Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (488)

Search Parameters:
Keywords = full-rank

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 236 KiB  
Article
Full Automorphism Group of (m,2)-Graph in Finite Classical Polar Spaces
by Yang Zhang, Shuxia Liu and Liwei Zeng
Axioms 2025, 14(8), 614; https://doi.org/10.3390/axioms14080614 (registering DOI) - 6 Aug 2025
Abstract
Let \( \mathcal{Q} \) be the finite classical polar space of rank \( \nu\geq 1 \) over \( \mathbb{F}_q \), and \( \mathcal{Q}_m \) be the set of all m-dimensional subspaces of \( \mathcal{Q} \). In this paper, we introduce the \( [...] Read more.
Let \( \mathcal{Q} \) be the finite classical polar space of rank \( \nu\geq 1 \) over \( \mathbb{F}_q \), and \( \mathcal{Q}_m \) be the set of all m-dimensional subspaces of \( \mathcal{Q} \). In this paper, we introduce the \( (m,2) \)-graph with \( \mathcal{Q}_m \) as its vertex set, and two vertices \(P,Q\) are adjacent if and only if \( P+Q \) is an \( (m+2) \)-dimensional subspace of \( \mathcal{Q} \). The full automorphism group of \( (m,2)\)-graph is determined. Full article
23 pages, 6377 KiB  
Article
Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed
by Chuandong Liu, Haoping Zhang, Zebao Li, Zhiheng Zeng, Xuefeng Zhang, Lian Gong and Bin Li
Agronomy 2025, 15(8), 1872; https://doi.org/10.3390/agronomy15081872 - 1 Aug 2025
Viewed by 134
Abstract
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed [...] Read more.
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed was systematically investigated, and a predictive model (R2 = 0.959) was also established by using Box–Behnken design response surface methodology (BBD-RSM). The results show that the collision restitution coefficient varies in the range of 0.539–0.649, with the key influencing factors ranked as follows: moisture content (Mc) > material layer thickness (L) > drop height (H). The EDEM simulation methodology was adopted to validate the experimental results, and the results show that there is a minimal relative error (−1% < δ < 1%) between the measured and simulated rebound heights, indicating that the established model shows a reliable prediction performance. Moreover, by comprehensively analyzing stress, strain, and energy during the collision process between rapeseed and Q235 steel, it can be concluded that the process can be divided into five stages—free fall, collision compression, collision recovery, rebound oscillation, and rebound stabilization. The maximum stress (1.19 × 10−2 MPa) and strain (6.43 × 10−6 mm) were observed at the beginning of the collision recovery stage, which can provide some theoretical and practical basis for optimizing and designing rapeseed machines, thus achieving the goals of precise control, harvest loss reduction, and increased yields. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

33 pages, 3561 KiB  
Article
A Robust Analytical Network Process for Biocomposites Supply Chain Design: Integrating Sustainability Dimensions into Feedstock Pre-Processing Decisions
by Niloofar Akbarian-Saravi, Taraneh Sowlati and Abbas S. Milani
Sustainability 2025, 17(15), 7004; https://doi.org/10.3390/su17157004 - 1 Aug 2025
Viewed by 232
Abstract
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria [...] Read more.
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria decision-making framework for selecting pre-processing equipment configurations within a hemp-based biocomposite SC. Using a cradle-to-gate system boundary, four alternative configurations combining balers (square vs. round) and hammer mills (full-screen vs. half-screen) are evaluated. The analytical network process (ANP) model is used to evaluate alternative SC configurations while capturing the interdependencies among environmental, economic, social, and technical sustainability criteria. These criteria are further refined with the inclusion of sub-criteria, resulting in a list of 11 key performance indicators (KPIs). To evaluate ranking robustness, a non-linear programming (NLP)-based sensitivity model is developed, which minimizes the weight perturbations required to trigger rank reversals, using an IPOPT solver. The results indicated that the Half-Round setup provides the most balanced sustainability performance, while Full-Square performs best in economic and environmental terms but ranks lower socially and technically. Also, the ranking was most sensitive to the weight of the system reliability and product quality criteria, with up to a 100% shift being required to change the top choice under the ANP model, indicating strong robustness. Overall, the proposed framework enables decision-makers to incorporate uncertainty, interdependencies, and sustainability-related KPIs into the early-stage SC design of bio-based composite materials. Full article
(This article belongs to the Special Issue Sustainable Enterprise Operation and Supply Chain Management)
Show Figures

