Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (192)

Search Parameters:
Keywords = full-scale laboratory test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6823 KiB  
Article
Design Optimization of Valve Assemblies in Downhole Rod Pumps to Enhance Operational Reliability in Oil Production
by Seitzhan Zaurbekov, Kadyrzhan Zaurbekov, Doszhan Balgayev, Galina Boiko, Ertis Aksholakov, Roman V. Klyuev and Nikita V. Martyushev
Energies 2025, 18(15), 3976; https://doi.org/10.3390/en18153976 - 25 Jul 2025
Viewed by 252
Abstract
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, [...] Read more.
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, i.e., a problem that accounts for approximately 15% of all failures, as identified in a statistical analysis of the 2022 operational data from the Uzen oilfield in Kazakhstan. The leakage is primarily attributed to the accumulation of mechanical impurities and paraffin deposits between the valve ball and seat, leading to concentrated surface wear and compromised sealing. To mitigate this issue, a novel valve assembly design was developed featuring a flow turbulizer positioned beneath the valve seat. The turbulizer generates controlled vortex motion in the fluid flow, which increases the rotational frequency of the valve ball during operation. This motion promotes more uniform wear across the contact surfaces and reduces the risk of localized degradation. The turbulizers were manufactured using additive FDM technology, and several design variants were tested in a full-scale laboratory setup simulating downhole conditions. Experimental results revealed that the most effective configuration was a spiral plate turbulizer with a 7.5 mm width, installed without axis deviation from the vertical, which achieved the highest ball rotation frequency and enhanced lapping effect between the ball and the seat. Subsequent field trials using valves with duralumin-based turbulizers demonstrated increased operational lifespans compared to standard valves, confirming the viability of the proposed solution. However, cases of abrasive wear were observed under conditions of high mechanical impurity concentration, indicating the need for more durable materials. To address this, the study recommends transitioning to 316 L stainless steel for turbulizer fabrication due to its superior tensile strength, corrosion resistance, and wear resistance. Implementing this design improvement can significantly reduce maintenance intervals, improve pump reliability, and lower operating costs in mature oilfields with high water cut and solid content. The findings of this research contribute to the broader efforts in petroleum engineering to enhance the longevity and performance of artificial lift systems through targeted mechanical design improvements and material innovation. Full article
(This article belongs to the Special Issue Petroleum and Natural Gas Engineering)
Show Figures

Figure 1

20 pages, 3980 KiB  
Article
Laboratory and Full-Scale Tests of Modern Chimney Casings Based on Lightweight Perlite Concrete with Hydrophobic Admixtures
by Arkadiusz Mordak, Krzysztof Drozdzol, Damian Beben and Pawel Jarzynski
Materials 2025, 18(14), 3398; https://doi.org/10.3390/ma18143398 - 20 Jul 2025
Viewed by 249
Abstract
Currently, chimney technology is looking for new materials with improved thermal insulation properties and, at the same time, adequate durability. The use of concretes based on lightweight aggregates, such as expanded perlite, is capable of meeting such a challenge, provided that the composition [...] Read more.
Currently, chimney technology is looking for new materials with improved thermal insulation properties and, at the same time, adequate durability. The use of concretes based on lightweight aggregates, such as expanded perlite, is capable of meeting such a challenge, provided that the composition of the concrete mixes is appropriately modified. The main research challenge when designing chimney system casing elements lies in ensuring adequate resistance to moisture penetration (maximum water absorption of 25%), while achieving the lowest possible bulk density (below 1000 kg/m3), sufficient compressive strength (minimum 3.5 MPa), and capillary water uptake not exceeding 0.6%. In the present research, laboratory tests were conducted to improve the fundamental technical properties of lightweight perlite-based concrete to meet the aforementioned requirements. Laboratory tests of perlite concrete were carried out by adding eight chemical admixtures with a hydrophobic effect and the obtained results were compared with a reference concrete (without admixtures). However, the positive results obtained under laboratory conditions were not confirmed under actual production conditions. Therefore, further tests were conducted on chimney casings taken directly from the production line. Subsequent chemical admixtures with a hydrophobic effect, based on silane/siloxane water emulsions, were applied to determine the concrete mix’s optimal composition. The results of the tests carried out on perlite concrete chimney casings from the production line confirm the effectiveness of the applied chemical admixtures with a hydrophobic effect in improving the moisture resistance. This was further supported by the outcomes of the so-called ‘drop test’ and capillary uptake test, with the suitable bulk density and compressive strength being maintained. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 10843 KiB  
Article
Experimental and Numerical Study of a Cone-Top Pile Foundation for Challenging Geotechnical Conditions
by Askar Zhussupbekov, Assel Sarsembayeva, Baurzhan Bazarov and Abdulla Omarov
Appl. Sci. 2025, 15(14), 7893; https://doi.org/10.3390/app15147893 - 15 Jul 2025
Viewed by 233
Abstract
This study investigates the behavior and performance of a newly proposed cone-top pile foundation designed to improve stability in layered, deformable, or strain-sensitive soils. Traditional shallow and uniform conical foundations often suffer from excessive settlement and reduced capacity when subjected to vertical loads [...] Read more.
This study investigates the behavior and performance of a newly proposed cone-top pile foundation designed to improve stability in layered, deformable, or strain-sensitive soils. Traditional shallow and uniform conical foundations often suffer from excessive settlement and reduced capacity when subjected to vertical loads and horizontal soil deformations. To address these limitations, a hybrid foundation was developed that integrates an inverted conical base with a central pile shaft and a rolling joint interface between the foundation and the superstructure. Laboratory model tests, full-scale field loading experiments, and axisymmetric numerical simulations using Plaxis 2D (Version 8.2) were conducted to evaluate the foundation’s bearing capacity, settlement behavior, and load transfer mechanisms. Results showed that the cone-top pile foundation exhibited lower settlements and higher load resistance than columnar foundations under similar loading conditions, particularly in the presence of horizontal tensile strains. The load was effectively distributed through the conical base and transferred into deeper soil layers via the pile shaft, while the rolling joint reduced stress transmission to the structure. The findings support the use of cone-top pile foundations in soft soils, seismic areas and areas affected by underground mining, where conventional designs may be inadequate. This study provides a validated and practical design alternative for challenging geotechnical environments. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

29 pages, 21376 KiB  
Article
Numerical Simulation of Fracture Failure Propagation in Water-Saturated Sandstone with Pore Defects Under Non-Uniform Loading Effects
by Gang Liu, Yonglong Zan, Dongwei Wang, Shengxuan Wang, Zhitao Yang, Yao Zeng, Guoqing Wei and Xiang Shi
Water 2025, 17(12), 1725; https://doi.org/10.3390/w17121725 - 7 Jun 2025
Cited by 1 | Viewed by 510
Abstract
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the [...] Read more.
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the mechanical properties of the rock mass, while non-uniform loading leads to stress concentration. The combined effect facilitates the propagation of microcracks and the formation of shear zones, ultimately resulting in localized instability. This initial damage disrupts the mechanical equilibrium and can evolve into severe geohazards, including roof collapse, water inrush, and rockburst. Therefore, understanding the damage and failure mechanisms of mine roadways at the mesoscale, under the combined influence of stress heterogeneity and hydraulic weakening, is of critical importance based on laboratory experiments and numerical simulations. However, the large scale of in situ roadway structures imposes significant constraints on full-scale physical modeling due to limitations in laboratory space and loading capacity. To address these challenges, a straight-wall circular arch roadway was adopted as the geometric prototype, with a total height of 4 m (2 m for the straight wall and 2 m for the arch), a base width of 4 m, and an arch radius of 2 m. Scaled physical models were fabricated based on geometric similarity principles, using defect-bearing sandstone specimens with dimensions of 100 mm × 30 mm × 100 mm (length × width × height) and pore-type defects measuring 40 mm × 20 mm × 20 mm (base × wall height × arch radius), to replicate the stress distribution and deformation behavior of the prototype. Uniaxial compression tests on water-saturated sandstone specimens were performed using a TAW-2000 electro-hydraulic servo testing system. The failure process was continuously monitored through acoustic emission (AE) techniques and static strain acquisition systems. Concurrently, FLAC3D 6.0 numerical simulations were employed to analyze the evolution of internal stress fields and the spatial distribution of plastic zones in saturated sandstone containing pore defects. Experimental results indicate that under non-uniform loading, the stress–strain curves of saturated sandstone with pore-type defects typically exhibit four distinct deformation stages. The extent of crack initiation, propagation, and coalescence is strongly correlated with the magnitude and heterogeneity of localized stress concentrations. AE parameters, including ringing counts and peak frequencies, reveal pronounced spatial partitioning. The internal stress field exhibits an overall banded pattern, with localized variations induced by stress anisotropy. Numerical simulation results further show that shear failure zones tend to cluster regionally, while tensile failure zones are more evenly distributed. Additionally, the stress field configuration at the specimen crown significantly influences the dispersion characteristics of the stress–strain response. These findings offer valuable theoretical insights and practical guidance for surrounding rock control, early warning systems, and reinforcement strategies in water-infiltrated mine roadways subjected to non-uniform loading conditions. Full article
Show Figures

Figure 1

8 pages, 1869 KiB  
Proceeding Paper
Design Optimization and Testing of Seamless Morphing Leading Edge for Large Civil Aircraft
by Zhigang Wang, Xiasheng Sun, Yu Yang, Gang Liu, Daochun Li and Jinwu Xiang
Eng. Proc. 2024, 80(1), 49; https://doi.org/10.3390/engproc2024080049 - 30 May 2025
Viewed by 261
Abstract
Climate change has prompted the aviation industry to decrease its emissions of greenhouse gases. With their aerodynamic shape adaptability, morphing leading edges have great potential in the application of laminar flow wings and are beneficial to green aviation. As most of the current [...] Read more.
Climate change has prompted the aviation industry to decrease its emissions of greenhouse gases. With their aerodynamic shape adaptability, morphing leading edges have great potential in the application of laminar flow wings and are beneficial to green aviation. As most of the current morphing leading edges are still in laboratory demonstrations, this paper develops a three-dimensional full-scale morphing leading edge physical prototype for a large-scale civil aircraft and demonstrates its feasibility through a ground and wind tunnel test. The final test results show that the developed morphing leading edge can be morphed into its target shape smoothly and precisely, and validate the effectiveness of the design approach. Full article
(This article belongs to the Proceedings of 2nd International Conference on Green Aviation (ICGA 2024))
Show Figures

Figure 1

15 pages, 2833 KiB  
Article
Solid and Hollow Pre-Tensioned, Pre-Stressed Concrete Orchard Posts—Computational and Experimental Comparative Analysis
by Jarosław Michałek and Jacek Dudkiewicz
Materials 2025, 18(11), 2525; https://doi.org/10.3390/ma18112525 - 27 May 2025
Viewed by 1860
Abstract
For several years now, fruit-growers have increasingly often used pre-tensioned, pre-stressed concrete posts for supporting branches of fruit trees and suspending protective nets in order to limit damage to fruits caused by hail, wind, snow, heavy rainfall, insects and birds. Pre-tensioned, pre-stressed concrete [...] Read more.
For several years now, fruit-growers have increasingly often used pre-tensioned, pre-stressed concrete posts for supporting branches of fruit trees and suspending protective nets in order to limit damage to fruits caused by hail, wind, snow, heavy rainfall, insects and birds. Pre-tensioned, pre-stressed concrete posts most often have a trapezoidal cross-section, which is ideally suitable for mass production in a self-supporting non-dismantlable steel mould on a pre-stressing bed. Posts with 70 mm × 75 mm, 80 mm × 85 mm and 90 mm × 95 mm cross-sections are typically produced, whereas 100 mm × 120 mm and 130 mm × 140 mm posts are manufactured to order. Furthermore, it is proposed to produce hollow posts. Such posts are lighter than solid posts, but they require a more complicated production technology. This paper presents selected parts of a comparative computational–experimental analysis of solid and hollow posts. In the Building Structures Laboratory in the Building Structures Department at the Civil Engineering Faculty of the Wrocław University of Science and Technology, experimental tests of pre-stressed concrete orchard posts of 70 mm × 75 mm and 90 mm × 95 mm with solid and hollow cross-sections were carried out on a full scale. The theoretical analysis and research has shown that the resistance to bending, cracking resistance and rigidity of hollow posts (with their cross-sectional outline unchanged) will not significantly differ from those of the currently produced solid posts. At same time, material savings will be achieved. Therefore, the main task is to master the continuous moulding of hollow posts from dense plastic concrete with the simultaneous pulling out of the cores, producing longitudinal hollows in the posts. Full article
(This article belongs to the Special Issue Study on Mechanical Properties of Concrete Structures and RC Beams)
Show Figures

Figure 1

29 pages, 9240 KiB  
Review
A Review of Marine Renewable Energy Utilization Technology and Its Integration with Aquaculture
by Jingwei Cao, Jinkai Liu, Xin Liu, Chongji Zeng, Hewen Hu and Yongyao Luo
Energies 2025, 18(9), 2343; https://doi.org/10.3390/en18092343 - 3 May 2025
Viewed by 868
Abstract
This paper encapsulates the advancements in marine renewables utilization technologies globally, analyzed through the lenses of research emphasis and variations in device mechanisms. The multi-energy complementarity and the integration of marine renewable energy systems with aquaculture technologies are discussed, and the engineering applications [...] Read more.
This paper encapsulates the advancements in marine renewables utilization technologies globally, analyzed through the lenses of research emphasis and variations in device mechanisms. The multi-energy complementarity and the integration of marine renewable energy systems with aquaculture technologies are discussed, and the engineering applications are introduced. Tidal energy and offshore wind energy technologies have achieved mature commercial operation, while tidal current energy and wave energy technologies are undergoing full-scale prototype testing. Temperature-difference energy technology has reached the full-scale prototype testing phase, whereas salinity-gradient energy technology remains in the laboratory verification stage. In recent years, many researchers have conducted engineering measurements, and further breakthroughs are needed in critical enabling technologies and safety measures. From the standpoint of geographical integration, the realization of aquaculture with offshore wind energy and wave energy or tidal current energy is simpler. The integration of aquaculture with marine renewable energy technologies represents a promising avenue for the future development and global utilization of marine energy resources. Full article
Show Figures

Figure 1

17 pages, 9894 KiB  
Article
Real-Time Automatic Identification of Plastic Waste Streams for Advanced Waste Sorting Systems
by Robert Giel, Mateusz Fiedeń and Alicja Dąbrowska
Sustainability 2025, 17(5), 2157; https://doi.org/10.3390/su17052157 - 2 Mar 2025
Viewed by 1287
Abstract
Despite the significant recycling potential, a massive generation of plastic waste is observed year after year. One of the causes of this phenomenon is the issue of ineffective waste stream sorting, primarily arising from the uncertainty in the composition of the waste stream. [...] Read more.
Despite the significant recycling potential, a massive generation of plastic waste is observed year after year. One of the causes of this phenomenon is the issue of ineffective waste stream sorting, primarily arising from the uncertainty in the composition of the waste stream. The recycling process cannot be carried out without the proper separation of different types of plastics from the waste stream. Current solutions in the field of automated waste stream identification rely on small-scale datasets that insufficiently reflect real-world conditions. For this reason, the article proposes a real-time identification model based on a CNN (convolutional neural network) and a newly constructed, self-built dataset. The model was evaluated in two stages. The first stage was based on the separated validation dataset, and the second was based on the developed test bench, a replica of the real system. The model was evaluated under laboratory conditions, with a strong emphasis on maximally reflecting real-world conditions. Once included in the sensor fusion, the proposed approach will provide full information on the characteristics of the waste stream, which will ultimately enable the efficient separation of plastic from the mixed stream. Improving this process will significantly support the United Nations’ 2030 Agenda for Sustainable Development. Full article
Show Figures

Figure 1

45 pages, 475 KiB  
Review
Wastewater Remediation Treatments Aimed at Water Reuse: Recent Outcomes from Pilot- and Full-Scale Tests
by Elida Nora Ferri and Luca Bolelli
Appl. Sci. 2025, 15(5), 2448; https://doi.org/10.3390/app15052448 - 25 Feb 2025
Cited by 6 | Viewed by 2805
Abstract
Remediated water reuse is becoming vital for sustainable water management, reducing the strain on freshwater resources, particularly in agriculture and industrial activities. Behind the application in irrigating crops and the reuse in industrial processes, treated water should be employed for indirect and direct [...] Read more.
Remediated water reuse is becoming vital for sustainable water management, reducing the strain on freshwater resources, particularly in agriculture and industrial activities. Behind the application in irrigating crops and the reuse in industrial processes, treated water should be employed for indirect and direct potable use. In the latter case, the traditional approaches to wastewater treatment have been found to be inefficient, especially concerning biological contamination, persistent organic pollutants (POPs) and/or contaminants of emerging concern (CECs). Given that, according to its origin and to its foreseen use, each wastewater needs a specific treatment. A plethora of new or improved materials, combinations of different treatments and check analyses are continuously developed and tested at laboratory scale, the first, necessary but not sufficient, step towards the solution. Various innovative treatments were tested at the pilot scale, and a reduced number of procedures were applied at the full scale, resulting in significant production of remediated water of the desired quality. The present review focuses on the most recent outcomes obtained from remediation procedures applied at both scales and discusses the gaps which still hinder the exploitation of new solutions and the advancements obtained in real-scale application. Full article
29 pages, 22956 KiB  
Article
Numerical Investigation of Natural Light Transmission Through Fiber Optics
by Taher Maatallah, Mussad Alzahrani, Ahmad Almatar, Faisal Wahab and Sajid Ali
Energies 2025, 18(5), 1103; https://doi.org/10.3390/en18051103 - 24 Feb 2025
Cited by 1 | Viewed by 673
Abstract
Fiber optics is a cutting-edge technology with boundless potential for transmitting natural light inside buildings. Imaging Solar concentrators are very efficient in focusing light within the approximate numerical aperture of fiber optics. The proof-of-concept of fiber optics concentration daylight systems was investigated and [...] Read more.
Fiber optics is a cutting-edge technology with boundless potential for transmitting natural light inside buildings. Imaging Solar concentrators are very efficient in focusing light within the approximate numerical aperture of fiber optics. The proof-of-concept of fiber optics concentration daylight systems was investigated and elaborated for only single-mode step-index fibers, and none of the previous studies had explored the full sun spectrum meticulously, the overall transmission efficiency, and the luminous output of such a system. The present research elaborates a detailed and exclusive numerical investigation of multi-mode-indexed fiber optics daylight systems. The proposed design consists of subsequent optical stages that focus light into the fiber optic cable, filter unwanted infrared wavelength radiation, and uniformly collimate visible light onto the fiber optics. The ray path and ray power intensities were traced and computed using the ray tracing technique. The obtained simulation results demonstrated an overall optical transmission efficiency of 32% along a 10 m length. The luminous efficacy of visible light transmission was evaluated based on the average illuminance levels inside buildings, indicating a substantial indoor lighting enhancement of 92 lumens/watt. The proof-of-concept was validated by building a laboratory scale of the proposed system; the tests have shown the technical feasibility of the system and the effective material integrity for practical applications Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

30 pages, 5801 KiB  
Article
Investigating Scale Effects on Experimental Shear Strength of Earthen Walls (Adobe and Rammed-Earth)
by Daniel M. Ruiz, Juan C. Reyes, Yezid A. Alvarado, Hermes Vacca, Nicola Tarque and Sandra Jerez
Buildings 2025, 15(5), 689; https://doi.org/10.3390/buildings15050689 - 22 Feb 2025
Viewed by 904
Abstract
This study investigates the scale effects on the experimental shear strength of earthen walls, a critical parameter influencing the seismic performance of adobe and rammed-earth (RE) buildings. Recognized for their historical significance and sustainable construction practices, earthen structures require a comprehensive understanding of [...] Read more.
This study investigates the scale effects on the experimental shear strength of earthen walls, a critical parameter influencing the seismic performance of adobe and rammed-earth (RE) buildings. Recognized for their historical significance and sustainable construction practices, earthen structures require a comprehensive understanding of their mechanical behavior under shear loads to ensure effective design and preservation. This research compiles data from over 120 in-plane shear wall tests (adobe and RE), nearly 20 direct shear tests from the scientific and technical literature, and new cyclic direct shear tests performed on large cubic specimens (300 mm side length) made from the same material as a previously tested two-story RE wall. Based on the findings, this study recommends a minimum specimen cross-sectional area of 0.5 m2 for reliable shear strength testing of earthen walls in structural laboratories. This recommendation aims to prevent the unconservative overestimation of shear strength commonly observed in smaller specimens, including direct shear tests. Furthermore, the Mohr–Coulomb failure criterion outlined in the AIS-610 Colombian standard is validated as a conservative lower bound for all compiled shear strength data. Cyclic direct shear tests on nine 300 mm cubic specimens produced a Mohr–Coulomb envelope with an apparent cohesion of 0.0715 MPa and a slope of 0.66, whereas the full-scale two-story wall (5.95 × 6.20 × 0.65 m) constructed with the same material exhibited a much lower cohesion of 0.0139 MPa and a slope of 0.26. The analysis reveals significant scale effects, as small-scale specimens consistently overestimate shear strength due to their inability to capture macro-structural behaviors such as compaction layer interactions, construction joint weaknesses, and stress redistributions. Based on the analysis of the compiled data, the novelty of this study lies in defining a strength reduction factor for direct shear tests (3.4–3.8 for rammed earth, ~3.0 for adobe) to align with full-scale wall behavior, as well as establishing a minimum specimen size (≥0.5 m2) for reliable in-plane shear testing of earthen walls, ensuring accurate structural assessments of shear strength. This study provides a first approach to the shear behavior of unstabilized earth. To expand its application, future research should explore how the scale of specimens with different stabilizers affects their shear strength. Full article
(This article belongs to the Special Issue Seismic Assessment of Unreinforced Masonry Buildings)
Show Figures

Figure 1

20 pages, 4327 KiB  
Article
Suitable Granular Road Base from Reclaimed Asphalt Pavement
by Oswaldo Guerrero-Bustamante, Amparo Guillen, Fernando Moreno-Navarro, M. C. Rubio-Gámez and Miguel Sol-Sánchez
Materials 2025, 18(4), 854; https://doi.org/10.3390/ma18040854 - 15 Feb 2025
Cited by 3 | Viewed by 818
Abstract
The granular bases commonly used in the construction of road infrastructure projects often require a high consumption of raw materials. The potential utilization of recycled materials, specifically Reclaimed Asphalt Pavement (RAP) derived from road asphalt pavement demolition, emerges as a promising sustainable advantage [...] Read more.
The granular bases commonly used in the construction of road infrastructure projects often require a high consumption of raw materials. The potential utilization of recycled materials, specifically Reclaimed Asphalt Pavement (RAP) derived from road asphalt pavement demolition, emerges as a promising sustainable advantage for infrastructure projects, considering its potential environmental and cost benefits in other layers of the structure. In this context, this research proposes a feasibility study on the use of RAP as a granular base layer, supported by an advanced laboratory analysis that includes a range of tests simulating the in-service conditions as well as a full-scale demonstration of the material behavior under static and dynamic loads. Various design variables, such as different gradations and binder content, are considered. The results demonstrate that, despite having discontinuous gradation and smaller aggregate sizes than those commonly applied in natural base layers, the evaluated recycled materials exhibit a higher load-bearing capacity and resistance to permanent deformation than the reference materials commonly used as granular bases. Notable enhancements of up to 30% in elastic modulus, coupled with reductions of around 20% in permanent deformations, have been documented using the asphalt cement potential in the old pavement. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

23 pages, 14960 KiB  
Article
A New Method for Predicting Pile Accumulated Deformation and Stiffness of Evolution Under Long-Term Inclined Cyclic Loading
by Xiangwen Pan, Xia Li, Shuang Xi, Weiming Gong and Mingxing Zhu
Buildings 2025, 15(4), 591; https://doi.org/10.3390/buildings15040591 - 14 Feb 2025
Viewed by 485
Abstract
Piles in marine environments are subjected to various loads of differing magnitudes and directions, and their long-term stability has attracted much attention. Most research focuses on lateral cyclic loading; there are few full-scale tests that consider the effects of cyclic loading at different [...] Read more.
Piles in marine environments are subjected to various loads of differing magnitudes and directions, and their long-term stability has attracted much attention. Most research focuses on lateral cyclic loading; there are few full-scale tests that consider the effects of cyclic loading at different inclined angles. A long-term inclined cyclic loading strategy was used to carry out laboratory tests to study different inclined angles on the pile. The results show that a smaller inclined angle (θL) or a larger pile–soil relative stiffness (T/L) results in wider and deeper sediment subsidence after 10,000 cycles. As θL increases from 0° to 80°, the peak displacement at the pile head during the first load decreases, while the accumulated displacement initially decreases and then increases. For slender piles, the normalized inclined cyclic loading stiffness (klN/kl1) and unloading stiffness (kuN/ku1) first decrease and then increase. For semi-rigid piles, both klN/kl1 and kuN/ku1 gradually decrease. On the other hand, as θL increases, klN/kl1 and kuN/ku1 increased more sharply in the initial stage, with a quicker transition from rapid growth to stability. At θL = 80°, peak values are reached early during the initial loading phase. Based on this, prediction formulas for inclined cyclic cumulative displacement, loading stiffness, and unloading stiffness were established and verified. Full article
Show Figures

Figure 1

19 pages, 4565 KiB  
Article
Performance Evaluation of TEROS 10 Sensor in Diverse Substrates and Soils of Different Electrical Conductivity Using Low-Cost Microcontroller Settings
by Athanasios Fragkos, Dimitrios Loukatos, Georgios Kargas and Konstantinos G. Arvanitis
Land 2025, 14(2), 242; https://doi.org/10.3390/land14020242 - 24 Jan 2025
Viewed by 1257
Abstract
This study sheds light on the performance of the common high-precision electromagnetic sensor TEROS 10 to estimate volumetric soil water content (θ) from dry to saturation across three different substrates, six different soil types having three different levels of electrical conductivity of soil [...] Read more.
This study sheds light on the performance of the common high-precision electromagnetic sensor TEROS 10 to estimate volumetric soil water content (θ) from dry to saturation across three different substrates, six different soil types having three different levels of electrical conductivity of soil solutions (ECw), and in liquids with increasing salinity level under laboratory conditions, by using low-cost but accurate experimental IoT hardware arrangements. This performance was evaluated using statistical analysis metrics such as Root Mean Square Error (RMSE). It was found that TEROS 10 performance did not conform to the manufacturer’s specifications throughout the full scale range, although in some cases good water content estimation was provided. Some inconsistencies were identified by applying the manufacturer’s calibration equations, and thus recommendations for improvements are provided, aiming to enhance the sensor’s overall performance. TEROS 10 performance across all six soils and three substrates was improved on average from an RMSE of 0.052 and 0.078 cm3 cm−3, respectively, by using factory-derived calibration, to 0.031 and 0.031 cm3 cm−3 by using the multipoint calibration method (CAL). Furthermore, a linear calibration formula, using Raw output as the predictor variable, was tested and resulted in an RMSE of 0.026 and 0.046 cm3 cm−3 for soils and substrates, respectively. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

16 pages, 4104 KiB  
Article
Range Extension of Borehole Strainmeters Using MOSFET-Based Multi-Switch Automatic Zero Setting
by Chen Yang, Zheng Chen, Hong Li, Wenbo Wang, Weiwei Zhan, Liheng Wu, Yunkai Dong and Jiaxin Chen
Sensors 2025, 25(2), 476; https://doi.org/10.3390/s25020476 - 15 Jan 2025
Viewed by 716
Abstract
Borehole strainmeters are essential tools for observing crustal deformation. In long-term observational applications, the dynamic changes in crustal deformation over multi-year scales often exceed the single measurement range of borehole strainmeters. Expanding the measurement range while maintaining high precision is a critical technical [...] Read more.
Borehole strainmeters are essential tools for observing crustal deformation. In long-term observational applications, the dynamic changes in crustal deformation over multi-year scales often exceed the single measurement range of borehole strainmeters. Expanding the measurement range while maintaining high precision is a critical technical challenge. To address this, a full-range measurement system was developed using a bidirectional analog multi-switch based on MOS transistors and automatic feedback control. This system automatically adjusts the zero point of the measurement bridge, maintaining the bridge output at a near-balanced state. The quantifiable zero-setting actions are dynamically converted into equivalent voltage, enabling automatic full-range measurements while fully utilizing the effective linear range of the differential capacitive sensors. A laboratory performance tests demonstrated that an RZB borehole strainmeter equipped with this automatic zero-setting range extension system successfully covers the differential capacitive sensor’s effective linear range of approximately 100 μm. Full article
(This article belongs to the Special Issue Sensors Technologies for Measurements and Signal Processing)
Show Figures

Figure 1

Back to TopTop