Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = fuel-rich composite powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3748 KiB  
Article
An Investigation of the Catalytic Activity of Inconel and Stainless Steel Powders in Reforming Primary Syngas
by Claudia Bezerra Silva, Michael Lugo-Pimentel, Carlos M. Ceballos and Jean-Michel Lavoie
Sustainability 2025, 17(3), 980; https://doi.org/10.3390/su17030980 - 25 Jan 2025
Viewed by 1251
Abstract
Biomass is perhaps the only renewable resource on the planet capable of delivering molecules similar to those derived from petroleum, and one of the most developed technologies to achieve this is gasification. When it comes to biomass conversion into fuels and commodities, supercritical [...] Read more.
Biomass is perhaps the only renewable resource on the planet capable of delivering molecules similar to those derived from petroleum, and one of the most developed technologies to achieve this is gasification. When it comes to biomass conversion into fuels and commodities, supercritical water gasification (SCWG) could offer promising solution for producing hydrogen-rich syngas. However, the presence of methane (CH4) and carbon dioxide (CO2) in the syngas could negatively impact downstream processes, particularly when carbon monoxide is also required. Hence, improving the quality of the syngas produced from biomass gasification is essential for promoting the sustainability of several industrial processes. In this context, understanding the principles of the dry reforming of methane (DRM) becomes essential for upgrading syngas with high CH4 and CO2 content, especially when the carbon monoxide content is low. In addition to the experimental conditions used in such process, it has been reported that the material composition of the reactor can impact on reforming performance. Hence, this work aims at comparing the catalytic efficacy of Inconel and stainless steel for reforming syngas derived from SCWG under standard DRM conditions. In this specific work, the metals were directly used as catalyst and results showed that when using Inconel powder, CH4 conversion increased from 3.03% to 37.67% while CO2 conversion went from 23.16% to 51.48% when compared to stainless steel. Elemental and structural analyses revealed that the Inconel’s superior performance might be due to its high nickel content and the formation of active oxide compounds, such as FeNiO, FeCrO3, Fe3O4, Cr2O3, and Cr2NiO4, during the reaction. In contrast, Fe3O4 was the only oxide found in stainless steel post-reaction. Additionally, increasing the total gas feed flow rate was shown to reduce CH4 and CO2 conversions, supporting the known impact of residency time on catalytic efficiency. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Graphical abstract

25 pages, 3640 KiB  
Article
Computationally Inexpensive CFD Approach for the Combustion of Sewage Sludge Powder, Including the Consideration of Water Content and Limestone Additive Variations
by Benjamin Ortner, Christian Schmidberger, Hannes Gerhardter, René Prieler, Hartmuth Schröttner and Christoph Hochenauer
Energies 2023, 16(4), 1798; https://doi.org/10.3390/en16041798 - 11 Feb 2023
Cited by 6 | Viewed by 2535
Abstract
As a result of growing interest in the thermal treatment of sewage sludge with methods such as combustion, gasification or pyrolysis, and also in processes that aim to recover precious components such as phosphorus from this waste, a growing demand has been observed [...] Read more.
As a result of growing interest in the thermal treatment of sewage sludge with methods such as combustion, gasification or pyrolysis, and also in processes that aim to recover precious components such as phosphorus from this waste, a growing demand has been observed for Computational Fluid Dynamics (CFD) models that provide solutions rapidly and accurately for efficient application in research and development. This study was carried out to develop a computationally inexpensive modelling approach for the combustion of pulverized sewage sludge in entrained flow furnaces. Sewage sludge is a very volatile-rich fuel. Therefore, the Steady Diffusion Flamelet model (SFM), in combination with a validated skeletal reaction mechanism, was applied to consider the pulverized firing of sewage sludge. It was possible to represent the complex composition of volatiles emitted from the sludge particles by releasing surrogate fuels. In addition, the influence of limestone additive (calcination reaction) and varying water content (water–gas shift reaction) was investigated experimentally and modelled via CFD. The simulation results confirm that the surrogate fuel approach is valid and can be used to describe pulverized sewage sludge effectively. The temperature and species concentration results, including the influence of the additive and different levels of water content, were confirmed by experimental data, which is usually hard to obtain due to the tendency of PSS to form agglomerates in entrained flow combustion furnaces. The model yields plausible and experimentally validated results for the combustion of sewage sludge powder across a wide range of operating conditions. Full article
(This article belongs to the Topic Computational Fluid Dynamics (CFD) and Its Applications)
Show Figures