Figure 1

49 pages, 24339 KiB  
Article
An Enhanced Slime Mould Algorithm Based on Best–Worst Management for Numerical Optimization Problems
by Tongzheng Li, Hongchi Meng, Dong Wang, Bin Fu, Yuanyuan Shao and Zhenzhong Liu
Biomimetics 2025, 10(8), 504; https://doi.org/10.3390/biomimetics10080504 - 1 Aug 2025
Viewed by 256
Abstract
The Slime Mould Algorithm (SMA) is a widely used swarm intelligence algorithm. Encouraged by the theory of no free lunch and the inherent shortcomings of the SMA, this work proposes a new variant of the SMA, called the BWSMA, in which three improvement [...] Read more.
The Slime Mould Algorithm (SMA) is a widely used swarm intelligence algorithm. Encouraged by the theory of no free lunch and the inherent shortcomings of the SMA, this work proposes a new variant of the SMA, called the BWSMA, in which three improvement mechanisms are integrated. The adaptive greedy mechanism is used to accelerate the convergence of the algorithm and avoid ineffective updates. The best–worst management strategy improves the quality of the population and increases its search capability. The stagnant replacement mechanism prevents the algorithm from falling into a local optimum by replacing stalled individuals. In order to verify the effectiveness of the proposed method, this paper conducts a full range of experiments on the CEC2018 test suite and the CEC2022 test suite and compares BWSMA with three derived algorithms, eight SMA variants, and eight other improved algorithms. The experimental results are analyzed using the Wilcoxon rank-sum test, the Friedman test, and the Nemenyi test. The results indicate that the BWSMA significantly outperforms these compared algorithms. In the comparison with the SMA variants, the BWSMA obtained average rankings of 1.414, 1.138, 1.069, and 1.414. In comparison with other improved algorithms, the BWSMA obtained average rankings of 2.583 and 1.833. Finally, the applicability of the BWSMA is further validated through two structural optimization problems. In conclusion, the proposed BWSMA is a promising algorithm with excellent search accuracy and robustness. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

27 pages, 3840 KiB  
Article
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023
by Pablo O. Canziani, S. Gabriela Lakkis and Adrián E. Yuchechen
Atmosphere 2025, 16(8), 914; https://doi.org/10.3390/atmos16080914 - 29 Jul 2025
Viewed by 243
Abstract
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the [...] Read more.
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the relationships between large-scale climate drivers and monthly rainfall are considered. Results show that, except for Córdoba, the complete anomaly timeseries trend analysis for all other stations yielded null trends over the centennial study period. Considerable month-to-month variability is observed for all locations together with the existence of low-frequency decadal to interdecadal variability, both for monthly precipitation anomalies and for statistically significant excess and deficit months. Linear fits considering oceanic climate indicators as drivers of variability yield significant differences between locations, while not between full records and seasonally sampled. Issues regarding the use of linear analysis to quantify variability, the dispersion along the timeline of record extreme rainy months at each location, together with the evidence of severe daily precipitation events not necessarily coinciding with the ranking of the rainiest months at each location, highlights the challenges of understanding the drivers of variability of both monthly and severe daily precipitation and the need of using extended centennial timeseries whenever possible. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 451 KiB  
Article
Distinctive LMI Formulations for Admissibility and Stabilization Algorithms of Singular Fractional-Order Systems with Order Less than One
by Xinhai Wang, Xuefeng Zhang, Qing-Guo Wang and Driss Boutat
Fractal Fract. 2025, 9(7), 470; https://doi.org/10.3390/fractalfract9070470 - 19 Jul 2025
Viewed by 222
Abstract
This paper presents three novel sufficient and necessary conditions for the admissibility of singular fractional-order systems (FOSs), a stabilization criterion, and a solution algorithm. The strict linear matrix inequality (LMI) stability criterion for integer-order systems is generalized to singular FOSs by using column-full [...] Read more.
This paper presents three novel sufficient and necessary conditions for the admissibility of singular fractional-order systems (FOSs), a stabilization criterion, and a solution algorithm. The strict linear matrix inequality (LMI) stability criterion for integer-order systems is generalized to singular FOSs by using column-full rank matrices. This admissibility criterion does not involve complex variables and is different from all previous results, filling a gap in this area. Based on the LMIs in the generalized condition, the improved criterion utilizes a variable substitution technique to reduce the number of matrix variables to be solved from one pair to one, reflecting the admissibility more essentially. This improved result simplifies the programming process compared to the traditional approach that requires two matrix variables. To complete the state feedback controller design, the system matrices in the generalized admissibility criterion are decoupled, but bilinear constraints still occur in the stabilization criterion. For this case, where a feasible solution cannot be found using the MATLAB LMI toolbox, a branch-and-bound algorithm (BBA) is designed to solve it. Finally, the validity of these criteria and the BBA is verified by three examples, including a real circuit model. Full article
Show Figures

Figure 1

17 pages, 3612 KiB  
Article
MPVT: An Efficient Multi-Modal Prompt Vision Tracker for Visual Target Tracking
by Jianyu Xie, Yan Fu, Junlin Zhou, Tianxiang He, Xiaopeng Wang, Yuke Fang and Duanbing Chen
Appl. Sci. 2025, 15(14), 7967; https://doi.org/10.3390/app15147967 - 17 Jul 2025
Viewed by 260
Abstract
Visual target tracking is a fundamental task in computer vision. Combining multi-modal information with tracking leverages complementary information, which improves the precision and robustness of trackers. Traditional multi-modal tracking methods typically employ a full fine-tuning scheme, i.e., fine-tuning pre-trained single-modal models to multi-modal [...] Read more.
Visual target tracking is a fundamental task in computer vision. Combining multi-modal information with tracking leverages complementary information, which improves the precision and robustness of trackers. Traditional multi-modal tracking methods typically employ a full fine-tuning scheme, i.e., fine-tuning pre-trained single-modal models to multi-modal tasks. However, this approach suffers from low transfer learning efficiency, catastrophic forgetting, and high cross-task deployment costs. To address these issues, we propose an efficient model named multi-modal prompt vision tracker (MPVT) based on an efficient prompt-tuning paradigm. Three key components are involved in the model: a decoupled input enhancement module, a dynamic adaptive prompt fusion module, and a fully connected head network module. The decoupled input enhancement module enhances input representations via positional and type embedding. The dynamic adaptive prompt fusion module achieves efficient prompt tuning and multi-modal interaction using scaled convolution and low-rank cross-modal attention mechanisms. The fully connected head network module addresses the shortcomings of traditional convolutional head networks such as inductive biases. Experimental results from RGB-T, RGB-D, and RGB-E scenarios show that MPVT outperforms state-of-the-art methods. Moreover, MPVT can save 43.8% GPU memory usage and reduce training time by 62.9% compared with a full-parameter fine-tuning model. Full article
(This article belongs to the Special Issue Advanced Technologies Applied for Object Detection and Tracking)
Show Figures

Figure 1

11 pages, 1218 KiB  
Article
Predictive Ability of an Objective and Time-Saving Blastocyst Scoring Model on Live Birth
by Bing-Xin Ma, Feng Zhou, Guang-Nian Zhao, Lei Jin and Bo Huang
Biomedicines 2025, 13(7), 1734; https://doi.org/10.3390/biomedicines13071734 - 15 Jul 2025
Viewed by 401
Abstract
Objectives: With the development of artificial intelligence technology in medicine, an intelligent deep learning-based embryo scoring system (iDAScore) has been developed on full-time lapse sequences of embryos. It automatically ranks embryos according to the likelihood of achieving a fetal heartbeat with no manual [...] Read more.
Objectives: With the development of artificial intelligence technology in medicine, an intelligent deep learning-based embryo scoring system (iDAScore) has been developed on full-time lapse sequences of embryos. It automatically ranks embryos according to the likelihood of achieving a fetal heartbeat with no manual input from embryologists. To ensure its performance, external validation studies should be performed at multiple clinics. Methods: A total of 6291 single vitrified–thawed blastocyst transfer cycles from 2018 to 2021 at the Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology were retrospectively analyzed by the iDAScore model. Patients with two or more blastocysts transferred and blastocysts that were not cultured in a time-lapse incubator were excluded. Blastocysts were divided into four comparably sized groups by first sorting their iDAScore values in ascending order and then compared with the clinical, perinatal, and neonatal outcomes. Results: Our results showed that clinical pregnancy, miscarriage, and live birth significantly correlated with iDAScore (p < 0.001). For perinatal and neonatal outcomes, no significant difference was shown in four iDAScore groups, except sex ratio. Uni- and multivariable logistic regressions showed that iDAScore was significantly positively correlated with live birth rate (p < 0.05). Conclusions: In conclusion, the objective ranking can prioritize embryos reliably and rapidly for transfer, which could allow embryologists more time for processes requiring hands-on procedures. Full article
(This article belongs to the Special Issue The Art of ART (Assisted Reproductive Technologies))
Show Figures

Figure 1

12 pages, 1515 KiB  
Article
Development of a Risk Model to Identify and Prevent Factors Influencing Erectile Dysfunction After Robotic Radical Prostatectomy
by Hakan Karaca, Resul Sobay, Metin Mod, Ahmet Tahra, Hasan Samet Güngör, Abdurrahman İnkaya and Eyüp Veli Küçük
J. Clin. Med. 2025, 14(14), 4903; https://doi.org/10.3390/jcm14144903 - 10 Jul 2025
Viewed by 342
Abstract
Background/Objectives: Prostate cancer ranks as the second-most prevalent cancer globally, and is the fifth-ranking cause of cancer-related mortality. Radical prostatectomy presents a significant risk of postoperative sequelae, including erectile dysfunction. Postoperative erectile dysfunction adversely affects the patient’s quality of life and can severely [...] Read more.
Background/Objectives: Prostate cancer ranks as the second-most prevalent cancer globally, and is the fifth-ranking cause of cancer-related mortality. Radical prostatectomy presents a significant risk of postoperative sequelae, including erectile dysfunction. Postoperative erectile dysfunction adversely affects the patient’s quality of life and can severely impact total treatment satisfaction. Nomograms have demonstrated efficacy in forecasting diverse outcomes in urology. We sought to create a nomogram to facilitate a more precise, evidence-based, and individualized prediction of erectile function outcomes following radical prostatectomy. Between January 2018 and January 2022, one hundred and eleven prostate cancer patients had robot-assisted radical prostatectomy, excluding those who had undergone prior transurethral prostatectomy, radiotherapy, or hormone therapy. Demographics, medical records, preoperative and postoperative erectile function statuses, and IIEF scores (≥17 indicating retained erections, <17 indicating full erectile dysfunction) were evaluated. Outcomes: Patients’ ages ranged from 45 to 76 years, with an average of 61.18 ± 6.72 years. Patients in the emergency department were considerably older (p = 0.004; p < 0.01) and exhibited elevated Charlson Comorbidity Indices (3.63 ± 0.85; p = 0.004; p < 0.01). Preoperative IIEF scores in ED patients were lower (14.29 ± 5.34), although obturator internus thickness (20.61 ± 2.91) and intraprostatic urethra length (36.48 ± 9.3) were considerably elevated. Altered surgical techniques were linked to maintained erections (p = 0.002; p < 0.01), but traditional approaches were connected with erectile dysfunction (p = 0.007; p < 0.01). Bilateral nerve-sparing procedures were more prevalent among patients preserving erectile function (p = 0.003; p < 0.01). Conclusions: The nomogram, which includes age, Charlson Comorbidity Index, preoperative IIEF, obturator internus thickness, intraprostatic urethra length, surgical technique, and degree of nerve preservation, provides clinicians with a pragmatic instrument for forecasting postoperative erectile dysfunction in prostate cancer patients. Full article
(This article belongs to the Special Issue Prostate Cancer: Diagnosis, Clinical Management and Prognosis)
Show Figures

Figure 1

17 pages, 1876 KiB  
Article
Seroprevalence and Molecular Analysis of Bovine Leukemia Virus in Kazakhstan
by Saltanat Mamanova, Ainur Nurpeisova, Elvira Bashenova, Saira Kaimoldina, Vladimir Kirpichenko, Perizat Akshalova, Aiken Karabassova, Malik Yussupov, Akzhigit Mashzhan, Dauriya Tazhbayeva, Zhandos Abay, Marzena Rola-Luszczak, Jacek Kuzmak, Raikhan Nissanova and Markhabat Kassenov
Viruses 2025, 17(7), 956; https://doi.org/10.3390/v17070956 - 7 Jul 2025
Viewed by 448
Abstract
Bovine leukemia virus (BLV) remains a major concern for cattle industries worldwide due to its persistent nature, economic impact, and challenges in control. In this study, we conducted a comprehensive nationwide survey of BLV in Kazakhstan between 2014 and 2024, utilizing serological diagnostics [...] Read more.
Bovine leukemia virus (BLV) remains a major concern for cattle industries worldwide due to its persistent nature, economic impact, and challenges in control. In this study, we conducted a comprehensive nationwide survey of BLV in Kazakhstan between 2014 and 2024, utilizing serological diagnostics to assess prevalence and characterize viral genotypes (2024). A total of 433,537 serum samples were screened by agar gel immunodiffusion (AGID), revealing an overall seroprevalence of 5.87%, with the highest rates observed in the North Kazakhstan, Kostanay, and East Kazakhstan regions. In 2024, a targeted analysis of 3736 serum and 536 whole blood samples across 17 regions was performed using AGID, ELISA, real-time PCR, and nested PCR. ELISA demonstrated higher sensitivity than AGID (10.4% vs. 8.2%), confirmed by statistical correlation (r = 0.97, p < 0.001) and a Wilcoxon signed-rank test (p = 0.026). Real-time PCR detected BLV DNA in 4.7% of samples, with the highest positivity in the East Kazakhstan and Abai regions, confirming active viral circulation. Validation of a domestically developed AGID diagnostic kit showed full concordance with commercial assays (IDEXX, IDvet), supporting its use in national surveillance programs. These findings highlight the endemic status of BLV in Kazakhstan. Molecular analysis of sequenced isolates revealed the presence of genotype G-7, consistent with strains circulating in neighboring countries. Together, these results underscore the importance of integrated serological and molecular approaches for effective monitoring and control. Full article
(This article belongs to the Special Issue Viral Diseases of Domestic Animals)
Show Figures

Figure 1

15 pages, 1019 KiB  
Article
Genotypic Variability in Growth and Leaf-Level Physiological Performance of Highly Improved Genotypes of Pinus radiata D. Don Across Different Sites in Central Chile
by Sergio Espinoza, Marco Yáñez, Carlos Magni, Eduardo Martínez-Herrera, Karen Peña-Rojas, Sergio Donoso, Marcos Carrasco-Benavides and Samuel Ortega-Farias
Forests 2025, 16(7), 1108; https://doi.org/10.3390/f16071108 - 4 Jul 2025
Viewed by 238
Abstract
Pinus radiata D. Don is planted in South Central Chile on a wide range of sites using genetically improved genotypes for timber production. As drought events are expected to increase with ongoing climatic change, the variability in gas exchange, which could impact growth [...] Read more.
Pinus radiata D. Don is planted in South Central Chile on a wide range of sites using genetically improved genotypes for timber production. As drought events are expected to increase with ongoing climatic change, the variability in gas exchange, which could impact growth and water use, needs to be evaluated. In this study, we assessed the genotypic variability of leaf-level light-saturated photosynthesis (Asat), stomatal conductance (gs), transpiration (E), intrinsic water use efficiency (iWUE), and Chlorophyll a fluorescence (OJIP-test parameters) among 30 P. radiata genotypes (i.e., full-sib families) from third-cycle parents at age 6 years on three sites in Central Chile. We also evaluated tree height (HT), diameter at breast height (DBH), and stem index volume (VOL). Families were ranked for HT as top-15 and bottom-15. In the OJIP-test parameters we observed differences at the family level for the maximum quantum yield of primary PSII photochemistry (Fv/Fm), the probability that a photon trapped by the PSII reaction center enters the electron transport chain (ψEo), and the potential for energy conservation from photons captured by PSII to the reduction in intersystem electron acceptors (PIABS). Fv/Fm, PIABS, and ψEo ranged from 0.82 to 0.87, 45 to 95, and 0.57 to 0.64, respectively. Differences among families for growth and not for leaf-level physiology were detected. DBT, H, and VOL were higher in the top-15 families (12.6 cm, 8.4 m, and 0.10 m3, respectively) whereas Asat, gs, E, and iWUE were similar in both the top-15 and bottom-15 families (4.0 μmol m−2 s−1, 0.023 mol m−2 s−1, 0.36 mmol m−2 s−1, and 185 μmol mol m−2 s−1, respectively). However, no family by site interaction was detected for growth and leaf-level physiology. The results of this study suggest that highly improved genotypes of P. radiata have uniformity in leaf-level physiological rates, which could imply uniform water use at the stand-level. The family variation found in PIABS suggests that this parameter could be incorporated to select genotypes tolerant to environmentally stressful conditions. Full article
(This article belongs to the Special Issue Water Use Efficiency of Forest Trees)
Show Figures

Figure 1

24 pages, 1061 KiB  
Article
High- and Low-Rank Optimization of SNOVA on ARMv8: From High-Security Applications to IoT Efficiency
by Minwoo Lee, Minjoo Sim, Siwoo Eum and Hwajeong Seo
Electronics 2025, 14(13), 2696; https://doi.org/10.3390/electronics14132696 - 3 Jul 2025
Viewed by 364
Abstract
The increasing threat of quantum computing to traditional cryptographic systems has prompted intense research into post-quantum schemes. Despite SNOVA’s potential for lightweight and secure digital signatures, its performance on embedded devices (e.g., ARMv8 platforms) remains underexplored. This research addresses this gap by presenting [...] Read more.
The increasing threat of quantum computing to traditional cryptographic systems has prompted intense research into post-quantum schemes. Despite SNOVA’s potential for lightweight and secure digital signatures, its performance on embedded devices (e.g., ARMv8 platforms) remains underexplored. This research addresses this gap by presenting the optimal SNOVA implementations on embedded devices. This paper presents a performance-optimized implementation of the SNOVA post-quantum digital signature scheme on ARMv8 processors. SNOVA is a multivariate cryptographic algorithm under consideration in the NIST’s additional signature standardization. Our work targets the performance bottlenecks in the SNOVA scheme. Specifically, we employ matrix arithmetic over GF16 and AES-CTR-based pseudorandom number generation by exploiting the NEON SIMD extension and tailoring the computations to the matrix rank. At a low level, we develop rank-specific SIMD kernels for addition and multiplication. Rank 4 matrices (i.e., 16 bytes) are handled using fully vectorized instructions that align with 128-bit-wise registers, while rank 2 matrices (i.e., 4 bytes) are processed in batches of four to ensure full SIMD occupancy. At the high level, core routines such as key generation and signature evaluation are structurally refactored to provide aligned memory layouts for batched execution. This joint optimization across algorithmic layers reduces the overhead and enables seamless hardware acceleration. The resulting implementation supports 12 SNOVA parameter sets and demonstrates substantial efficiency improvements compared to the reference baseline. These results highlight that fine-grained SIMD adaptation is essential for the efficient deployment of multivariate cryptography on modern embedded platforms. Full article
(This article belongs to the Special Issue Trends in Information Systems and Security)
Show Figures

Figure 1

26 pages, 844 KiB  
Article
An Efficient Evolutionary Neural Architecture Search Algorithm Without Training
by Yang An, Changsheng Zhang, Jintao Shao, Yuxiao Yan and Baiqing Sun
Biomimetics 2025, 10(7), 421; https://doi.org/10.3390/biomimetics10070421 - 29 Jun 2025
Viewed by 785
Abstract
Neural Architecture Search (NAS) has made significant advancements in autonomously constructing high-performance network architectures, capturing extensive attention. However, a key challenge of existing NAS approaches is the intensive performance evaluation, leading to significant time and computational resource consumption. In this paper, we propose [...] Read more.
Neural Architecture Search (NAS) has made significant advancements in autonomously constructing high-performance network architectures, capturing extensive attention. However, a key challenge of existing NAS approaches is the intensive performance evaluation, leading to significant time and computational resource consumption. In this paper, we propose an efficient Evolutionary Neural Architecture Search (ENAS) method to address this issue. Specifically, in order to accelerate the convergence speed of the algorithm and shorten the search time, thereby avoiding blind searching in the early stages of the algorithm, we drew on the principles of biometrics to redesign the interaction between individuals in the evolutionary algorithm. By making full use of the information carried by individuals, we promoted information exchange and optimization between individuals and their neighbors, thereby improving local search capabilities while maintaining global search capabilities. Furthermore, to accelerate the evaluation process and minimize computational resource consumption, a multi-metric training-free evaluator is introduced to assess network performance, bypassing the resource-intensive training phase, and the adopted multi-metric combination method further solves the ranking offset problem. To evaluate the performance of the proposed method, we conduct experiments on two widely adopted benchmarks, NAS-Bench-101 and NAS-Bench-201. Comparative analysis with state-of-the-art algorithms shows that our proposed method identifies network architectures with comparable or better performance while requiring significantly less time. Full article
(This article belongs to the Special Issue Exploration of Bio-Inspired Computing)
Show Figures

Figure 1

22 pages, 2814 KiB  
Article
Quantitative Evaluation of Postural SmartVest’s Multisensory Feedback for Affordable Smartphone-Based Post-Stroke Motor Rehabilitation
by Maria da Graca Campos Pimentel, Amanda Polin Pereira, Olibario Jose Machado Neto, Larissa Cardoso Zimmermann and Valeria Meirelles Carril Elui
Int. J. Environ. Res. Public Health 2025, 22(7), 1034; https://doi.org/10.3390/ijerph22071034 - 28 Jun 2025
Viewed by 363
Abstract
Accessible tools for post-stroke motor rehabilitation are critically needed to promote recovery beyond clinical settings. This pilot study evaluated the impact of a posture correction intervention using the Postural SmartVest, a wearable device that delivers multisensory feedback via a smartphone app. Forty individuals [...] Read more.
Accessible tools for post-stroke motor rehabilitation are critically needed to promote recovery beyond clinical settings. This pilot study evaluated the impact of a posture correction intervention using the Postural SmartVest, a wearable device that delivers multisensory feedback via a smartphone app. Forty individuals with post-stroke hemiparesis participated in a single supervised session, during which each patient completed the same four-phase functional protocol: multidirectional walking, free walking toward a refrigerator, an upper-limb reaching and object-handling task, and walking back to the starting point. Under the supervision of their therapists, each patient performed the full protocol twice—first without feedback and then with feedback—which allowed within-subject comparisons across multiple metrics, including upright posture duration, number and frequency of posture-related events, and temporal distribution. Additional analyses explored associations with demographic and clinical variables and identified predictors through regression models. Wilcoxon signed-rank and Mann–Whitney U tests showed significant improvements with feedback, including an increase in upright posture time (p<0.001), an increase in the frequency of upright posture events (p<0.001), and a decrease in the total task time (p=0.038). No significant subgroup differences were found for age, sex, lateralization, or stroke chronicity. Regression models did not identify significant predictors of improvement. Full article
Show Figures

Figure 1

41 pages, 1353 KiB  
Article
Improving Survey Data Interpretation: A Novel Approach to Analyze Single-Item Ordinal Responses with Non-Response Categories
by Ewa Roszkowska
Information 2025, 16(7), 546; https://doi.org/10.3390/info16070546 - 27 Jun 2025
Viewed by 367
Abstract
Questionnaire data plays a key role in social research, especially when evaluating public attitudes using Likert-type scales. Yet, traditional analyses often merge some ordinal categories and exclude responses such as Don’t Know, No Answer, or Refused—risking the loss of valuable information. This study [...] Read more.
Questionnaire data plays a key role in social research, especially when evaluating public attitudes using Likert-type scales. Yet, traditional analyses often merge some ordinal categories and exclude responses such as Don’t Know, No Answer, or Refused—risking the loss of valuable information. This study introduces BS-TOSIE (Belief Structure-Based TOPSIS for Survey Item Evaluation), a novel method that preserves and integrates all response types, including ambiguous ones. By combining the Belief Structure framework with the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, BS-TOSIE offers a structured approach to ranking and evaluating individual survey items measured on an ordinal scale, even in the presence of missing or incomplete data. Response distributions are transformed into a belief structure vector, enabling comparison against ideal and anti-ideal benchmarks. We demonstrate this approach using data from the Quality of Life in European Cities survey to assess perceptions of local governance in European cities. This study analyzes changes in citizen satisfaction with local public administration across five key dimensions—timeliness, procedural clarity, fairness of fees, digital accessibility, and perceived corruption—in 83 European cities between 2019 and 2023. The findings reveal persistent regional disparities, with Northern and Western European cities consistently outperforming those in Southern and Eastern Europe, although some cities in Central Europe show signs of improvement. Zurich consistently received high satisfaction scores, while other cities, such as Rome and Palermo, showed lower scores. Unlike traditional methods, our approach preserves the full spectrum of responses, yielding more nuanced and interpretable insights. The results show that BS-TOSIE enhances both the clarity and depth of survey analysis, making a methodological contribution to the evaluation of ordinal data and offering empirical insights into public perceptions of local city administration. Full article
(This article belongs to the Special Issue New Applications in Multiple Criteria Decision Analysis, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop