subsequent activation via pulsed radiation generated by functional ceramics. The results of the addition of NFC photocatalysts obtained using this technology on the welding and technological properties of welding electrodes of the MR-3 brand are presented. The introduction of 1% to 8% NFC of the ZB-1 grade into the coating enhanced the stability of arc burning (Lbla) and increased the diameter of the weld point (ødp.). Moreover, the addition of 1% to 8% NFC of the ZB-1 brand into the coating contributed to a reduction in the losses factor for waste and splashing of electrode metal (ψ) leading to a reduction in the height of the visor at the end of the electrode (hk). Full article
(This article belongs to the Special Issue Advanced Studies in Metal Joining)
Show Figures

Figure 1

13 pages, 2647 KiB  
Article
Functionalized GD2 Electrochemical Immunosensor to Diagnose Minimum Residual Disease of Bone Marrow in Neuroblastoma Effectively
by Chong Chen, Chang Hu, Baixun He, Yongchang Bai, Feng He, Shuang Li and Cherie S. Tan
Biosensors 2023, 13(10), 920; https://doi.org/10.3390/bios13100920 - 10 Oct 2023
Cited by 2 | Viewed by 2270
Abstract
Neuroblastoma (NB) is known as the “king of childhood tumors” due to its highly metastatic, recurrence-prone, and difficult-to-treat characteristics. International Neuroblastoma Risk Grading Group (INRG) has recommended GD2, a disialoganglioside expressed on neuroectodermal tumor cells, as the target for detecting minimal residual disease [...] Read more.
Neuroblastoma (NB) is known as the “king of childhood tumors” due to its highly metastatic, recurrence-prone, and difficult-to-treat characteristics. International Neuroblastoma Risk Grading Group (INRG) has recommended GD2, a disialoganglioside expressed on neuroectodermal tumor cells, as the target for detecting minimal residual disease in bone marrow metastases of high-risk neuroblastoma in children. Therefore, accurately identifying GD2-positive cells is crucial for diagnosing children with high-risk NB. Here, we designed a graphene/AuNP/GD2 Ab-functionalized electrochemical biosensor for GD2 detection. A three-electrode system was processed using a screen-printed technique with a working electrode of indium tin oxide, a counter electrode of carbon, and a reference electrode of silver/silver chloride. Graphene/AuNPs were modified on the indium tin oxide electrode using chronoamperometric scans, and then, the GD2 antibody was modified on the biosensor by electrostatic adsorption to achieve sensitive and specific detection of GD2-positive cells in bone marrow fluid. The results showed that a graphene/AuNP/GD2 Ab-functionalized electrochemical biosensor achieved GD2-positive cell detection in the range of 102 cells/mL~105 cells/mL by differential pulse voltammetry. Bone marrow fluid samples from 12 children with high-risk NB were retained for testing on our biosensor and showed 100% compliance with the clinical application of the gold-standard immunocytochemical staining technique for detecting GD2-positive cells qualitatively. The GD2-based electrochemical assay can accurately detect children with high-risk NB, providing a rapidly quantitative basis for clinical diagnosis and treatment. Full article
Show Figures

Figure 1

11 pages, 280 KiB  
Article
Association of Dental Fluorosis and Urinary Fluoride with Intelligence among Schoolchildren
by Yuh-Yih Lin, Wen-Yu Hsu, Chin-En Yen and Suh-Woan Hu
Children 2023, 10(6), 987; https://doi.org/10.3390/children10060987 - 31 May 2023
Cited by 9 | Viewed by 2795
Abstract
Fluoride is present naturally in water and has been used worldwide for the prevention of caries. Several studies conducted in high water fluoride or endemic fluorosis areas reported that fluoride adversely affected children’s cognitive function, but some studies had negative findings. This study [...] Read more.
Fluoride is present naturally in water and has been used worldwide for the prevention of caries. Several studies conducted in high water fluoride or endemic fluorosis areas reported that fluoride adversely affected children’s cognitive function, but some studies had negative findings. This study aimed to assess the relationship between urinary fluoride, dental fluorosis, and intelligence among schoolchildren living in communities with non-fluoridated drinking water. This cross-sectional study was conducted on 562 children aged 6–12 years in Taichung, Taiwan. Each child’s urinary fluoride level was determined by a fluoride-ion-selective electrode, and the dental fluorosis condition was evaluated according to the criteria of Dean’s Index. The Raven’s Colored Progressive Matrices-Parallel and Standard Progressive Matrices-Parallel were used to assess children’s intelligence. The results showed that the mean (±standard deviation) urinary fluoride concentrations were 0.40 ± 0.27 mg/L (0.43 ± 0.23 mg/g creatinine) among participants. The prevalence of dental fluorosis was 23.67%. After extensive evaluation of potential confounders, dental fluorosis and urinary fluoride were not associated with intelligence quotient (IQ) scores or grades in the regression models. In conclusion, dental fluorosis and urinary fluoride levels were not significantly related to the IQ of schoolchildren living in areas with low drinking water fluoride. Full article
(This article belongs to the Section Global Pediatric Health)
16 pages, 4024 KiB  
Article
Asymmetric Alternative Current Electrochemical Method Coupled with Amidoxime-Functionalized Carbon Felt Electrode for Fast and Efficient Removal of Hexavalent Chromium from Wastewater
by Yunze Yang, Lun Lu, Yi Shen, Jun Wang, Liangzhong Li, Ruixue Ma, Zahid Ullah, Mingdeng Xiang and Yunjiang Yu
Nanomaterials 2023, 13(5), 952; https://doi.org/10.3390/nano13050952 - 6 Mar 2023
Cited by 7 | Viewed by 2877
Abstract
A large amount of Cr (VI)-polluted wastewater produced in electroplating, dyeing and tanning industries seriously threatens water ecological security and human health. Due to the lack of high-performance electrodes and the coulomb repulsion between hexavalent chromium anion and cathode, the traditional DC-mediated electrochemical [...] Read more.
A large amount of Cr (VI)-polluted wastewater produced in electroplating, dyeing and tanning industries seriously threatens water ecological security and human health. Due to the lack of high-performance electrodes and the coulomb repulsion between hexavalent chromium anion and cathode, the traditional DC-mediated electrochemical remediation technology possesses low Cr (VI) removal efficiency. Herein, by modifying commercial carbon felt (O-CF) with amidoxime groups, amidoxime-functionalized carbon felt electrodes (Ami-CF) with high adsorption affinity for Cr (VI) were prepared. Based on Ami-CF, an electrochemical flow-through system powered by asymmetric AC was constructed. The mechanism and influencing factors of efficient removal of Cr (VI) contaminated wastewater by an asymmetric AC electrochemical method coupling Ami-CF were studied. Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) characterization results showed that Ami-CF was successfully and uniformly loaded with amidoxime functional groups, and the adsorption capacity of Cr (VI) was more than 100 times higher than that of O-CF. In particular, the Coulomb repulsion effect and the side reaction of electrolytic water splitting were inhibited by the high-frequency anode and cathode switching (asymmetric AC), the mass transfer rate of Cr (VI) from electrode solution was increased, the reduction efficiency of Cr (VI) to Cr (III) was significantly promoted and a highly efficient removal of Cr (VI) was achieved. Under optimal operating conditions (positive bias 1 V, negative bias 2.5 V, duty ratio 20%, frequency 400 Hz, solution pH = 2), the asymmetric AC electrochemistry based on Ami-CF can achieve fast (30 s) and efficient removal (>99.11%) for 0.5–100 mg·L−1 Cr (VI) with a high flux of 300 L h−1 m−2. At the same time, the durability test verified the sustainability of the AC electrochemical method. For Cr (VI)-polluted wastewater with an initial concentration of 50 mg·L−1, the effluent concentration could still reach drinking water grade (<0.05 mg·L−1) after 10 cycling experiments. This study provides an innovative approach for the rapid, green and efficient removal of Cr (VI) containing wastewater at low and medium concentrations. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

12 pages, 1370 KiB  
Systematic Review
Efficacy and Safety of Endoscopic Ultrasound-Guided Radiofrequency Ablation for Pancreatic Neuroendocrine Tumors: A Systematic Review and Metanalysis
by Elia Armellini, Antonio Facciorusso and Stefano Francesco Crinò
Medicina 2023, 59(2), 359; https://doi.org/10.3390/medicina59020359 - 14 Feb 2023
Cited by 38 | Viewed by 5452
Abstract
Introduction: The development of dedicated endoscopes and the technical evolution of endoscopic ultrasound (EUS) have allowed a direct approach to pancreatic neoplastic lesions both for diagnosis and treatment. Among the more promising targets are pancreatic neuroendocrine tumors (Pan-NETs). Aim: to describe [...] Read more.
Introduction: The development of dedicated endoscopes and the technical evolution of endoscopic ultrasound (EUS) have allowed a direct approach to pancreatic neoplastic lesions both for diagnosis and treatment. Among the more promising targets are pancreatic neuroendocrine tumors (Pan-NETs). Aim: to describe the evolution of endoscopic ultrasound-guided radiofrequency ablation (EUS-RFA) with particular attention to the treatment of PanNETs, focusing on safety and clinical efficacy of the technique. Methods: MEDLINE, Scopus, and Cochrane Library databases were searched for studies reporting about EUS-RFA for the treatment of PanNETs. Studies with outcomes of interest were selected and results were reported to describe clinical success, complications, fol-low-ups, and electrodes used. Clinical success was defined as the disappearance of clinical symp-toms for functional (F-) PanNETs and as complete ablation per nonfunctional (NF)-PanNETs. The pooled data were analyzed by a random-effects model. Results: Nineteen studies were selected, including 183 patients (82 males, 44.8%) with 196 lesions (101 F-PanNETs and 95 NF-PanNETs). Pooled estimates for the overall AE rates for the clinical efficacy were 17.8% (95% CI 9.1–26.4%) and 95.1% (95% CI 91.2–98.9%) for F-PanNETs and 24.6% (95% CI 7.4–41.8%) and 93.4% (95% CI 88.4–98.4%) for NF-PanNETs. Conclusions: EUS-RFA appears to be a mini-invasive technique with a good safety and efficacy profile for the treatment of F- and NF-PanNETs. EUS-RFA could be of-fered as possible alternative to surgery for the treatment of low-grade NF- or F-PanNETs, especially for those patients that are not eligible or are at high-risk for surgery. Full article
(This article belongs to the Special Issue Digestive Endoscopy: Inside the Evidence and Outside)
Show Figures

Figure 1

13 pages, 10695 KiB  
Article
Analysis of Droplet Transfer and Arc Swing in “TIG + AC” Twin-Wire Cross Arc Additive Manufacturing
by Xueping Song, Zhuoxuan Li, Jiankang Huang, Ding Fan and Shurong Yu
Metals 2023, 13(1), 63; https://doi.org/10.3390/met13010063 - 26 Dec 2022
Cited by 10 | Viewed by 2877
Abstract
Twin-wire and arc additive manufacturing (T-WAAM) has potential advantages in improving deposition efficiency and manufacturing functionally graded materials (FGMs), thus attracting much attention. However, there are few studies on the droplet transfer mode of T-WAAM. This paper analyzes the droplet transfer mode and [...] Read more.
Twin-wire and arc additive manufacturing (T-WAAM) has potential advantages in improving deposition efficiency and manufacturing functionally graded materials (FGMs), thus attracting much attention. However, there are few studies on the droplet transfer mode of T-WAAM. This paper analyzes the droplet transfer mode and arc swing in the “TIG + AC” twin-wire cross-arc additive manufacturing by in-situ observation with high-speed photography, revealing what factors influence the T-WAAM on deposition shaping the quality and what are the key mechanisms for process stability. Experiments show that with the main arc current provided by TIG 100 A and the twin-wire AC arc current 10 A, three different droplet transfer modes, namely the “free transfer + free transfer, bridge transfer + free transfer, bridge transfer + bridge transfer,” can be observed with the twin wires under different feeding speeds. The corresponding deposition and arc swing are quite different in quality. Through comparative analysis, it is found that the frequent extinguishment and ignition of the arc between electrode wires is the main factor for the instability in the additive manufacturing process. The “bridge transfer + free transfer” mode can obtain a large arc swing angle and a stable deposition, in which the cross arc has a significant stirring effect on the molten pool, and the deposition shape is well-made. Full article
Show Figures

Figure 1

12 pages, 3437 KiB  
Article
Selective Neural Electrical Stimulation of an Injured Facial Nerve Using Chronically Implanted Dual Cuff Electrodes
by Arash Abiri, Steven Chau, Nathan R. James, Khodayar Goshtasbi, Jack L. Birkenbeuel, Ronald Sahyouni, Robert Edwards, Hamid R. Djalilian and Harrison W. Lin
Brain Sci. 2022, 12(11), 1457; https://doi.org/10.3390/brainsci12111457 - 27 Oct 2022
Cited by 2 | Viewed by 2722
Abstract
Facial nerve (FN) injury can lead to debilitating and permanent facial paresis/paralysis (FP), where facial muscles progressively lose tone, atrophy, and ultimately reduce to scar tissue. Despite considerable efforts in the recent decades, therapies for FP still possess high failure rates and provide [...] Read more.
Facial nerve (FN) injury can lead to debilitating and permanent facial paresis/paralysis (FP), where facial muscles progressively lose tone, atrophy, and ultimately reduce to scar tissue. Despite considerable efforts in the recent decades, therapies for FP still possess high failure rates and provide inadequate recovery of muscle function. In this pilot study, we used a feline model to demonstrate the potential for chronically implanted multichannel dual-cuff electrodes (MCE) to selectively stimulate injured facial nerves at low current intensities to avoid stimulus-induced neural injury. Selective facial muscle activation was achieved over six months after FN injury and MCE implantation in two domestic shorthaired cats (Felis catus). Through utilization of bipolar stimulation, specific muscles were activated at significantly lower electrical currents than was achievable with single channel stimulation. Moreover, interval increases in subthreshold current intensities using bipolar stimulation enabled a graded EMG voltage response while maintaining muscle selectivity. Histological examination of neural tissue at implant sites showed no appreciable signs of stimulation-induced nerve injury. Thus, by selectively activating facial musculature six months following initial FN injury and MCE implantation, we demonstrated the potential for our neural stimulator system to be safely and effectively applied to the chronic setting, with implications for FP treatment. Full article
(This article belongs to the Section Neurorehabilitation)
Show Figures

Figure 1

19 pages, 5456 KiB  
Article
Medical-Grade Silicone Rubber–Hydrogel-Composites for Modiolar Hugging Cochlear Implants
by Suheda Yilmaz-Bayraktar, Katharina Foremny, Michaela Kreienmeyer, Athanasia Warnecke and Theodor Doll
Polymers 2022, 14(9), 1766; https://doi.org/10.3390/polym14091766 - 26 Apr 2022
Cited by 4 | Viewed by 3931
Abstract
The gold standard for the partial restoration of sensorineural hearing loss is cochlear implant surgery, which restores patients’ speech comprehension. The remaining limitations, e.g., music perception, are partly due to a gap between cochlear implant electrodes and the auditory nerve cells in the [...] Read more.
The gold standard for the partial restoration of sensorineural hearing loss is cochlear implant surgery, which restores patients’ speech comprehension. The remaining limitations, e.g., music perception, are partly due to a gap between cochlear implant electrodes and the auditory nerve cells in the modiolus of the inner ear. Reducing this gap will most likely lead to improved cochlear implant performance. To achieve this, a bending or curling mechanism in the electrode array is discussed. We propose a silicone rubber–hydrogel actuator where the hydrogel forms a percolating network in the dorsal silicone rubber compartment of the electrode array to exert bending forces at low volume swelling ratios. A material study of suitable polymers (medical-grade PDMS and hydrogels), including parametrized bending curvature measurements, is presented. The curvature radii measured meet the anatomical needs for positioning electrodes very closely to the modiolus. Besides stage-one biocompatibility according to ISO 10993-5, we also developed and validated a simplified mathematical model for designing hydrogel-actuated CI with modiolar hugging functionality. Full article
(This article belongs to the Special Issue Advanced Polymers for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop