Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (488)

Search Parameters:
Keywords = fully implantable

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1768 KiB  
Case Report
Direct-to-Implant Prepectoral Breast Reconstruction with a Novel Collagen Matrix Following Nipple-Sparing Mastectomy: A Case Report
by Josip Banović, Zrinka Pribudić, Mia Buljubašić Madir, Vedran Beara, Luka Perić, Marija Čandrlić and Željka Perić Kačarević
Reports 2025, 8(3), 120; https://doi.org/10.3390/reports8030120 - 24 Jul 2025
Viewed by 238
Abstract
Background and Clinical Significance: Breast reconstruction following mastectomy is a critical aspect of treatment for many patients, offering both physical and psychological benefits. Traditional methods include autologous tissue flaps and implants, with implant-based techniques being the most prevalent in the Western world. [...] Read more.
Background and Clinical Significance: Breast reconstruction following mastectomy is a critical aspect of treatment for many patients, offering both physical and psychological benefits. Traditional methods include autologous tissue flaps and implants, with implant-based techniques being the most prevalent in the Western world. However, complications such as capsular contracture remain a concern. Acellular dermal matrices (ADM) have emerged as a valuable alternative, improving outcomes by reducing capsular contracture rates and enhancing tissue integration. Case Presentation: This case report presents the first use of a novel ADM, biocade® (biotrics bioimplants AG, Berlin, Germany) in breast reconstruction following a mastectomy. A 55-year-old female patient underwent a left-sided nipple-sparing mastectomy, followed by prepectoral direct-to-implant reconstruction using an ADM-wrapped implant. The patient tolerated the procedure well, with no immediate complications observed. Postoperative monitoring focused on wound healing and assessing for signs of complications related to the implant. The use of the ADM resulted into satisfactory aesthetic and functional outcomes. Conclusions: The successful outcome of this case highlights the potential benefits of using collagen matrices in breast reconstruction, particularly in preserving mastectomy scenarios. The immediate results and improved aesthetics offered by prepectoral direct-to-implant reconstruction with ADM align well with patient expectations for a more natural appearance and faster recovery. However, this case report also highlights the need for ongoing research to fully explore the potential of these biomaterials and address associated challenges. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

35 pages, 1752 KiB  
Review
Recent Advances in Biodegradable Magnesium Alloys for Medical Implants: Evolution, Innovations, and Clinical Translation
by Mykyta Aikin, Vadim Shalomeev, Volodymyr Kukhar, Andrii Kostryzhev, Ihor Kuziev, Viktoriia Kulynych, Oleksandr Dykha, Volodymyr Dytyniuk, Oleksandr Shapoval, Alvydas Zagorskis, Vadym Burko, Olha Khliestova, Viacheslav Titov and Oleksandr Hrushko
Crystals 2025, 15(8), 671; https://doi.org/10.3390/cryst15080671 - 23 Jul 2025
Viewed by 593
Abstract
Biodegradable magnesium alloys have emerged as promising alternatives to permanent metallic implants due to their unique combination of mechanical compatibility with bone and complete resorption, addressing the persistent issues of stress shielding and secondary removal surgeries. This review critically examines the historical development [...] Read more.
Biodegradable magnesium alloys have emerged as promising alternatives to permanent metallic implants due to their unique combination of mechanical compatibility with bone and complete resorption, addressing the persistent issues of stress shielding and secondary removal surgeries. This review critically examines the historical development of magnesium-based biomaterials, highlighting advances in alloy design, manufacturing processes, and surface engineering that now enable tailored degradation and improved clinical performance. Drawing on recent clinical and preclinical studies, we summarize improvements in corrosion resistance, mechanical properties, and biocompatibility that have supported the clinical translation of magnesium alloys across a variety of orthopedic and emerging medical applications. However, challenges remain, including unpredictable in vivo degradation kinetics, limited long-term safety data, lack of standardized testing protocols, and ongoing regulatory uncertainties. We conclude that while magnesium-based biomaterials have advanced from experimental concepts to clinically validated solutions, further progress in personalized degradation control, real-time monitoring, and harmonized regulatory frameworks is needed to fully realize their transformative clinical potential. Full article
(This article belongs to the Special Issue Development of Light Alloys and Their Applications)
Show Figures

