Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = full-duplex systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 546 KiB  
Article
Covert Communications via Full-Duplex User Relaying
by Jong Yeol Ryu and Jung Hoon Lee
Sensors 2025, 25(12), 3614; https://doi.org/10.3390/s25123614 - 9 Jun 2025
Viewed by 417
Abstract
In this paper, we investigate a covert communication system with a full-duplex decode-and-forward (DF) relay and introduce a user-relaying scheme that maximizes the covert rate while ensuring the covertness requirement. In our system model, Alice (transmitter) sends regular data to Carol (regular user) [...] Read more.
In this paper, we investigate a covert communication system with a full-duplex decode-and-forward (DF) relay and introduce a user-relaying scheme that maximizes the covert rate while ensuring the covertness requirement. In our system model, Alice (transmitter) sends regular data to Carol (regular user) and occasionally embeds covert data for Bob (covert user). Meanwhile, Willie (warden) monitors for covert transmissions. Carol assists Alice by acting as a full-duplex DF relay, decoding both data types via successive interference cancellation and relaying covert data using phase steering and power allocation to confuse Willie. Our proposed scheme adopts a novel approach in which the covert data received by Willie is perfectly canceled, optimizing Alice’s and Carol’s transmissions to maximize the covert rate while keeping Willie’s detection probability below a given threshold. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

32 pages, 4042 KiB  
Article
A New Measurement Method for BDS Inter-Satellite Link Based on Co-Frequency Co-Time Full Duplex System
by Hao Feng, Zhuo Yang, Hong Ma, Yiwen Jiao, Tao Wu, Hongbin Ma and Qimin Chen
Sensors 2025, 25(11), 3538; https://doi.org/10.3390/s25113538 - 4 Jun 2025
Viewed by 580
Abstract
To meet the urgent need for high-precision ranging and large-capacity transmission in the current BeiDou-3 inter-satellite link system, this paper proposes a novel two-way measurement method based on Co-frequency Co-time Full Duplex (CCFD) system. This approach effectively addresses the limitations of traditional Time-Division [...] Read more.
To meet the urgent need for high-precision ranging and large-capacity transmission in the current BeiDou-3 inter-satellite link system, this paper proposes a novel two-way measurement method based on Co-frequency Co-time Full Duplex (CCFD) system. This approach effectively addresses the limitations of traditional Time-Division Half-Duplex (TDHD) systems, such as complex link establishment processes, constrained ranging accuracy, and limited transmission efficiency. Based on the spatial configuration of the BeiDou-3 satellite navigation constellation, a dynamic link constraint model is constructed, and a comprehensive link budget analysis is conducted for the entire inter-satellite measurement process. The fundamental principle, system model, and key errors of the two-way measurement in CCFD are derived in detail. Theoretical analysis and experimental simulations demonstrate that the proposed CCFD system is feasible and achieves remarkable ranging accuracy improvements. At a carrier-to-noise ratio of 61.6 dBHz, the system attains 1σ ranging accuracy of 1.9 cm, representing a 51.3% enhancement over the 3.9 cm accuracy of the TDHD system. When operating at 69.3 dBHz, the precision further improves to 0.8 cm, outperforming TDHD’s 2.2 cm by 66.8%. The introduction of CCFD technology can significantly enhance the performance level of the BeiDou-3 satellite navigation system, demonstrating broad application prospects for the future. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

21 pages, 411 KiB  
Article
Full-Duplex Relaying Systems with Massive MIMO: Equal Gain Approach
by Meng Wang, Boying Zhao, Wenqing Li, Meng Jin and Si-Nian Jin
Symmetry 2025, 17(5), 770; https://doi.org/10.3390/sym17050770 - 15 May 2025
Viewed by 302
Abstract
In this paper, the uplink spectral efficiency performance of a massive MIMO system based on full-duplex relay communication is investigated in Rician fading channels. The relay station is equipped with a large number of antennas, while multiple source and destination nodes are located [...] Read more.
In this paper, the uplink spectral efficiency performance of a massive MIMO system based on full-duplex relay communication is investigated in Rician fading channels. The relay station is equipped with a large number of antennas, while multiple source and destination nodes are located at both ends of the transceiver. Each source and destination node is equipped with a single antenna. The relay station adopts Maximum Ratio Combining/Maximum Ratio Transmission (MRC/MRT) and Equal Gain Combining/Equal Gain Transmission (EGC/EGT) schemes to perform linear preprocessing on the received signals. Approximate expressions for uplink spectral efficiency under both MRC/MRT and EGC/EGT schemes are derived, and the effects of antenna number, signal-to-noise ratio (SNR), and loop interference on spectral efficiency are analyzed. In addition, the impact of full-duplex and half-duplex modes on system performance is compared, and a hybrid relay scheme is proposed to maximize the total spectral efficiency by dynamically switching between full-duplex and half-duplex modes based on varying levels of loop interference. Finally, a novel power allocation scheme is proposed to maximize energy efficiency under given total spectral efficiency and peak power constraints at both the relay and source nodes. The results show that the impact of loop interference can be eliminated by using a massive receive antenna array, leading to the disappearance of inter-pair interference and noise. Under these conditions, the spectral efficiency of the system can be improved up to 2N times, while the transmission power of the user and relay nodes can be reduced to 1/Nrx and 1/Ntx, respectively. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

