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Abstract: Neuroblastoma (NB) is known as the “king of childhood tumors” due to its highly
metastatic, recurrence-prone, and difficult-to-treat characteristics. International Neuroblastoma
Risk Grading Group (INRG) has recommended GD2, a disialoganglioside expressed on neuroecto-
dermal tumor cells, as the target for detecting minimal residual disease in bone marrow metastases
of high-risk neuroblastoma in children. Therefore, accurately identifying GD2-positive cells is
crucial for diagnosing children with high-risk NB. Here, we designed a graphene/AuNP/GD2 Ab-
functionalized electrochemical biosensor for GD2 detection. A three-electrode system was processed
using a screen-printed technique with a working electrode of indium tin oxide, a counter electrode
of carbon, and a reference electrode of silver/silver chloride. Graphene/AuNPs were modified
on the indium tin oxide electrode using chronoamperometric scans, and then, the GD2 antibody
was modified on the biosensor by electrostatic adsorption to achieve sensitive and specific detec-
tion of GD2-positive cells in bone marrow fluid. The results showed that a graphene/AuNP/GD2
Ab-functionalized electrochemical biosensor achieved GD2-positive cell detection in the range of
102 cells/mL~105 cells/mL by differential pulse voltammetry. Bone marrow fluid samples from
12 children with high-risk NB were retained for testing on our biosensor and showed 100% com-
pliance with the clinical application of the gold-standard immunocytochemical staining technique
for detecting GD2-positive cells qualitatively. The GD2-based electrochemical assay can accurately
detect children with high-risk NB, providing a rapidly quantitative basis for clinical diagnosis
and treatment.

Keywords: neuroblastoma; bone marrow; GD2; electrochemical sensor; graphene/AuNPs

1. Introduction

Neuroblastoma (NB) originates from the sympathetic ganglion or bilateral adrenal
glands and is the most common extracranial solid tumor in childhood, having high metas-
tasis, recurring easily, and being of the refractory type. Such clinical characteristics are
inevitably determined by their unique molecular biology [1–4]. Neuroblastoma has sig-
nificant clinical and biological heterogeneity, with some children having spontaneous
regression without treatment and others having poor prognosis and extensive metastasis
despite effective multimodal therapy [5]. The long-term survival rate of children with NB in
the high-risk group is less than 50% despite aggressive multimodal therapy (radiotherapy,
surgery, autologous stem cell transplantation, GD2 (disialoganglioside, GD2) monoclonal
antibody, or maintenance therapy with retinoic acid) [4,6–11]. Studies have shown that
children with NB in the high-risk group are most likely to develop bone marrow metastasis,
and children with NB in the high-risk group are highly susceptible to recurrence because
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of minimal residual disease (MRD) in the bone marrow [12–19]. Bone marrow-associated
neuroblastoma detection is crucial in diagnosing metastasis and recurrence in children
with high-risk NB [2,3,8,13,20–25]. However, there is a lack of consensus on the standard
determination of NB bone marrow recurrence and metastasis globally [14–16,26], and the
existing diagnostic techniques cannot solve the critical clinical challenges in children with
high-risk NB.

GD2 is widely expressed on the surface of neural tumor cells, in the microenvironment
of tumor cells, and in the peripheral blood circulation of patients [27–30]. These GD2
molecules are involved in various cellular biological processes, such as acting as cell
surface receptors, participating in intercellular signaling, and regulating cell cycle and
cellular activity. It has been shown that neuroblastoma cells express higher levels of GD2
molecules on the cell surface than normal neural tissues [30,31]. GD2 may be a biomarker
for differential diagnosis of NB cell surfaces versus other tumors, and it is also by far
the most influential star target for high-risk NB [31]. It has been found that peripheral
circulating GD2 expression is closely associated with disease progression in high-risk NB,
as well as with its malignancy, the main reason for which may be related to the involvement
of GD2 in neuroblastoma metastasis [30]. Recently, it has been applied to the clinical
treatment of NB, and accurate detection of GD2 expression in NB is of great clinical value
for clinical aid in diagnosing and monitoring recurrence [31].