Figure 1

10 pages, 755 KiB  
Article
The Role of an Interdisciplinary Left-Ventricular Assist Device (LVAD) Outpatient Clinic in Long-Term Survival After Hospital Discharge: A Decade of HeartMate III Experience in a Non-Transplant Center
by Christoph Salewski, Rodrigo Sandoval Boburg, Spiros Marinos, Isabelle Doll, Christian Schlensak, Attila Nemeth and Medhat Radwan
Biomedicines 2025, 13(8), 1795; https://doi.org/10.3390/biomedicines13081795 - 22 Jul 2025
Viewed by 220
Abstract
Background: In advanced heart failure patients implanted with a fully magnetically levitated HeartMate 3 (HM3) Abbott left ventricular assist device (LVAD), it is unknown how the role of the LVAD outpatient clinic may affect the long-term survival after hospital discharge. Our objective is [...] Read more.
Background: In advanced heart failure patients implanted with a fully magnetically levitated HeartMate 3 (HM3) Abbott left ventricular assist device (LVAD), it is unknown how the role of the LVAD outpatient clinic may affect the long-term survival after hospital discharge. Our objective is to share our standardized protocol for outpatient care, to describe the role of the LVAD outpatient clinic in postoperative long-term care after LVAD implantation, and to report survival. Methods: We retrospectively reviewed all patients implanted with HM3 LVAD in our institute between September 2015 and January 2025. Patients who received HeartWare Ventricular Assist Device (HVAD) and HeartMate 2 LVAD devices were excluded from our study, to ensure a homogenous cohort focusing on the latest and the only currently used LVAD device generation. We included a total of 48 patients. After LVAD patients are discharged from our center, they are followed in our outpatient clinic in 3-month intervals. During visits, bloodwork, EKG, wound inspection, and echocardiography are performed in addition to LVAD analysis. The role of the outpatient clinic is to detect early signs of deterioration or problems and act accordingly to prevent serious complications. Results: Thirty-three patients (68.7%) are still alive in 2025; two patients (4.2%) had a successful heart transplantation; and thirty-one patients (64.5%) are still on LVAD support. There were 210 total patient years of support. The mean time on device is 4.4 years. During the follow-up period we noticed 15 deaths (31.3%). Notably, there was no technical device-related death. Kaplan–Meier analysis estimated an overall survival rate of 97.9%, 92.8%, 83.7%, and 51.1% at 1, 2, 4, and 8 years, respectively. Conclusion: Strict control of patients after discharge in an outpatient clinic is essential for the long-term survival of these patients. A well-structured outpatient program is of utter importance to avoid LVAD-related complications and should be a cornerstone for the treatment, especially in non-transplant centers. Full article
(This article belongs to the Special Issue Heart Failure: New Diagnostic and Therapeutic Approaches)
Show Figures

Figure 1

12 pages, 6846 KiB  
Case Report
A Second Chance: Managing Late Implant Failure from Peri-Implantitis with Computer-Guided Bone Regeneration—A Clinical Case Report
by Marco Tallarico, Silvio Mario Meloni, Carlotta Cacciò, Francesco Mattia Ceruso and Aurea Immacolata Lumbau
Reports 2025, 8(3), 118; https://doi.org/10.3390/reports8030118 - 22 Jul 2025
Viewed by 298
Abstract
Background and Clinical Significance: The retreatment of failed dental implants remains a challenging clinical scenario, particularly when complicated by peri-implantitis and as sociated bone loss. Successful management requires a comprehensive and predictable approach that addresses both hard and soft tissue deficiencies. Case [...] Read more.
Background and Clinical Significance: The retreatment of failed dental implants remains a challenging clinical scenario, particularly when complicated by peri-implantitis and as sociated bone loss. Successful management requires a comprehensive and predictable approach that addresses both hard and soft tissue deficiencies. Case Presentation: This case report illustrates a fully digital, prosthetically driven workflow for the rehabilitation of a posterior mandibular site following implant failure. A 44-year-old female patient underwent removal of a failing implant and adjacent tooth due to advanced peri-implantitis and periodontitis. After healing, a digital workflow—including intraoral scanning, cone-beam computed tomography (CBCT), and virtual planning—was employed to design and fabricate a customized CAD/CAM titanium mesh for vertical guided bone regeneration. The grafting procedure utilized a composite mixture of autogenous bone and anorganic bovine bone (A-Oss). After nine months of healing, two implants with a hydrophilic surface (SOI) were placed using a fully guided surgical protocol (OneGuide system). Subsequent soft tissue grafting and final prosthetic rehabilitation with monolithic zirconia restorations resulted in stable functional and aesthetic outcomes. Conclusions: This case highlights how the integration of modern digital technologies with advanced regenerative procedures and innovative implant surfaces can enhance the predictability and long-term success of implant retreatment in compromised posterior sites. Full article
(This article belongs to the Section Dentistry/Oral Medicine)
Show Figures

Figure 1

12 pages, 9892 KiB  
Article
Alternative Transaxillary Access for Transcatheter Aortic Valve Implantation
by Konrad Wisniewski, Gerrit Kaleschke, Fernando De-Torres-Alba, Sven Martens and Heinz Deschka
J. Clin. Med. 2025, 14(14), 5127; https://doi.org/10.3390/jcm14145127 - 18 Jul 2025
Viewed by 318
Abstract
Background/Objectives: Currently, the transfemoral approach is recognized as the primary method for accessing transcatheter aortic valve implantation (TAVI). However, alternative techniques are needed when the transfemoral access is not suitable. We proposed that a modified transaxillary approach through the distal left axillary artery [...] Read more.
Background/Objectives: Currently, the transfemoral approach is recognized as the primary method for accessing transcatheter aortic valve implantation (TAVI). However, alternative techniques are needed when the transfemoral access is not suitable. We proposed that a modified transaxillary approach through the distal left axillary artery is both viable and safe for conducting TAVI, potentially offering benefits for patients. Methods: From December 2018 to February 2024, a total of 24 patients (7 women, average age 77.9 ± 8 years) received TAVI using transaxillary access via the left axillary artery. The participants suffered from symptomatic severe aortic stenosis and were deemed TAVI candidates with iliofemoral anatomy unsuitable for a transfemoral route. The patient group displayed a high perioperative risk profile, with significant peripheral artery disease or severe obstructive infrarenal aortic conditions. The implantation of the aortic prosthesis was carried out through the left distal axillary artery. A balloon-expandable valve was used in every instance. Results: In the examined cohort, the 30-day mortality rate was 4.2%. A new pacemaker was necessary for four patients (16.7%). One case exhibited a new moderate neurological dysfunction. Additionally, one patient required surgical revision of the access point due to ischemia. Conclusions: Our findings indicate that transaxillary TAVI via the distal left axillary artery has yielded encouraging outcomes. This approach is practicable and safe, does not prolong the procedure, minimizes surgical trauma, ensures excellent access regardless of chest anatomy, and is sparing for the brachial plexus. As a single-center pilot study, our findings require confirmation in larger, prospective cohorts with extended follow-up to fully validate the safety and long-term efficacy of this technique. Full article
Show Figures

Figure 1

14 pages, 514 KiB  
Article
Mechanical and Biological Complications Two Years After Full-Arch Implant-Supported Prosthetic Rehabilitation: A Retrospective Clinical Study
by Denisa Tabita Sabău, Petra Saitos, Rahela Tabita Moca, Raluca Iulia Juncar and Mihai Juncar
Clin. Pract. 2025, 15(7), 134; https://doi.org/10.3390/clinpract15070134 - 18 Jul 2025
Viewed by 326
Abstract
Background/Objectives: Full-arch implant-supported prostheses have become a widely accepted solution for edentulous patients, yet long-term biological and mechanical complications remain a clinical concern. Methods: This retrospective study included 70 fully edentulous patients (362 implants) rehabilitated with either fixed or removable implant-supported prostheses. [...] Read more.
Background/Objectives: Full-arch implant-supported prostheses have become a widely accepted solution for edentulous patients, yet long-term biological and mechanical complications remain a clinical concern. Methods: This retrospective study included 70 fully edentulous patients (362 implants) rehabilitated with either fixed or removable implant-supported prostheses. Data were collected on demographics, medical status, type and location of prostheses, implant type, abutments, method of fixation, and complications. Statistical analysis included Fisher’s exact test, the Mann–Whitney U test, and chi-squared tests, with a significance level set at p < 0.05. Results: Mechanical complications occurred in 41.4% of patients (29 out of 70), with framework fractures reported in eight cases (27.6%), ceramic chipping in six cases (20.7%), and resin discoloration in four cases (13.8%). The prostheses were fabricated using monolithic zirconia, metal–ceramic crowns, zirconia on titanium bars, and hybrid resin/PMMA on cobalt–chromium frameworks. Gingival inflammation was also noted in 41.4% of cases (n = 29), predominantly in posterior implant regions. Younger patients and those without systemic diseases showed a significantly higher incidence of mechanical complications. Conclusions: Two years post-treatment, mechanical and biological complications appear to be independent phenomena, not significantly associated with most prosthetic variables. Patient-specific factors, particularly age and general health status, may have greater predictive value than prosthetic design. Limitations of the study include its retrospective design and the lack of radiographic data to assess peri-implant bone changes. Full article
Show Figures

Figure 1

16 pages, 6475 KiB  
Review
Fully Digital Workflow in Full-Arch Implant Rehabilitation: A Descriptive Methodological Review
by Chantal Auduc, Thomas Douillard, Emmanuel Nicolas and Nada El Osta
Prosthesis 2025, 7(4), 85; https://doi.org/10.3390/prosthesis7040085 - 16 Jul 2025
Viewed by 467
Abstract
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains [...] Read more.
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains an emerging and underexplored area in the literature. Objective. This article presents a comprehensive methodological review of the digital workflow in full-arch implant-supported rehabilitation. It follows a structured literature exploration and synthesizes relevant technological processes from patient assessment to prosthetic delivery. Methods. The relevant literature was retrieved from the PubMed database on 20 June 2024, to identify the most recent and relevant studies. A total of 22 articles met the eligibility criteria and were included in the review. The majority included case and technical reports. Results. The review illustrates the integration and application of digital tools in implant dentistry, including cone-beam computed tomography (CBCT) exposure, intraoral scanning, digital smile design, virtual patients, guided surgery, and digital scanning. The key findings demonstrate multiple advantages of a fully digital workflow, such as reduced treatment time and cost, increased patient satisfaction, and improved interdisciplinary communication. Conclusions. Despite these benefits, limitations persist due to the low level of evidence, technological challenges, and the lack of standardized protocols. Further randomized controlled trials and long-term clinical evaluations are essential to validate the effectiveness and feasibility of a fully digital workflow for full-arch implant-supported rehabilitation. Full article
Show Figures

Figure 1

13 pages, 1099 KiB  
Article
NF-κB as an Inflammatory Biomarker in Thin Endometrium: Predictive Value for Live Birth in Recurrent Implantation Failure
by Zercan Kalı, Pervin Karlı, Fatma Tanılır, Pınar Kırıcı and Serhat Ege
Diagnostics 2025, 15(14), 1762; https://doi.org/10.3390/diagnostics15141762 - 12 Jul 2025
Viewed by 430
Abstract
Background: Recurrent implantation failure (RIF) poses a major challenge in assisted reproductive technologies, with thin endometrium (≤7 mm) being a frequently observed yet poorly understood condition. Emerging evidence implicates nuclear factor-kappa B (NF-κB), a key transcription factor in inflammatory signaling, in impaired endometrial [...] Read more.
Background: Recurrent implantation failure (RIF) poses a major challenge in assisted reproductive technologies, with thin endometrium (≤7 mm) being a frequently observed yet poorly understood condition. Emerging evidence implicates nuclear factor-kappa B (NF-κB), a key transcription factor in inflammatory signaling, in impaired endometrial receptivity. However, its clinical relevance and prognostic value for live birth outcomes still need to be fully elucidated. Objective: We aim to evaluate the expression levels of endometrial NF-κB in patients with RIF and thin endometrium and to determine its potential as a predictive biomarker for live birth outcomes following IVF treatment. Methods: In this prospective case–control study, 158 women were categorized into three groups: Group 1 (RIF with thin endometrium, ≤7 mm, n = 52), Group 2 (RIF with normal endometrium, >7 mm, n = 38), and fertile controls (n = 68). NF-κB levels were assessed using ELISA and immunohistochemical histoscore. Pregnancy outcomes were compared across groups. ROC analysis and multivariable logistic regression were performed to assess the predictive value of NF-κB. Results: NF-κB expression was significantly elevated in Group 1 compared to Group 2 and controls (p = 0.0017). ROC analysis identified a cut-off value of 7.8 ng/mg for live birth prediction (AUC = 0.72, sensitivity 74%, specificity 75%). Multivariable analysis confirmed NF-κB is an independent predictor of live birth (p = 0.045). Histological findings revealed increased NF-κB staining in luminal and glandular epithelial cells in the thin endometrium group. Conclusions: Increased endometrial NF-κB expression is associated with thin endometrium and reduced live birth rates in RIF patients. NF-κB may serve not only as a biomarker of pathological inflammation but also as a prognostic tool for treatment stratification in IVF. Based on findings in the literature, the therapeutic targeting of NF-κB may represent a promising strategy to improve implantation outcomes. Full article
(This article belongs to the Special Issue Diagnosis and Prognosis of Gynecological and Obstetric Diseases)
Show Figures

Figure 1

20 pages, 2740 KiB  
Article
Antistatic Melt-Electrowritten Biodegradable Mesh Implants for Enhanced Pelvic Organ Prolapse Repair
by Daniela Cruz, Francisca Vaz, Evangelia Antoniadi, Ana Telma Silva, Joana Martins, Fábio Pinheiro, Nuno Miguel Ferreira, Luís B. Bebiano, Rúben F. Pereira, António Fernandes and Elisabete Silva
Appl. Sci. 2025, 15(14), 7763; https://doi.org/10.3390/app15147763 - 10 Jul 2025
Viewed by 335
Abstract
Pelvic organ prolapse (POP) is a health condition that can significantly impact patients’ quality of life. Unfortunately, most available treatments present drawbacks such as high recurrence rates, risk of complications, poor tissue integration, and the need for reintervention. One promising alternative is the [...] Read more.
Pelvic organ prolapse (POP) is a health condition that can significantly impact patients’ quality of life. Unfortunately, most available treatments present drawbacks such as high recurrence rates, risk of complications, poor tissue integration, and the need for reintervention. One promising alternative is the use of biodegradable implantable meshes, which can support the organs, guide tissue regeneration, and be fully absorbed without damaging the surrounding tissues. In this study, biodegradable polycaprolactone (PCL) meshes were fabricated using melt electrowritten (MEW), incorporating the antistatic agent Hostastat® FA 38 (HT) to address these limitations. The goal was to produce microscaffolds with suitable biophysical properties, particularly more stable fiber deposition and reduced fiber diameter. Different HT concentrations (0.03, 0.06, and 0.1 wt%) were investigated to assess their influence on the fiber diameter and mechanical properties of the PCL meshes. Increasing HT concentration significantly reduced fiber diameter by 14–17%, 39–45%, and 65–66%, depending on mesh geometry (square or sinusoidal). At 0.06 wt%, PCL/HT meshes showed a 24.10% increase in tensile strength and a 55.59% increase in Young’s Modulus compared to pure PCL meshes of similar diameter. All formulations demonstrated cell viability >90%. Differential scanning calorimetry (DSC) revealed preserved thermal stability and changes in crystallinity with HT addition. These findings indicate that the antistatic agent yields promising results, enabling the production of thinner, more stable fibers with higher tensile strength and Young’s Modulus than PCL meshes, without adding cellular toxicity. Developing a thinner and more stable mesh that mimics vaginal tissue mechanics could offer an innovative solution for POP repair. Full article
Show Figures

Figure 1

15 pages, 2435 KiB  
Case Report
The First Biological Respect Protocol: A Biodigital Technique for Definitive Customized One-Time Abutments—A Case Report
by Franco Rizzuto and Silvia Rizzuto
J. Clin. Med. 2025, 14(13), 4448; https://doi.org/10.3390/jcm14134448 - 23 Jun 2025
Viewed by 335
Abstract
Background/Objectives: Dental implants represent a viable solution for replacing missing teeth; however, multiple disconnections and reconnections of intermediate abutments contribute to the apical displacement of the peri-implant connective tissue barrier, resulting in additional marginal bone loss. To the best of our knowledge, no [...] Read more.
Background/Objectives: Dental implants represent a viable solution for replacing missing teeth; however, multiple disconnections and reconnections of intermediate abutments contribute to the apical displacement of the peri-implant connective tissue barrier, resulting in additional marginal bone loss. To the best of our knowledge, no definitive customized abutments currently exist that are specifically designed according to the morphology of the tooth to be replaced and its position within the dental arch, allowing for digital planning within the prosthetic implant design and insertion during the surgical procedure without subsequent disconnection. Methods: The First Biological Respect (FR) technique, described in this case report, enables the digital planning not only of the implant but also of the patented FR customized-shaped, definitive abutment and associated FR prosthetic components. The FR technique was applied to a case involving an immediate post-extraction implant in position 12. Results: With the limitations of a case report, the application of the FR protocol demonstrated stable crestal bone levels at the 1-year follow-up. Additionally, soft tissue volume was maintained at 6 months, reflecting the accuracy of the customized prosthetic components in supporting, guiding, and protecting peri-implant soft tissues. At the 1-year follow-up, an increase in soft tissue volume was observed, likely attributable to tissue maturation and the further customization of the definitive prosthetic elements. Conclusions: The FR technique represents a viable therapeutic alternative that, through its patented, fully customized components, allows for the digital planning of the implant, as well as the customized definitive abutment, coping, provisional, and final prosthetic framework. This facilitates a single-stage surgical and prosthetic approach. By eliminating the need for repeated abutment disconnections, this method supports the long-term stability of both hard and soft peri-implant tissues while also reducing overall treatment time for both clinician and patient. Further studies involving larger patient cohorts are necessary to validate this protocol. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

18 pages, 1615 KiB  
Article
Effects of Physiological Loading from Patient-Derived Activities of Daily Living on the Wear of Metal-on-Polymer Total Hip Replacements
by Benjamin A. Clegg, Samuel Perry, Enrico De Pieri, Anthony C. Redmond, Stephen J. Ferguson, David E. Lunn, Richard M. Hall, Michael G. Bryant, Nazanin Emami and Andrew R. Beadling
Bioengineering 2025, 12(6), 663; https://doi.org/10.3390/bioengineering12060663 - 16 Jun 2025
Viewed by 635
Abstract
The current pre-clinical testing standards for total hip replacements (THRs), ISO standards, use simplified loading waveforms that do not fully replicate real-world biomechanics. These standards provide a benchmark of data that may not accurately predict in vivo wear, necessitating the evaluation of physiologically [...] Read more.
The current pre-clinical testing standards for total hip replacements (THRs), ISO standards, use simplified loading waveforms that do not fully replicate real-world biomechanics. These standards provide a benchmark of data that may not accurately predict in vivo wear, necessitating the evaluation of physiologically relevant loading conditions. Previous studies have incorporated activities of daily living (ADLs) such as walking, jogging and stair negotiation into wear simulations. However, these studies primarily used simplified adaptations that increased axial forces and applied accelerated sinusoidal waveforms, rather than fully replicating the complex kinematics experienced by THR patients. To address this gap, this study applied patient-derived ADL profiles—jogging and stair negotiation—using a three-station hip simulator, obtained through 3D motion analysis of total hip arthroplasty patients, processed via a musculoskeletal multibody modelling approach to derive realistic hip contact forces (HCFs). The results indicate that jogging significantly increased wear rates compared to the ISO walking gait waveform, with wear increasing from 15.24 ± 0.55 to 28.68 ± 0.87 mm3/Mc. Additionally, wear was highly sensitive to changes in lubricant protein concentration, with an increase from 17 g/L to 30 g/L reducing wear by over 60%. Contrary to predictive models, stair descent resulted in higher volumetric wear (8.62 ± 0.43 mm3/0.5 Mc) compared to stair ascent (4.15 ± 0.31 mm3/0.5 Mc), despite both profiles having similar peak torques. These findings underscore the limitations of current ISO standards in replicating physiologically relevant wear patterns. The application of patient-specific loading profiles highlights the need to integrate ADLs into pre-clinical testing protocols, ensuring a more accurate assessment of implant performance and longevity. Full article
(This article belongs to the Special Issue Medical Devices and Implants, 2nd Edition)
Show Figures

Figure 1

15 pages, 3393 KiB  
Article
Stereotactically Guided Microsurgical Approach for Deep-Seated Eloquently Located Lesions
by Jun Thorsteinsdottir, Sebastian Siller, Biyan Nathanael Harapan, Robert Forbrig, Jörg-Christian Tonn, Tobias Greve, Stefanie Quach and Christian Schichor
J. Clin. Med. 2025, 14(12), 4175; https://doi.org/10.3390/jcm14124175 - 12 Jun 2025
Viewed by 368
Abstract
Background/Objectives: Advancements in neuronavigation and intraoperative imaging have made gross-total resection of deep-seated lesions more feasible. However, in eloquently located regions, brain shift can lead to unintentional damage of functionally critical tissue during the approach. This study analyzes the feasibility and outcomes [...] Read more.
Background/Objectives: Advancements in neuronavigation and intraoperative imaging have made gross-total resection of deep-seated lesions more feasible. However, in eloquently located regions, brain shift can lead to unintentional damage of functionally critical tissue during the approach. This study analyzes the feasibility and outcomes of a stereotactically guided microsurgical approach supported by intraoperative CT (iCT) for such lesions. Methods: Patients with deep-seated, eloquently located lesions treated between 03/2017 and 04/2023 at the Department of Neurosurgery, Ludwig-Maximilians-University (LMU) Munich, Germany, were included. Frame-based, image-guided stereotaxy was used for trajectory planning and catheter placement, verified by iCT. Microsurgical resection was conducted along the catheter trajectory using 2 mm conical blade retractors and continuous neurophysiological monitoring. Postoperative MRI assessed the extent of resection. Neurological outcomes were evaluated postoperatively, at 6 weeks, and at long-term follow-up in 12/2023. Results: A total of 12 patients were treated using the stereotactically guided microsurgical approach described in this study. In all cases, the implanted catheter precisely matched the preoperative trajectory, as confirmed by fused iCT data. Median durations were 23 min for stereotaxy and 3 h 7 min for microsurgery. Complete resection was achieved in all cases. One patient experienced transient hemiparesis and aphasia, both of which were fully resolved. All other patients showed neurological improvement or remained seizure-free at long-term follow-up. Conclusions: In selected cases, a stereotactically guided microsurgical approach with iCT enabled intraoperative localization of the target with high spatial accuracy and without immediate procedure-related complications in this limited cohort. Our findings support the feasibility of the technique; however, conclusions regarding clinical efficacy or broader applicability are limited by the small sample size and non-comparative study design. Full article
Show Figures

Figure 1

19 pages, 2663 KiB  
Review
From Detection to Treatment: Nanomaterial-Based Biosensors Transforming Prosthetic Dentistry and Oral Health Care: A Scoping Review
by Noha Taymour, Mohamed G. Hassan, Maram A. AlGhamdi and Wessam S. Omara
Prosthesis 2025, 7(3), 51; https://doi.org/10.3390/prosthesis7030051 - 14 May 2025
Cited by 1 | Viewed by 1589
Abstract
Background: Nanomaterial-based biosensors represent a transformative advancement in oral health diagnostics and therapeutics, offering superior sensitivity and selectivity for early disease detection compared to conventional methods. Their applications span prosthetic dentistry, where they enable the precise monitoring of dental implants, and theranostics for [...] Read more.
Background: Nanomaterial-based biosensors represent a transformative advancement in oral health diagnostics and therapeutics, offering superior sensitivity and selectivity for early disease detection compared to conventional methods. Their applications span prosthetic dentistry, where they enable the precise monitoring of dental implants, and theranostics for conditions such as dental caries, oral cancers, and periodontal diseases. These innovations promise to enhance proactive oral healthcare by integrating detection, treatment, and preventive strategies. Objectives: This review comprehensively examines the role of nanomaterial-based biosensors in dental theranostics, with a focus on prosthetic applications. It emphasizes their utility in dental implant surveillance, the early identification of prosthesis-related complications, and their broader implications for personalized treatment paradigms. Methods: A systematic literature search was conducted across PubMed, Scopus, and Web of Science for studies published between 2010 and early 2025. Keywords included combinations of “nanomaterials”, “biosensors”, “dentistry”, “oral health”, “diagnostics”, “therapeutics”, and “theranostics”. Articles were selected based on their relevance to nanomaterial applications in dental biosensors and their clinical translation. Results: The review identified diverse classes of nanomaterials—such as metallic nanoparticles, carbon-based structures, and quantum dots—whose unique physicochemical properties enhance biosensor performance. Key advancements include the ultra-sensitive detection of biomarkers in saliva and gingival crevicular fluid, the real-time monitoring of peri-implant inflammatory markers, and cost-effective diagnostic platforms. These systems demonstrate exceptional precision in detecting early-stage pathologies while improving operational efficiency in clinical settings. Conclusions: Nanomaterial-based biosensors hold significant promise for revolutionizing dental care through real-time implant monitoring and early complication detection. Despite challenges related to biocompatibility, scalable manufacturing, and rigorous clinical validation, these technologies may redefine oral healthcare by extending prosthetic device longevity, enabling personalized interventions, and reducing long-term treatment costs. Future research must address translational barriers to fully harness their potential in improving diagnostic accuracy and therapeutic outcomes. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Graphical abstract

20 pages, 4021 KiB  
Systematic Review
Safety Profile of Gestrinone: A Systematic Review
by Vitor Luis Fagundes, Nathália Carolina Barreiro Marques, Amanda Franco de Lima, Alexandre de Fátima Cobre, Fernanda Stumpf Tonin, Raul Edison Luna Lazo and Roberto Pontarolo
Pharmaceutics 2025, 17(5), 638; https://doi.org/10.3390/pharmaceutics17050638 - 11 May 2025
Viewed by 1234
Abstract
Background: Gestrinone is a synthetic hormone derived from 19-nortestosterone, exhibiting androgenic, anabolic, anti-progestogenic, and antiestrogenic effects. Gestrinone subcutaneous implants have been used “off label” for aesthetic purposes due to their anabolic action, promoting accelerated metabolism and muscle gain. Objective: Our goal is to [...] Read more.
Background: Gestrinone is a synthetic hormone derived from 19-nortestosterone, exhibiting androgenic, anabolic, anti-progestogenic, and antiestrogenic effects. Gestrinone subcutaneous implants have been used “off label” for aesthetic purposes due to their anabolic action, promoting accelerated metabolism and muscle gain. Objective: Our goal is to conduct a systematic review focused exclusively on identifying the safety profile of gestrinone use, without addressing efficacy. Methods: This systematic review was performed according to the Joanna Briggs Institute and Cochrane Collaboration recommendations and is reported following the Preferred Reporting Items for Systematic Reviews and Network Meta-Analyses. This article’s searches were carried out in the PubMed, Embase, and Web of Science databases. Results: A total of 32 articles were included in this study. The reported adverse events associated with the use of gestrinone were amenorrhea (41.4% of cases), acne, seborrhea (42.7% of reports), decreased libido (26.5%), and hot flushes (24.2%). Other nonspecific symptoms such as hoarseness and cramps were also fairly reported (3.5% and 18.6%, respectively). Other reported effects were associated with breast size reduction (23.7% of patients) and increased transaminases (15.1%). Most studies (40%, n = 24 studies) found significant weight gain (ranging from 0.9 to 8 kg per patient). Abnormalities in bone mineral density were reported in four studies. Conclusions: The evidence remains insufficient to fully understand the risks of gestrinone uses associated with its widespread, unregulated use. Thus, further standardized studies and regulatory oversight to ensure patient safety are needed to mitigate potential health risks. Full article
Show Figures

Figure 1

28 pages, 1964 KiB  
Review
Multi-Source Energy Harvesting Systems Integrated in Silicon: A Comprehensive Review
by Vasiliki Gogolou, Thomas Noulis and Vasilis F. Pavlidis
Electronics 2025, 14(10), 1951; https://doi.org/10.3390/electronics14101951 - 11 May 2025
Viewed by 875
Abstract
The integration of multi-source energy harvesting (EH) systems into silicon presents a promising avenue for powering autonomous, low-power devices, particularly in applications such as the Internet of Things (IoT), biomedical implants, and wireless sensor networks, where power efficiency and small-size solutions are crucial. [...] Read more.
The integration of multi-source energy harvesting (EH) systems into silicon presents a promising avenue for powering autonomous, low-power devices, particularly in applications such as the Internet of Things (IoT), biomedical implants, and wireless sensor networks, where power efficiency and small-size solutions are crucial. This review provides a detailed technical assessment of energy harvesting schemes—including photovoltaic, mechanical, thermoelectric, and radio frequency energy harvesting—and the integration of their associated electronic circuits into silicon integrated solutions. The EH systems are critically analyzed based on their architectures, the number and type of input sources, and key performance metrics such as energy conversion efficiency, output power delivered to loads, silicon area footprint, and degree of integration (e.g., reliance on external components). By examining current advancements and practical implementations, crucial design parameters are assessed for state-of-the-art integrated silicon energy harvesting systems. Furthermore, based on current trends, future research directions are outlined to enhance EH efficiency, reliability, and scalability, paving the way for fully integrated silicon-based EH systems for the next-generation self-powered electronic devices. Full article
Show Figures

Figure 1

Back to TopTop