15 pages, 567 KiB  
Article
Low-Complexity Relay Selection for Full-Duplex Random Relay Networks
by Jonghyun Bang and Taehyoung Kim
Mathematics 2025, 13(6), 971; https://doi.org/10.3390/math13060971 - 14 Mar 2025
Viewed by 419
Abstract
Full-duplex relay networks have been studied to enhance network performance under the assumption that the number and positions of relay nodes are fixed. To account for the practical randomness in the number and locations of relays, this paper investigates full-duplex random relay networks [...] Read more.
Full-duplex relay networks have been studied to enhance network performance under the assumption that the number and positions of relay nodes are fixed. To account for the practical randomness in the number and locations of relays, this paper investigates full-duplex random relay networks (FDRRNs) where all nodes are randomly distributed following a Poisson point process (PPP) model. In addition, we propose a low-complexity relay selection algorithm that constructs the candidate relay set while considering the selection diversity gain. Our simulation results demonstrate that, rather than simply increasing the number of candidate relay nodes, selecting an appropriate candidate relay set can achieve significant performance enhancement without unnecessarily increasing system complexity. Full article
(This article belongs to the Special Issue Computational Methods in Wireless Communication)
Show Figures

Figure 1

21 pages, 783 KiB  
Article
Robust Beamfocusing for Secure NFC with Imperfect CSI
by Weijian Chen, Zhiqiang Wei and Zai Yang
Sensors 2025, 25(4), 1240; https://doi.org/10.3390/s25041240 - 18 Feb 2025
Viewed by 778
Abstract
In this paper, we consider the issue of the physical layer security (PLS) problem between two nodes, i.e., transmitter (Alice) and receiver (Bob), in the presence of an eavesdropper (Eve) in a near-field communication (NFC) system. Notably, massive multiple-input multiple-output (MIMO) arrays significantly [...] Read more.
In this paper, we consider the issue of the physical layer security (PLS) problem between two nodes, i.e., transmitter (Alice) and receiver (Bob), in the presence of an eavesdropper (Eve) in a near-field communication (NFC) system. Notably, massive multiple-input multiple-output (MIMO) arrays significantly increase array aperture, thereby rendering the eavesdroppers more inclined to lurk near the transmission end. This situation necessitates using near-field channel models to more accurately describe channel characteristics. We consider two schemes with imperfect channel estimation information (CSI). The first scheme involves a conventional multiple-input multiple-output multiple-antenna eavesdropper (MIMOME) setup, where Alice simultaneously transmits information signal and artificial noise (AN). In the second scheme, Bob operates in a full-duplex (FD) mode, with Alice transmitting information signal while Bob emits AN. We then jointly design beamforming and AN vectors to degrade the reception signal quality at Eve, based on the signal-to-interference-plus-noise ratio (SINR) of each node. To tackle the power minimization problem, we propose an iterative algorithm that includes an additional constraint to ensure adherence to specified quality-of-service (QoS) metrics. Additionally, we decompose the robust optimization problem of the two schemes into two sub-problems, with one that can be solved using generalized Rayleigh quotient methods and the other that can be addressed through semi-definite programming (SDP). Finally, our simulation results confirm the viability of the proposed approach and demonstrate the effectiveness of the protection zone for NFC systems operating with CSI. Full article
(This article belongs to the Special Issue Secure Communication for Next-Generation Wireless Networks)
Show Figures

Figure 1

20 pages, 1044 KiB  
Article
Reliable Transmission of Energy Harvesting Full-Duplex Relay Systems with Short-Packet Communications
by Chenxi Yang, Mingkang Yu, Jinshu Huang, Dechuan Chen, Jin Li and Pei Jiang
Symmetry 2025, 17(2), 281; https://doi.org/10.3390/sym17020281 - 12 Feb 2025
Viewed by 628
Abstract
Energy harvesting (EH) from radio frequency (RF) signals provides a promising approach for supplying sustainable and convenient energy to low-power Internet of Things (IoT) devices. In this work, we investigate short-packet communications in a full-duplex (FD) relay system, where RF signals from a [...] Read more.
Energy harvesting (EH) from radio frequency (RF) signals provides a promising approach for supplying sustainable and convenient energy to low-power Internet of Things (IoT) devices. In this work, we investigate short-packet communications in a full-duplex (FD) relay system, where RF signals from a source are utilized to power an energy-constrained relay through the time switching protocol. Specifically, hardware impairments in each node and residual self-interference caused by FD are jointly considered. To ensure reliable transmission, two antennas are symmetrically arranged according to the position of the relay station, both of which are used for energy harvesting. Furthermore, we explored two practical schemes based on symmetric channel correlation, i.e., an independent channel for energy harvesting and an identical channel for energy harvesting. For both scenarios, we derive closed-form approximations for the overall average block error rate (BLER) and effective throughput. The validity of our analysis is confirmed through computer simulations, demonstrating that the proposed scheme enhances the reliability and throughput of the system compared with the existing scheme in the literature at low transmission rates and transmit signal-to-noise-ratios (SNRs). Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Future Wireless Networks)
Show Figures

Figure 1

22 pages, 5134 KiB  
Article
Reinforcement Learning-Based Resource Allocation Scheme of NR-V2X Sidelink for Joint Communication and Sensing
by Zihan Li, Ping Wang, Yamin Shen and Song Li
Sensors 2025, 25(2), 302; https://doi.org/10.3390/s25020302 - 7 Jan 2025
Cited by 2 | Viewed by 1495
Abstract
Joint communication and sensing (JCS) is becoming an important trend in 6G, owing to its efficient utilization of spectrums and hardware resources. Utilizing echoes of the same signal can achieve the object location sensing function, in addition to the V2X communication function. There [...] Read more.
Joint communication and sensing (JCS) is becoming an important trend in 6G, owing to its efficient utilization of spectrums and hardware resources. Utilizing echoes of the same signal can achieve the object location sensing function, in addition to the V2X communication function. There is application potential for JCS systems in the fields of ADAS and unmanned autos. Currently, the NR-V2X sidelink has been standardized by 3GPP to support low-latency high-reliability direct communication. In order to combine the benefits of both direct communication and JCS, it is promising to extend existing NR-V2X sidelink communication toward sidelink JCS. However, conflicting performance requirements arise between radar sensing accuracy and communication reliability with the limited sidelink spectrum. In order to overcome the challenges in the distributed resource allocation of sidelink JCS with a full-duplex, this paper has proposed a novel consecutive-collision mitigation semi-persistent scheduling (CCM-SPS) scheme, including the collision detection and Q-learning training stages to suppress collision probabilities. Theoretical performance analyses on Cramér–Rao Lower Bounds (CRLBs) have been made for the sensing of sidelink JCS. Key performance metrics such as CRLB, PRR and UD have been evaluated. Simulation results show the superior performance of CCM-SPS compared to similar solutions, with promising application prospects. Full article
(This article belongs to the Special Issue Communication, Sensing and Localization in 6G Systems)
Show Figures

Figure 1

17 pages, 952 KiB  
Article
A Power Analysis Method for Self-Interference Signal Components in Full-Duplex Transceivers Under Constant/Nonconstant Modulus Signal Stimulation
by Jia Sun, Jinping Huang, Yonghong Liu, Xizhang Wei, Jingtong Lai and Jie Xiao
Electronics 2024, 13(24), 4961; https://doi.org/10.3390/electronics13244961 - 17 Dec 2024
Viewed by 956
Abstract
The existence of multiple self-interference (SI) signal components, particularly the nonlinear ones, seriously constrains the performance of self-interference cancellation (SIC) methods. To decrease the complexity of SIC methods in full-duplex devices, this article proposes a power analysis method for SI signal components in [...] Read more.
The existence of multiple self-interference (SI) signal components, particularly the nonlinear ones, seriously constrains the performance of self-interference cancellation (SIC) methods. To decrease the complexity of SIC methods in full-duplex devices, this article proposes a power analysis method for SI signal components in a full-duplex transceiver. The proposed method comprises a separate analysis algorithm and a system-level power model. Initially, the algorithm is conducted to obtain the spectrum of the linear and nonlinear components in the power amplifier (PA) output signal. Once the linear-to-nonlinear power ratio (LNPR) has been obtained, a system-level power model is constructed by taking both the transmitter noise and analog-to-digital converter (ADC) quantization noise into account. The proposed power model allows for the allocation of SIC method performance in multiple domains during the design of full-duplex transceivers at the top level, thereby reducing the overall system complexity. The simulation results demonstrate that in a full-duplex transceiver with only antenna isolation, the power of the SI signal component is susceptible to alterations due to the operating waveform and transmission power. Finally, the accuracy of the power analysis method is verified through measurement and Simulink. Full article
Show Figures

Figure 1

22 pages, 4119 KiB  
Review
Dual-Band Passive Beam Steering Antenna Technologies for Satellite Communication and Modern Wireless Systems: A Review
by Maira I. Nabeel, Khushboo Singh, Muhammad U. Afzal, Dushmantha N. Thalakotuna and Karu P. Esselle
Sensors 2024, 24(18), 6144; https://doi.org/10.3390/s24186144 - 23 Sep 2024
Cited by 5 | Viewed by 3806
Abstract
Efficient beam steerable high-gain antennas enable high-speed data rates over long-distance networks, including wireless backhaul, satellite communications (SATCOM), and SATCOM On-the-Move. These characteristics are essential for advancing contemporary wireless communication networks, particularly within 5G and beyond. Various beam steering solutions have been proposed [...] Read more.
Efficient beam steerable high-gain antennas enable high-speed data rates over long-distance networks, including wireless backhaul, satellite communications (SATCOM), and SATCOM On-the-Move. These characteristics are essential for advancing contemporary wireless communication networks, particularly within 5G and beyond. Various beam steering solutions have been proposed in the literature, with passive beam steering mechanisms employing planar metasurfaces emerging as cost-effective, power-efficient, and compact options. These attributes make them well-suited for use in confined spaces, large-scale production and widespread distribution to meet the demands of the mass market. Utilizing a dual-band antenna terminal setup is often advantageous for full duplex communication in wireless systems. Therefore, this article presents a comprehensive review of the dual-band beam steering techniques for enabling full-duplex communication in modern wireless systems, highlighting their design methodologies, scanning mechanisms, physical characteristics, and constraints. Despite the advantages of planar metasurface-based beam steering solutions, the literature on dual-band beam steering antennas supporting full duplex communication is limited. This review article identifies research gaps and outlines future directions for developing economically feasible passive dual-band beam steering solutions for mass deployment. Full article
Show Figures

Figure 1

17 pages, 10211 KiB  
Article
Digital Self-Interference Cancellation for Full-Duplex Systems Based on CNN and GRU
by Jun Liu and Tian Ding
Electronics 2024, 13(15), 3041; https://doi.org/10.3390/electronics13153041 - 1 Aug 2024
Cited by 1 | Viewed by 2045
Abstract
Self-interference (SI) represents a bottleneck in the performance of full-duplex (FD) communication systems, necessitating robust offsetting techniques to unlock the potential of FD systems. Currently, deep learning has been leveraged within the communication domain to address specific challenges and enhance efficiency. Inspired by [...] Read more.
Self-interference (SI) represents a bottleneck in the performance of full-duplex (FD) communication systems, necessitating robust offsetting techniques to unlock the potential of FD systems. Currently, deep learning has been leveraged within the communication domain to address specific challenges and enhance efficiency. Inspired by this, this paper reviews the self-interference cancellation (SIC) process in the digital domain focusing on SIC capability. The paper introduces a model architecture that integrates CNN and gated recurrent unit (GRU), while also incorporating residual networks and self-attention mechanisms to enhance the identification and elimination of SI. This model is named CGRSA-Net. Firstly, CNN is employed to capture local signal features in the time–frequency domain. Subsequently, a ResNet module is introduced to mitigate the gradient vanishing problem. Concurrently, GRU is utilized to dynamically capture and retain both long- and short-term dependencies during the communication process. Lastly, by integrating the self-attention mechanism, attention weights are flexibly assigned when processing sequence data, thereby focusing on the most important parts of the input sequence. Experimental results demonstrate that the proposed CGRSA-Net model achieves a minimum of 28% improvement in nonlinear SIC capability compared to polynomial and existing neural network-based eliminator. Additionally, through ablation experiments, we demonstrate that the various modules utilized in this paper effectively learn signal features and further enhance SIC performance. Full article
Show Figures

Figure 1

19 pages, 605 KiB  
Article
Bilayer Intelligent Omni-Surface-Assisted Full-Duplex Systems: Simultaneous Self-Interference Cancellation and Sum Rate Maximization
by Yunxia Zhou, Qiucen Wu and Yu Zhu
Sensors 2024, 24(14), 4535; https://doi.org/10.3390/s24144535 - 13 Jul 2024
Viewed by 912
Abstract
Recently, reconfigurable intelligent surfaces (RISs) have attracted increasing attentions in the design of full-duplex (FD) systems due to their novel capability of propagation environment reconfiguration. However, in conventional RIS-assisted FD systems, the beamforming for self-interference cancellation (SIC) and sum rate maximization (SRM) are [...] Read more.
Recently, reconfigurable intelligent surfaces (RISs) have attracted increasing attentions in the design of full-duplex (FD) systems due to their novel capability of propagation environment reconfiguration. However, in conventional RIS-assisted FD systems, the beamforming for self-interference cancellation (SIC) and sum rate maximization (SRM) are highly coupled during RIS optimization, which significantly degrades the system performance. To tackle this issue, we exploit a novel bilayer intelligent omni-surface (BIOS) structure in FD systems. Compared with the conventional RIS designs, the BIOS provides independent beams on both sides, thus enabling more flexible achievement of SRM and SIC. For the BIOS-assisted FD system, we first formulate an optimization problem to achieve SRM and efficient SIC simultaneously. Then, we exploit the relationship between the SRM and mean square error (MSE), and propose a weighted MSE minimization with SIC algorithm to solve the problem. Specifically, we jointly design the beamforming at the base station and the BIOS with manifold optimization while guaranteeing an SIC constraint. Furthermore, we theoretically derive a lower band for the BIOS size required for efficient SIC in FD systems. Simulation results indicate that the BIOS outperforms the conventional RIS designs in FD systems, and verify the accuracy of the derived lower bound for the BIOS size. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 1008 KiB  
Article
Full-Duplex Unmanned Aerial Vehicle Communications for Cellular Spectral Efficiency Enhancement Utilizing Device-to-Device Underlaying Structure
by Yuetian Zhou and Yang Li
Electronics 2024, 13(12), 2264; https://doi.org/10.3390/electronics13122264 - 9 Jun 2024
Viewed by 928
Abstract
Unmanned aerial vehicle (UAV) communications have gained recognition as a promising technology due to their unique characteristics of rapid deployment and flexible configuration. Meanwhile, device-to-device (D2D) and full-duplex (FD) technologies have emerged as promising methods for enhancing spectral efficiency and offloading traffic. One [...] Read more.
Unmanned aerial vehicle (UAV) communications have gained recognition as a promising technology due to their unique characteristics of rapid deployment and flexible configuration. Meanwhile, device-to-device (D2D) and full-duplex (FD) technologies have emerged as promising methods for enhancing spectral efficiency and offloading traffic. One significant advantage of UAVs is their ability to partition suitable D2D pairs to increase cell capacity. In this paper, we present a novel network model in which UAVs are considered D2D pairs underlaying cellular networks, integrating FD into the communication links between UAVs to improve spectral efficiency. We then investigate a resource allocation problem for the proposed FD-UAV D2D underlaying structure model, with the objective of maximizing the system’s sum rate. Specifically, the UAVs in our model operate in full-duplex mode as D2D users (DUs), allowing the reuse of both the uplink and downlink subcarrier resources of cellular users (CUs). This optimization challenge is formulated as a mixed-integer nonlinear programming problem, known for its NP-hard and intractable nature. To address this issue, we propose a heuristic algorithm (HA) that decomposes the problem into two steps: power allocation and user pairing. The optimal power allocation is solved as a nonlinear programming problem by searching among a finite set, while the user pairing problem is addressed using the Kuhn–Munkres algorithm. The numerical results indicate that our proposed FD-MaxSumCell-HA (full-duplex UAVs maximizing the cell sum rate with a heuristic algorithm) scheme for FD-UAV D2D underlaying models outperforms HD-UAV underlaying cellular networks, with improved access rates for UAVs in FD-MaxSumCell-HA compared to HD-UAV networks. Full article
(This article belongs to the Special Issue Innovative Technologies and Services for Unmanned Aerial Vehicles)
Show Figures

Figure 1

16 pages, 1978 KiB  
Article
Security Performance Analysis of Full-Duplex UAV Assisted Relay System Based on SWIPT Technology
by Shenmenglu Yang and Hongyu Ma
Appl. Sci. 2024, 14(12), 4987; https://doi.org/10.3390/app14124987 - 7 Jun 2024
Cited by 1 | Viewed by 1097
Abstract
In this paper, a new methodology is developed for modeling and analyzing a full-duplex UAV-assisted relay system to facilitate solving the problems of UAV energy constraints and the vulnerability of UAVs to eavesdropping in the air. Combining simultaneous wireless information and power transfer [...] Read more.
In this paper, a new methodology is developed for modeling and analyzing a full-duplex UAV-assisted relay system to facilitate solving the problems of UAV energy constraints and the vulnerability of UAVs to eavesdropping in the air. Combining simultaneous wireless information and power transfer (SWIPT) technology, we model the downlink UAV eavesdropping channel and propose a secure transmission protocol for a full-duplex UAV-assisted relay system. Using this transmission protocol, we analyze and derive the connectivity and security of the entire communication link, including connection probability and lower bounds on secrecy outage probability. A key intermediate step in our analysis is to derive the signal-to-digital noise ratio of the destination and eavesdropping nodes of the full-duplex UAV relay link. The analyses show that the power allocation factor λ is a trade-off between system connectivity and security, while greater eavesdropping interference needs to be sacrificed for an equal magnitude of security performance improvement under high security demand conditions. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

9 pages, 1885 KiB  
Article
Ergodic Rate Analysis for Full-Duplex and Half-Duplex Networks with Energy Harvesting
by Bin Zhong, Liang Chen and Zhongshan Zhang
Electronics 2024, 13(11), 2195; https://doi.org/10.3390/electronics13112195 - 4 Jun 2024
Cited by 1 | Viewed by 929
Abstract
Considering energy harvesting, the ergodic data rates for both in band full-duplex (FD) and half-duplex (HD) wireless communications were studied. The analytic expressions of downlink and uplink ergodic rates for the proposed system were first derived with independent and identically distributed (i.i.d.) Rayleigh [...] Read more.
Considering energy harvesting, the ergodic data rates for both in band full-duplex (FD) and half-duplex (HD) wireless communications were studied. The analytic expressions of downlink and uplink ergodic rates for the proposed system were first derived with independent and identically distributed (i.i.d.) Rayleigh fading link. It was revealed that the uplink data rate can be improved by decreasing the downlink data rate. Furthermore, the uplink/downlink data rates are also shown to be influenced by some significance parameters, for example, the power split parameter and signal-to-noise ratio (SNR) (i.e., PS/σ2) of each link. Additionally, unlike the HD, the proposed FD node is capable of harvesting energy during the communication process; however, this is at the cost of performance loss induced by the residual self-interference (RSI), which is caused by the essence of simultaneous uplink and downlink transmissions in a single frequency band. Full article
Show Figures

Figure 1

14 pages, 431 KiB  
Article
Deep Learning-Driven Interference Perceptual Multi-Modulation for Full-Duplex Systems
by Taehyoung Kim and Gyuyeol Kong
Mathematics 2024, 12(10), 1542; https://doi.org/10.3390/math12101542 - 15 May 2024
Viewed by 1551
Abstract
In this paper, a novel data transmission scheme, interference perceptual multi-modulation (IP-MM), is proposed for full-duplex (FD) systems. In order to unlink the conventional uplink (UL) data transmission using a single modulation and coding scheme (MCS) over the entire assigned UL bandwidth, IP-MM [...] Read more.
In this paper, a novel data transmission scheme, interference perceptual multi-modulation (IP-MM), is proposed for full-duplex (FD) systems. In order to unlink the conventional uplink (UL) data transmission using a single modulation and coding scheme (MCS) over the entire assigned UL bandwidth, IP-MM enables the transmission of UL data channels based on multiple MCS levels, where a different MCS level is applied to each subband of UL transmission. In IP-MM, a deep convolutional neural network is used for MCS-level prediction for each UL subband by estimating the potential residual self-interference (SI) according to the downlink (DL) resource allocation pattern. In addition, a subband-based UL transmission procedure is introduced from a specification point of view to enable IP-MM-based UL transmission. The benefits of IP-MM are verified using simulations, and it is observed that IP-MM achieves approximately 20% throughput gain compared to the conventional UL transmission scheme. Full article
Show Figures

Figure 1

Back to TopTop