Compared with normal neural tissues, neuroblastoma cells express high levels of
disialoganglioside GD2. Even though melanoma, primitive neuroectodermal tumors, and
osteosarcoma cells also express high levels of GD2 molecules on their surfaces, GD2 is
still applied as the clinical therapeutic target for high-risk neuroblastoma [11,27–31]. NB
bone marrow metastases are closely associated with disialoganglioside GD2, and the
malignancy of NB bone marrow metastases (number of neuroblastomas, cell malignancy,
and regression) can be monitored by GD2 activity. In 2009, the International Neuroblastoma
Risk Grading Group (INRG) established a standard clinical method to detect microscopic
lesions in children with NB, including immunocytochemical staining for GD2 antigen on
the cell surface and real-time fluorescence quantitative PCR for tyrosine hydroxylase, a
critical enzyme in GD2 synthesis [11,18,19,32]. There is a consensus on using GD2 as a
precise diagnostic technique for monitoring bone marrow metastasis and MRD recurrence
in children with high-risk NB. However, the existing diagnostic technical tools are based
only on morphological classification techniques of bone marrow smears, and the sensitivity
of morphological classification techniques is limited and unreliable. Moreover, the number
of infiltrating tumor cells cannot be accurately quantified, and tumor cell counts below
0.1% are barely detectable by conventional cytomorphology [1,12,30,33,34]. Several studies
have confirmed the sensitivity of immunocytochemical staining methods based on GD2
targeting in the detection of microscopic lesions in children with NB up to 0.001%, which
could effectively complement the existing bone marrow smear morphological assays and
provide laboratory evidence for the targeted use of GD2 drugs in children with high-
risk NB [12,27,29,34–36].

Along with the rapid development of nanomaterials technology, there has been an
improvement in tumor diagnostic-related techniques [37]. Among various organic and
inorganic nanoparticles, gold nanoparticles (AuNPs) have unique physical, chemical, and
biological properties that have been applied in tumor diagnostics [38]. Researchers typ-
ically combine adapters and AuNPs to detect tumor-specific biomarkers, and applying
AuNPs to amplify electrochemical or optical signals can make the immunosensor more
sensitive [39–41]. AuNPs have uniquely demonstrated physical and chemical properties
to bind signaling compounds (fluorescent dyes [39], antibodies [42], aptamers [43], re-
dox markers [44], or other chemical modifications with straightforward methods [45–47]).
AuNPs also have a large bulk surface area for coupling biologically recognized frag-
ments (e.g., nucleic acid aptamers, proteins, antibody fragments, or peptides), further
enhancing target-specific therapeutic diversity and offering the possibility of new tech-
niques for more tumor diagnostics [41,44,48]. Graphene is a two-dimensional nanomate-
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rial with a high specific surface area, high electrical conductivity, a fast electron transfer
process, good mechanical strength, and strong adhesion to metal/metal oxide nanopar-
ticles [42,49]. Graphene-based nanocomposite materials find widespread applications
in electrochemical sensing detection, owing to the ability to promote charge transfer on
electrode surfaces [41,50–52].

The clinically applied GD2 immunocytochemical staining technique is cumbersome to
operate, requires a long time to detect, requires a high level of operator proficiency, is prone
to false-positives, and cannot meet diagnostic needs. Therefore, we developed a particular
graphene/AuNP/GD2 Ab-functionalized electrochemical biosensor to sensitively and
accurately detect GD2-positive cells in bone marrow fluid and achieve a rapid diagnosis of
minimum residual disease.

2. Materials and Methods
2.1. Chemicals and Materials

Indium tin oxide (ITO) is a film on a glass plate that was used as a working electrode,
synthesized by the mechanical force chemistry method [53]. Chemicals for the electrochemical
reduction of AuNPs included sodium tetrachlorate (III) dihydrate (NaAuCl4·2H2O) and
sodium sulfate (Na2SO4). Graphene dispersion was obtained from XFNANO (Nanjing, China).
Chloroauric acid was obtained from Sigma-Aldrich (WI, USA). GD2 Ab (clone: 14.G2a) was
obtained from Santa Cruz Biological Corporation (TX, USA). Phosphate-buffered saline
(PBS, 0.01 M, pH = 7.4) and fetal bovine serum were obtained from Standard Information
Network (Shanghai, China). The reference electrode was silver/silver chloride (Ag/AgCl),
and the counter electrode was carbon.

2.2. Electrochemical Three-Electrode Fabrication

Firstly, the base of the electrode sheet with a length of 20 mm and width of 8.5 mm was
made on ITO substrate; a circle with a diameter of 4 mm was left as the working electrode
at the middle position of 12 mm from the bottom, and the rest was covered with a water
barrier layer to prevent the working electrode solution from flowing out. Secondly, the
working and reference electrodes were screen-printed using a screen-printing process with
a 1 mm Ag/AgCl coating thickness and carbon-coated electrode surfaces. To co-center
with the working electrode, an inner diameter of 5.8 mm and an outer diameter of 7.4 mm
were applied to stabilize the three-electrode working system. The working electrode was
indium tin oxide (ITO), synthesized by the mechanical force chemistry method. Chemicals
for the electrochemical reduction of AuNPs included sodium tetrachlorate (III) dihydrate
(NaAuCl4·2H2O) and sodium sulfate (Na2SO4). GD2 Ab was obtained from Santa Cruz
Biolo2.2 Electrochemical three-electrode fabrication.

2.3. Graphene/AuNP Modification

A total of 1 mg/mL of graphene dispersion was mixed with 1% chloroauric acid in
equal volume; 100 µL was added dropwise onto the fabricated ITO electrode; and the
nanographene was modified on the electrode using the chronoamperometry method, in
which the negative potential E = −0.6 V was set, with a deposition time at 40 s.

2.4. Graphene/AuNP/GD2 Ab-Functionalized Electrode Fabrication

GD2 Ab was deposited into the prepared nanographene hybridized gold-modified
electrode through electrostatic adsorption. Then, 100 µL of GD2 antibody at a concentration
of 1 mg/mL was added dropwise onto the previously prepared modified electrode, and
the excess non-adsorbed antibody was rinsed off with pure water after resting for one hour
at 4 ◦C. Finally, the GD2 antibody/nanographene hybridized gold-modified ITO electrode
was made for the assay (Figure 1).
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Figure 1. Schematic diagrams of the electrochemical sensing platform.

Graphene/AuNP/GD2 Ab-functionalized electrodes work as follows. The working
electrode was indium tin oxide (ITO) synthesized by mechanically forceful chemical
methods. Chemicals used to reduce AuNPs electrochemically include sodium tetrachlo-
ride (III) dihydrate (NaAuCl4·2H2O) and sodium sulfate (Na2SO4). Then, GD2 antibody
was applied to bind the working electrode, which generated a characteristic electro-
chemical peak under the DPV measurement. When cells were attached to the working
electrode via antigen–antibody interaction, it altered the resistance and capacitance of
the working electrode, resulting in decreased DPV response.

2.5. Cell Culture

The GD2-positive cells used in this study were IMR32 human NB cells. The cells
were cultured at 37 °C using 90% Dulbecco’s modification of Eagle’s medium (DMEM),
basal medium (Merk Life Science S.r.l., Milan, Italy), and 10% fetal bovine serum (Merk
Life Science S.r.l., Milan, Italy) with 1% penicillin/streptomycin/amphotericin (Merk
Life Science S.r.l., Milan, Italy) in a humidified environment containing 5% CO2. The
medium was changed twice weekly, and cells were passaged when 80% confluence
was reached.

2.6. Detection of the Proportion of GD2-Positive Cells in Bone Marrow Samples of Patients with
High-Risk NB

Firstly, single-nucleated cells from bone marrow fluid were collected using density
gradient centrifugation and then resuspended using 100 µL of DMEM to obtain bone
marrow aspirate single-nucleated cell resuspension solution. A total of 100 µL of DMEM
buffer or 100 µL of bone marrow single-nucleated cell resuspension solution was added to
the functionalized electrode separately to obtain the differential pulse voltammetry (DPV)
on the functionalized electrode, with a set initial voltage of −0.4 V, termination voltage
of 0.4 V, increment of 0.005 V, amplitude of 0.050 V, pulse width of 0.05 s, and period of
0.5 s. Three scans of each electrode per concentration were performed. The difference (∆I)
between the peak current of the two DPV measurements was plotted against the logarithm
of the concentration of GD2-positive cells (IMR32 human NB cells), resulting in a linear
correlation equation. The concentrations of GD2-positive cells in the patient samples were
calculated based on the fitted curve.



Biosensors 2023, 13, 920 5 of 13

2.7. Immunocytochemical Methods for Diagnosis of MRD of Bone Marrow in High-Risk NB

Firstly, freshly prepared sodium citrate anticoagulated bone marrow fluid was diluted
with saline in equal proportion, then carefully added to the liquid surface of a lympho-
cyte separation solution, and then centrifuged with a density gradient (1000 rpm, 5 min)
to separate the white flocculent layer, i.e., the single-nucleated cell layer, and secondly
centrifuged (1000 rpm, 5 min) to obtain the single-nucleated cells and counted to prepare
slides for examination, fix the cells with formalin liquid, incubate with GD2 antibody for
40 min, incubate with SAP for 15 min, develop color with AP-Red at room temperature
for 30 min, re-stain with hematoxylin, seal the slides, and finally count the total number
of GD2-positive cells under the microscope. The reporting pattern was the number of
GD2-positive cells per million cells while determining the presence of MRD in the bone
marrow of children with high-risk NB.

2.8. Flow Cytometry for Diagnosis of MRD of Bone Marrow in High-Risk NB

Firstly, freshly prepared sodium citrate anticoagulated bone marrow fluid was diluted
equivalently with saline and carefully added to the liquid surface of the lymphocyte sepa-
ration solution. The white flocculent layer, the single-nucleated cell layer, was separated by
density gradient centrifugation (1000 rpm, 5 min), and a cell counting plate counted the
cells in this layer. Again, 100 µL of single-nucleated cells (about 1 × 105 cells) was added
with 5 µL each of flow antibody (CD45, CD56, CD81, and GD2 antibodies), incubated for
30 min with protection from light, eluted by adding 1 mL of PBS, and finally resuspended
with 300 µL of cell staining buffer for flow cytometry detection; CD45−, CD56+, CD81+,
and GD2+ cells were NB cells, which were counted by flow cytometry to determine the
presence of MRD in the bone marrow.

3. Results and Discussions
3.1. Graphene/AuNP/GD2 Ab-Functionalized Electrode Characterization

The electrochemical properties of the nanographene hybrid gold-modified electrode
were characterized using cyclic voltammetry, at 50 mV/s. The bare electrode showed an
oxidation peak at 0.338 V with a value of 48.5 µA. The peak current was 97.9 µA at voltage
0.216 V when deposited at t = 30 s. The peak current was 126.3 µA at voltage 0.216 V when
deposited at t = 40 s. When deposited at t = 50 s, the peak current at voltage 0.214 V was
99.0 µA. The deposition time was chosen to be 40 s (Figure 2A).

The dispersion and distribution of the nanocomposite on the electrode were char-
acterized by SEM, as shown in Figure 2C. As the functionalization of the self-assembly
proceeded, more active edges and surfaces were created. In addition to morphologically
observing the self-assembly process of the electrode, an EDS analysis was used to illus-
trate the distribution of elements on the electrode. Figure 2D shows the EDS spectra
of the graphene/AuNP/GD2 Ab-functionalized electrode, where both C and Au ele-
ments are uniformly distributed on the electrode surface. These results elucidated the
relevant properties of electrodes modified with nanocomposites regarding electrochem-
ical analysis and micromorphological distribution and provided technical support for
subsequent biosensing.
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Figure 2. Surface modifications on the graphene/gold nanoparticles (AuNP) functionalized electrode.
(A) Electrochemical deposition of nanocomposites on the electrode surface; (B,C) Scanning electron micro-
scope (SEM) spectra of the bare indium tin oxide (ITO) and nanocomposite−modified electrodes, respec-
tively; (D) Energy dispersive spectroscopy (EDS) spectrum of the nanocomposite−modified electrodes.

3.2. GD2-Positive Cell Biosensing

Differential pulse voltammetry (DPV) was applied to evaluate the performance of the
biosensor on GD2-expressing positive cells, IMR32. The DPV measurements are initial
voltage −0.4 V, termination voltage 0.4 V, increment 0.005 V, amplitude 0.05 V, pulse
width 0.05 s, period 0.5 s, and sampling frequency 4 Hz. The graphene/AuNP-GD2 Ab-
functionalized electrode generated a characteristic electrochemical peak under the DPV
measurement at 0.05 V. When GD2-expressing positive cells were attached to the working
electrode via antigen–antibody interaction, they altered the resistance and capacitance of
the working electrode, resulting in decreased DPV response. As shown in Figure 3A, the
DPV peak currents decreased gradually as GD2-positive cell concentrations increased from
102 cells/mL to 105 cells/mL. The peak current differences ∆I, ∆I = IDMEM − IGD2+, were
plotted against the logarithm of the concentration of GD2-positive cells. The fitting equation
is ∆I = 9.753 × lg[GD2] − 14.01 with an R-squared correlation factor of 0.9532, and the
limit of detection (LOD) was 102 cells/mL. Compared with immunocytochemical staining
techniques that require secondary antibodies, these gold-modified electrodes achieved
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sensitive detection of GD2-positive cells, reducing the underlying impedance with high
detection accuracy and a more comprehensive detection range.
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GD2−-positive cell detection from 102 to 5 × 105 cells/mL in dulbecco’s modified eagle’s medium
(DMEM). (B) Linearly dependent curve between the concentration and the current difference
(∆I = IDMEM − IGD2+).

3.3. Bone Marrow Sample Detection in Children with NB

A total of nine children, six boys and three girls, were included in this study. All
enrolled children had been pathologically diagnosed with NB with poor differentiation
and high risk. The bone marrow samples used in the study were obtained at Tianjin
Medical University Cancer Institute & Hospital, a residual sample used clinically to
diagnose small residual lesions in the bone marrow. All enrolled patients underwent
PET-CT screening, and the PET-CT results of the positive patients showed an uneven
increase in systemic bone marrow metabolism but did not exclude bone marrow metas-
tasis (Figure 4A). In addition, bone marrow nucleated cells were stained using the GD2
immunocytochemical staining technique, and NB metastatic cancer cells were explic-
itly stained red (Figure 4B), showing that all patients had GD2-positive cells in their
specimens. Furthermore, bone marrow specimens from GD2-positive patients were
also counted using flow cytometry (Figure 4C). The presence of GD2-positive cells in
the bone marrow was also analyzed using functional electrodes, and the concentration
of GD2-positive cells was calculated using a linear regression analysis model. Here,
∆I = IDMEM − Isample, where IDMEM is the peak current of DPV in artificial DMEM only
and Isample is the peak current of DPV in the bone marrow of children with NB. The peak
current of DPV in bone marrow fluid from the enrolled nine GD2-positive patients and
∆I was introduced into the linear regression analysis model (∆I = 9.753 × LogC − 14.01)
to calculate GD2-positive cell concentration. The results showed that the ability of
functional electrodes to determine the presence of GD2-positive cells in bone marrow
was consistent with the GD2 immunocytochemical staining technique (Figure 4D); the
linear regression analysis model to calculate the GD2-positive cell concentration was
positively correlated with the number of GD2-positive cells by flow assay (p < 0.001),
and the correlation coefficient was 0.932 (Figure 4E).
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Figure 4. Bone marrow sample detection in children with neuroblastoma (NB). (A) Positron emission
tomography-computedtomography (PET-CT) images suggest bone marrow metastasis; (B) immuno-
cytochemical staining results of bone-marrow minimal residual disease (MRD); (C) flow-fluorescence
detection suggests GD2-positive bone marrow MRD; (D) comparison of GD2-positive cell concen-
trations in children with different GD2-expressing NB cells detected by graphene/AuNP/GD2
Ab-functionalized electrode (*** p < 0.01); (E) correlation of functional electrode detection of GD2-
positive cell concentration with the results of a flow-fluorescence technique, with the slope of 0.5227.
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4. Discussion

Traditional screening techniques for neuroblastoma include peripheral blood tumor
markers, ultrasound of the abdomen, PET-CT, and ECT, which are noninvasive and can be
used multiple times. However, they cannot diagnose small residual lesions and monitor
bone marrow recurrence in children with high-risk neuroblastoma. PET-CT is an essential
method for the diagnosis of neuroblastoma in children, whether bone marrow MRD or not,
and it is also a diagnostic technique recognized by pediatric specialists as a noninvasive
method for clinical application of screening for bone marrow metastasis. However, it is
expensive and has the disadvantages of false-positive and false-negative results. Bone
marrow aspiration and biopsy are the gold standard for diagnosing bone marrow metas-
tasis and neuroblastoma recurrence and are also the recommended clinical diagnostic
basis [54–56]. In this paper, an immunosensor was designed for GD2, which is an important
detection target of neuroblastoma, and the corresponding GD2 antibody was modified on
the sensor surface according to the specific binding of antigen and antibody in order to
improve the detection of GD2 molecules on the surface of neuroblastoma.

Research has shown that immunosensors can be applied to detecting MRD in lung
cancer [57]. This study found that the sensitivity of the clinically applied immunocytochem-
ical staining technique for the diagnosis of bone marrow MRD was 0.001%. In contrast,
this immunosensor’s detection limit was 0.0002%, which improves the ability to detect tiny
residual lesions and more accurately determine the presence or absence of bone marrow
metastasis or recurrence. Meanwhile, the whole diagnostic process of immunocytochemical
staining takes at least four hours, while our immunosensor can be completed in only two
hours. Precision diagnosis of GD2 is crucial for neuroblastoma patients’ pre-treatment
evaluation, formulation of treatment plans, recurrence detection, and prognosis assessment.
This immunosensor significantly shortens the waiting time for the clinic and provides labo-
ratory evidence for the clinic to make the correct decision promptly. This immunosensor
significantly reduces clinical waiting time and provides laboratory evidence for making
timely and correct clinical decisions.

Meanwhile, we plotted the correlation coefficient equation using the change in current
and the number of GD2-positive cells, and the correlation coefficient was as high as 0.9532,
which was helpful in clinically determining the presence or absence of GD2-positive
cells in the bone marrow. In the clinic, because bone marrow aspiration is invasive and
unrepeatable, obtaining trace amounts of bone marrow fluid and resuspending all the cells
after centrifugation of each patient’s sample is subjected to a single flow-fluorescence assay
for consistency; we measured the sample only once with the electrochemical biosensor.
Similarly, in the clinic, physicians pay special attention to whether the cells are GD2-positive
or -negative without knowing the exact amount because the mere presence of GD2-positive
cells implies that the bone marrow has had metastases or relapses. The reason for the
change in DPV in the bone marrow aspiration fluid from positive patients may be the
production of antigen-antibody immune complexes leading to the functioning of the mass
transfer and electron transfer blocking layer, which blocks the electron transfer channels
and prevents the transfer of electrons to the metal surface [58,59].

Precisely detecting high-risk neuroblastoma bone marrow MRD is now a complex
problem in clinical treatment [60]. Unfortunately, there are many limitations in obtaining
bone marrow samples of high-risk NB, such as insufficient biopsy tumor cells, poor cooper-
ation of the child in obtaining tumor tissue, or even inaccessibility [31,33,61]. In this study,
we propose an innovative graphene/AuNP/GD2 Ab-functionalized electrode to obtain
the electrochemical signal of individual cells for accurate counting of GD2-positive cells,
which requires only 10 µL of sample volume and is equivalent to immunocytochemistry
and flow cytometry, filling the gap for microscopic bone marrow specimens. This study
demonstrates the promising application of the prepared electrochemical immunosensor in
monitoring tumor metastasis.



Biosensors 2023, 13, 920 10 of 13

5. Conclusions

Neuroblastoma, also known as the king of childhood tumors, is a rare solid tumor
in children. High-risk neuroblastoma metastasizes easily and is difficult to treat. Due to
its relatively low incidence, the development of clinical diagnostic technology has been
slow and lagging behind, which is far from meeting clinical needs. In this study, we
constructed an electrochemical detection platform for GD2-positive cell concentration,
using GD2 antibodies to recognize GD2 molecules on the surface of individual cells,
and then calculated the GD2-positive cell concentration to determine the presence of
MRD in children with NB. The electrochemical signal was converted to cell concentration,
significantly shortening the detection time. The traditional GD2 immunocytochemistry
technique has the disadvantages of cumbersome operation, longer detection time, and more
samples required, and the GD2 flow-fluorescence detection technique has the disadvantages
of false-positive GD2 non-specific binding, false increase in the number of positive cells, and
interference from GD2-positive cell debris. An graphene/AuNP/GD2 Ab-functionalized
electrode effectively solves the drawbacks of traditional detection methods, is consistent
with the efficacy of clinically recommended immunocytochemistry and flow cytometry
results, and is expected to be widely used in clinical practice for the diagnosis of bone
marrow MRD in high-risk NB. Meanwhile, a GD2 immunosensor provides a new idea for
high-risk neuroblastoma POCT detection due to its easy operation and portability.
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