Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = freshwater biofilm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1285 KiB  
Review
An Exploratory Review of Microplastic Pollution, Associated Microbiomes and Pathogens in Water
by Paulina Cholewińska, Konrad Wojnarowski, Hanna Moniuszko, Przemysław Pokorny and Dušan Palić
Appl. Sci. 2025, 15(15), 8128; https://doi.org/10.3390/app15158128 - 22 Jul 2025
Viewed by 380
Abstract
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations [...] Read more.
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations of MPs in surface waters across five continents. The findings confirm that MPs are present in both marine and freshwater systems, with concentrations varying by region, hydrology, and proximity to anthropogenic sources. Polyethylene and polypropylene were identified as the most common polymers, often enriched in river mouths, estuaries, and aquaculture zones. A key focus of this review is the plastisphere—microbial biofilms colonizing MPs—which includes both environmental and pathogenic bacteria such as Vibrio, Pseudomonas, and Acinetobacter. Notably, MPs serve as vectors for the spread of antibiotic resistance genes (ARGs), including sul1, tetA and ermF, and β-lactamase genes like blaCTX-M. This highlights their role in enhancing horizontal gene transfer and microbial dissemination. The results emphasize the need for standardized monitoring protocols and further interdisciplinary research. In light of the One Health approach, understanding the microbial dimension of MP pollution is essential for managing risks to environmental and public health. Full article
Show Figures

Figure 1

34 pages, 6364 KiB  
Review
Salinity Barriers to Manage Saltwater Intrusion in Coastal Zone Aquifers During Global Climate Change: A Review and New Perspective
by Thomas M. Missimer and Robert G. Maliva
Water 2025, 17(11), 1651; https://doi.org/10.3390/w17111651 - 29 May 2025
Viewed by 1586
Abstract
Climate change will have a significant impact on saltwater intrusion in coastal aquifers between now and 2150. Global sea levels are predicted to rise somewhere between 0.5 and 1.8 m. To mitigate sea level rise, coastal aquifers will require intensive management to avoid [...] Read more.
Climate change will have a significant impact on saltwater intrusion in coastal aquifers between now and 2150. Global sea levels are predicted to rise somewhere between 0.5 and 1.8 m. To mitigate sea level rise, coastal aquifers will require intensive management to avoid inland migration of seawater that could impact water supplies. In addition to reducing pumping of freshwater, the construction and operation of salinity barriers will be required in many locations. Eleven types of salinity barriers were investigated, including physical barriers (curtain wall and grout curtains), infiltration canals filled with freshwater paralleling the coastline, injection of freshwater (treated surface water or wastewater), pumping or abstraction barriers, mixed injection and abstraction barriers, combined abstraction, desalination, and recharge (ADR), ADR hybrid barriers using various water sources including desalinated water and treated wastewater, compressed air barriers, aquifer storage and recovery dual use systems, biofilm barriers, and clay swelling or dispersion barriers. Feasibility of the use of each salinity barrier type was evaluated within the context of the most recent projections of sea level changes. Key factors used in the evaluation included local hydrogeology, land surface slope, water use, the rate of sea level rise, technical feasibility (operational track record), and economics. Full article
(This article belongs to the Special Issue Research on Hydrogeology and Hydrochemistry: Challenges and Prospects)
Show Figures

Figure 1

15 pages, 2319 KiB  
Article
Nutrient Accessibility Influences Stalk Formation in the Benthic Diatom Achnanthidium minutissimum
by Pengyu Ji, Adrien Lapointe, Katja Hartenberger, Dieter Spiteller and Peter G. Kroth
Phycology 2025, 5(2), 13; https://doi.org/10.3390/phycology5020013 - 1 Apr 2025
Viewed by 933
Abstract
Achnanthidium minutissimum is a widely distributed benthic freshwater diatom. The alga can produce stalks that stick the cell to the surface and subsequently extracellular capsules developing into biofilms. Extracts of the diatom-associated bacterium Dyadobacter sp. 32 have been shown previously to induce stalk [...] Read more.
Achnanthidium minutissimum is a widely distributed benthic freshwater diatom. The alga can produce stalks that stick the cell to the surface and subsequently extracellular capsules developing into biofilms. Extracts of the diatom-associated bacterium Dyadobacter sp. 32 have been shown previously to induce stalk and capsule formation by the diatom. Here, we studied the impact of macronutrients on the generation of stalks induced by bacterial extracts with respect to the frequency of stalk generation and stalk lengths, using axenic cultures to avoid any additional impact of bacteria on the nutrient availability. We found that nitrate deprivation inhibited cell division of A. minutissimum within four days, but it did not initially affect stalk production or elongation. Silica limitation instead inhibited both stalk production and elongation. Similarly, sulfate was required for stalk formation, which was supported by the energy-dispersive X-ray spectroscopy of A. minutissimum cells showing that sulfur was abundant in the stalks. Full article
Show Figures