Figure 1

8 pages, 2610 KiB  
Communication
Nanoscale Detonation Carbon Demonstrates Biosafety in Human Cell Culture
by Anastasia A. Malakhova, Denis K. Rybin, Alexandr A. Shtertser and Dina V. Dudina
Micromachines 2022, 13(8), 1187; https://doi.org/10.3390/mi13081187 - 27 Jul 2022
Cited by 2 | Viewed by 1834
Abstract
The production method of nanoscale detonation carbon (NDC) has recently been developed at Lavrentyev Institute of Hydrodynamics SB RAS. This method uses the reaction of acetylene with oxygen conducted in the detonation mode in fuel-rich acetylene–oxygen mixtures. The morphology and structural features of [...] Read more.
The production method of nanoscale detonation carbon (NDC) has recently been developed at Lavrentyev Institute of Hydrodynamics SB RAS. This method uses the reaction of acetylene with oxygen conducted in the detonation mode in fuel-rich acetylene–oxygen mixtures. The morphology and structural features of the NDC particles can be varied by changing the concentration of oxygen in the gaseous mixtures. The particles of NDC can serve as reinforcements in metal matrix composites and additives imparting electrical conductivity to polymer matrix composites. Before NDC can be considered for industrial applications, it is necessary to address the related biological safety concerns. The present work was aimed at determining the cytotoxicity of NDC. The NDC powders with two morphologies (obtained using different acetylene/oxygen ratios) were tested on HEK293A human cells. The NDC powder was added to the culture medium in concentrations ranging from 10 ng/mL to 400 μg/mL. The cell viability was determined by a colorimetric EZ4U test and a real-time cell analyzer xCELLigence. None of the NDC samples showed a cytotoxic effect. The results of this study allow us to recommend NDC as a safe and useful product for the development of advanced carbon-based and composite materials. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Micromachines)
Show Figures

Figure 1

37 pages, 4412 KiB  
Article
Part I: NiMoO4 Nanostructures Synthesized by the Solution Combustion Method: A Parametric Study on the Influence of Synthesis Parameters on the Materials’ Physicochemical, Structural, and Morphological Properties
by Mahmoud Bassam Rammal and Sasha Omanovic
Molecules 2022, 27(3), 776; https://doi.org/10.3390/molecules27030776 - 25 Jan 2022
Cited by 10 | Viewed by 3803
Abstract
The impact of process conditions on the synthesis of NiMoO4 nanostructures using a solution combustion synthesis (SCS) method, in which agar powder and Ni(NO3)2 were utilized as fuel and as the oxidant, respectively, was thoroughly studied. The results show [...] Read more.
The impact of process conditions on the synthesis of NiMoO4 nanostructures using a solution combustion synthesis (SCS) method, in which agar powder and Ni(NO3)2 were utilized as fuel and as the oxidant, respectively, was thoroughly studied. The results show that the calcination temperature had a significant implication on the specific surface area, phase composition, particle size, band gap, and crystallite size. The influence of calcination time on the resulting physicochemical/structural/morphological properties of NiMoO4 nanostructures was found to be a major effect during the first 20 min, beyond which these properties varied to a lesser extent. The increase in the Ni/Mo atomic ratio in the oxide impacted the combustion dynamics of the system, which led to the formation of higher surface area materials, with the prevalence of the β-phase in Ni-rich samples. Likewise, the change in the pH of the precursor solution showed that the combustion reaction is more intense in the high-pH region, entailing major implications on the physicochemical properties and phase composition of the samples. The change in the fuel content showed that the presence of agar is important, as it endows the sample with a fluffy, porous texture and is also vital for the preponderance of the β-phase. Full article
Show Figures

Graphical abstract

25 pages, 3972 KiB  
Review
Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review
by Weiqiang Pang, Yang Li, Luigi T. DeLuca, Daolun Liang, Zhao Qin, Xiaogang Liu, Huixiang Xu and Xuezhong Fan
Nanomaterials 2021, 11(10), 2749; https://doi.org/10.3390/nano11102749 - 17 Oct 2021
Cited by 52 | Viewed by 6597
Abstract
The effects of different types of nano-sized metal particles, such as aluminum (nAl), zirconium (nZr), titanium (nTi), and nickel (nNi), on the properties of a variety of solid rocket propellants (composite, fuel-rich, and composite modified double base (CMDB)) were analyzed and compared with [...] Read more.
The effects of different types of nano-sized metal particles, such as aluminum (nAl), zirconium (nZr), titanium (nTi), and nickel (nNi), on the properties of a variety of solid rocket propellants (composite, fuel-rich, and composite modified double base (CMDB)) were analyzed and compared with those of propellants loaded with micro-sized Al (mAl) powder. Emphasis was placed on the investigation of burning rate, pressure exponent (n), and hazardous properties, which control whether a propellant can be adopted in solid rocket motors. It was found that nano-sized additives can affect the combustion behavior and increase the burning rate of propellants. Compared with the corresponding micro-sized ones, the nano-sized particles promote higher impact sensitivity and friction sensitivity. In this paper, 101 references are enclosed. Full article
(This article belongs to the Special Issue Energetic Nanomaterials)
Show Figures

Figure 1

23 pages, 7567 KiB  
Article
Preparation and Characterization of Silicon-Metal Fluoride Reactive Composites
by Siva Kumar Valluri, Mirko Schoenitz and Edward Dreizin
Nanomaterials 2020, 10(12), 2367; https://doi.org/10.3390/nano10122367 - 28 Nov 2020
Cited by 9 | Viewed by 2372
Abstract
Fuel-rich composite powders combining elemental Si with the metal fluoride oxidizers BiF3 and CoF2 were prepared by arrested reactive milling. Reactivity of the composite powders was assessed using thermoanalytical measurements in both inert (Ar) and oxidizing (Ar/O2) environments. Powders [...] Read more.
Fuel-rich composite powders combining elemental Si with the metal fluoride oxidizers BiF3 and CoF2 were prepared by arrested reactive milling. Reactivity of the composite powders was assessed using thermoanalytical measurements in both inert (Ar) and oxidizing (Ar/O2) environments. Powders were ignited using an electrically heated filament; particle combustion experiments were performed in room air using a CO2 laser as an ignition source. Both composites showed accelerated oxidation of Si when heated in oxidizing environments and ignited readily using the heated filament. Elemental Si, used as a reference, did not exhibit appreciable oxidation when heated under the same conditions and could not be ignited using either a heated filament or laser. Lower-temperature Si fluoride formation and oxidation were observed for the composites with BiF3; respectively, the ignition temperature for these composite powders was also lower. Particle combustion experiments were successful with the Si/BiF3 composite. The statistical distribution of the measured particle burn times was correlated with the measured particle size distribution to establish the effect of particle sizes on their burn times. The measured burn times were close to those measured for similar composites with Al and B serving as fuels. Full article
(This article belongs to the Special Issue Nanoenergetic Materials: Preparation, Properties, and Applications)
Show Figures

Figure 1

10 pages, 3116 KiB  
Article
Phase Transformation of High Velocity Air Fuel (HVAF)-Sprayed Al-Cu-Fe-Si Quasicrystalline Coating
by Mingwei Cai and Jun Shen
Metals 2020, 10(6), 834; https://doi.org/10.3390/met10060834 - 24 Jun 2020
Cited by 7 | Viewed by 2739
Abstract
Al-Cu-Fe-Si quasicrystalline coatings were prepared by high velocity air fuel spraying to study their phase transformation during the process. The feedstock powder and coating were phase characterized by scanning electron microscopy, X-ray diffractometry, differential scanning calorimetry, and transmission electron microscopy. Results show that [...] Read more.
Al-Cu-Fe-Si quasicrystalline coatings were prepared by high velocity air fuel spraying to study their phase transformation during the process. The feedstock powder and coating were phase characterized by scanning electron microscopy, X-ray diffractometry, differential scanning calorimetry, and transmission electron microscopy. Results show that Al3Cu2 phase, a small amount of λ-Al13Fe4 phase, quasicrystalline phase (QC), amorphous phase, and β-Al (Cu, Fe, Si) phase were present in the sprayed Al50Cu20Fe15Si15 powder. For a typical flattened powder particle, the splat periphery was surrounded by a 1 µm thick amorphous phase. The inside area of the splat was composed of the QC covered by the Al3Cu2 and Si-rich β-Al (Cu, Fe, Si) phases. Another kind of Cu- rich β-Al (Cu, Fe, Si) phase can be found close to the amorphous area with a similar composition to the original β-Al (Cu, Fe, Si) phase in the powder. Different phases were observed when the periphery and inside area of the splat were compared. This result was caused by the difference in the heating and cooling rates. Full article
Show Figures

Figure 1

33 pages, 10147 KiB  
Article
Nano-Sized and Mechanically Activated Composites: Perspectives for Enhanced Mass Burning Rate in Aluminized Solid Fuels for Hybrid Rocket Propulsion
by Christian Paravan
Aerospace 2019, 6(12), 127; https://doi.org/10.3390/aerospace6120127 - 25 Nov 2019
Cited by 23 | Viewed by 6594
Abstract
This work provides a lab-scale investigation of the ballistics of solid fuel formulations based on hydroxyl-terminated polybutadiene and loaded with Al-based energetic additives. Tested metal-based fillers span from micron- to nano-sized powders and include oxidizer-containing fuel-rich composites. The latter are obtained by chemical [...] Read more.
This work provides a lab-scale investigation of the ballistics of solid fuel formulations based on hydroxyl-terminated polybutadiene and loaded with Al-based energetic additives. Tested metal-based fillers span from micron- to nano-sized powders and include oxidizer-containing fuel-rich composites. The latter are obtained by chemical and mechanical processes providing reduced diffusion distance between Al and the oxidizing species source. A thorough pre-burning characterization of the additives is performed. The combustion behaviors of the tested formulations are analyzed considering the solid fuel regression rate and the mass burning rate as the main parameters of interest. A non-metallized formulation is taken as baseline for the relative grading of the tested fuels. Instantaneous and time-average regression rate data are determined by an optical time-resolved technique. The ballistic responses of the fuels are analyzed together with high-speed visualizations of the regressing surface. The fuel formulation loaded with 10 wt.% nano-sized aluminum (ALEX-100) shows a mass burning rate enhancement over the baseline of 55% ± 11% for an oxygen mass flux of 325 ± 20 kg/(m2∙s), but this performance increase nearly disappears as combustion proceeds. Captured high-speed images of the regressing surface show the critical issue of aggregation affecting the ALEX-100-loaded formulation and hindering the metal combustion. The oxidizer-containing composite additives promote metal ignition and (partial) burning in the oxidizer-lean region of the reacting boundary layer. Fuels loaded with 10 wt.% fluoropolymer-coated nano-Al show mass burning rate enhancement over the baseline >40% for oxygen mass flux in the range 325 to 155 kg/(m2∙s). The regression rate data of the fuel composition loaded with nano-sized Al-ammonium perchlorate composite show similar results. In these formulations, the oxidizer content in the fuel grain is <2 wt.%, but it plays a key role in performance enhancement thanks to the reduced metal–oxidizer diffusion distance. Formulations loaded with mechanically activated ALEX-100–polytetrafluoroethylene composites show mass burning rate increases up to 140% ± 20% with metal mass fractions of 30%. This performance is achieved with the fluoropolymer mass fraction in the additive of 45%. Full article
Show Figures

Figure 1

13 pages, 5804 KiB  
Article
Design and Fabrication of High Activity Retention Al-Based Composite Powders for Mild Hydrogen Generation
by Cuiping Wang, Kairui Lin, Yuheng Liu, Xinren Chen, Hongwei Zou, Changrui Qiu, Shuiyuan Yang and Xingjun Liu
Materials 2019, 12(20), 3328; https://doi.org/10.3390/ma12203328 - 12 Oct 2019
Cited by 14 | Viewed by 2625
Abstract
Al–Bi–Sn–Cu composite powders for hydrogen generation were designed from the calculated phase diagram and prepared by the gas atomization process. The morphologies and structures of the composite powders were investigated using X-ray diffraction (XRD) and a scanning electron microscope (SEM) equipped with energy-dispersive [...] Read more.
Al–Bi–Sn–Cu composite powders for hydrogen generation were designed from the calculated phase diagram and prepared by the gas atomization process. The morphologies and structures of the composite powders were investigated using X-ray diffraction (XRD) and a scanning electron microscope (SEM) equipped with energy-dispersive X-ray (EDX) spectroscopy, and the results indicate that the Cu additive enhanced the phase separation between the Al-rich phase and the (Bi, Sn)-rich phase. The hydrogen generation performances were investigated by reacting the materials with distilled water. The Al–Bi–Sn–Cu powders reveal a stable hydrogen generation rate, and the Al–10Bi–7Sn–3Cu (wt%) powder exhibits the best hydrogen generation performance in 50 °C distilled water which reaches 856 mL/g in 800 min. In addition, the antioxidation properties of the powders were also studied. The Al–10Bi–7Sn–3Cu (wt%) powder has a good resistance to oxidation and moisture, which shows great potential for being the hydrogen source for fuel cell applications. Full article
Show Figures

Figure 1

12 pages, 3716 KiB  
Article
Briquetting of Wastes from Pulp and Paper Industries by Using AOD Converter Slag as Binders for Application in Metallurgy
by Tova Jarnerud, Andrey V. Karasev and Pär G. Jönsson
Materials 2019, 12(18), 2888; https://doi.org/10.3390/ma12182888 - 6 Sep 2019
Cited by 5 | Viewed by 2541
Abstract
A number of carbon-rich (containing up to 47 wt% C) and lime-rich (containing up to 96 wt% of CaO-compounds) waste products from the pulp and paper industries can be used in iron and steel industry as fuels and slag formers for various metallurgical [...] Read more.
A number of carbon-rich (containing up to 47 wt% C) and lime-rich (containing up to 96 wt% of CaO-compounds) waste products from the pulp and paper industries can be used in iron and steel industry as fuels and slag formers for various metallurgical processes such as blast furnaces (BF), cupola furnaces (CF), argon oxygen decarburization (AOD) converters and electric arc furnaces (EAF). In most cases, these wastes consist of different size powders. In order to facilitate loading, transportation and charging of these powder wastes, briquetting is required. In this study, a pulverized AOD slag was tested as a binder component for briquetting of CaO-containing wastes (such as mesa, lime mud and fly ash) from pulp and paper industries. Moreover, mechanical testing of the possibilities for loading, transportation and unloading operations were done, specifically drop test trials were done for briquettes with different chemical compositions and treatments such as heating and storage. The results showed that an addition of 10–20% of AOD slag as a binder component followed by heat-treatment at 850 °C significantly improved the mechanical properties of the CaO-containing briquettes. An application of these briquettes will significantly reduce the consumption of natural resources (such as nature lime) in the metallurgical processes. Moreover, it can reduce the landfill area of wastes from pulp and paper industries, which is important from an environmental point-of-view. Full article
(This article belongs to the Special Issue Environmentally Friendly Renewable Materials)
Show Figures

Figure 1

Back to TopTop