Figure 1

17 pages, 3556 KiB  
Article
Purification Effect and Microbial Community Analysis of Aquaculture Wastewater Using High-Efficiency and Stable Biochemical System
by Lei Su, Hangtao Wu, Minghui Yang, Yuting Su, Shanshan Wu, Hang Gao, Yaying Li, Dan Wang, Yusheng Lu, Kun Zhang, Donglai Zhou, Wenjie Gu and Huanlong Peng
Water 2025, 17(1), 119; https://doi.org/10.3390/w17010119 - 4 Jan 2025
Cited by 1 | Viewed by 1348
Abstract
An adaptable, low-cost, and easy-to-operate biological treatment system for pollutant abatement in aquaculture water at the field pond scale needs to be developed. In this study, the pollutant removal capacity of a stable bioreactor for aquaculture wastewater was assessed, and the related mechanism [...] Read more.
An adaptable, low-cost, and easy-to-operate biological treatment system for pollutant abatement in aquaculture water at the field pond scale needs to be developed. In this study, the pollutant removal capacity of a stable bioreactor for aquaculture wastewater was assessed, and the related mechanism was elucidated via an analysis of the microbial community’s characteristics and functions. The average removal efficiencies of chemical oxygen demand, suspended solids, total nitrogen, and total phosphorus were 40%, 86.22%, 38.62%, and 53.74%, respectively. The effluent quality meets the Requirement for Water Discharge from Freshwater Aquaculture Pond, SC/T9101-2007. The results indicate that the fillers under anaerobic conditions could attract Denitratisoma and unclassified_Rhodocyclaceae, promoting the denitrification reaction. This aligns with the characteristic that total nitrogen in aquaculture sewage mainly exists in the form of nitrate nitrogen. An anaerobic atmosphere helps degrade organic contaminants at liquid interfaces and remove nitrogen in the solid phase. The fillers under anaerobic conditions could attract Bacteroidota and promote the production of polysaccharides to form biofilms, which may be associated with phosphorus removal. The results indicate that the anaerobic stage can promote the formation of biofilm on the fillers to remove pollutants, thus achieving higher aquaculture sewage treatment efficiency. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 1420 KiB  
Article
Short-Term Effects of Abrupt Salinity Changes on Aquaculture Biofilter Performance and Microbial Communities
by Eliza M. Costigan, Deborah A. Bouchard, Suzanne L. Ishaq and Jean D. MacRae
Water 2024, 16(20), 2911; https://doi.org/10.3390/w16202911 - 13 Oct 2024
Cited by 1 | Viewed by 1491
Abstract
In recirculating aquaculture systems (RASs), ammonia excreted by fish must be converted to the less toxic nitrate before recirculation. Nitrifying microorganisms in biofilters used for this transformation can be sensitive to changes in salinity, which can present issues for systems that raise anadromous [...] Read more.
In recirculating aquaculture systems (RASs), ammonia excreted by fish must be converted to the less toxic nitrate before recirculation. Nitrifying microorganisms in biofilters used for this transformation can be sensitive to changes in salinity, which can present issues for systems that raise anadromous fish such as Atlantic salmon. Freshwater biofilters maintained at a low level of salinity (such as biofilters operated in coastal areas) may be better equipped to handle more drastic salinity shifts; therefore, experiments were performed on freshwater and low-salinity (3 ppt) biofilters to assess their ability to recover nitrification activity after an abrupt change in salinity (3, 20, and 33 ppt). Two-week tests showed full nitrification recovery in freshwater biofilters after a shift to 3 ppt but no ammonia oxidation in 20 or 33 ppt. Low-salinity-adapted filters (transitioned from 0 to 3 ppt) showed a small recovery (about 11%) after a shift to 20 ppt, and no activity when shifted to 33 ppt. Illumina sequencing revealed that, while nitrification was slowed or stopped with shifting salinities, the nitrifiers survived the salinity increases; conversely, the heterotrophic communities were more greatly affected and were reduced in proportion with increasing salinity. This work indicates that biofilters operated at low salinity may recover more quickly after large salinity changes, though this slight benefit may not outweigh the cost of low-level salinity maintenance. Further research into halotolerant heterotrophs in biofilms may increase the effectiveness of nitrifying biofilters under variable salinities. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

11 pages, 1217 KiB  
Article
Diversity of Free-Living Amoebae in New Zealand Groundwater and Their Ability to Feed on Legionella pneumophila
by Sujani Ariyadasa, Sophie van Hamelsveld, William Taylor, Susan Lin, Panan Sitthirit, Liping Pang, Craig Billington and Louise Weaver
Pathogens 2024, 13(8), 665; https://doi.org/10.3390/pathogens13080665 - 7 Aug 2024
Cited by 1 | Viewed by 1538
Abstract
Free-living amoebae (FLA) are common in both natural and engineered freshwater ecosystems. They play important roles in biofilm control and contaminant removal through the predation of bacteria and other taxa. Bacterial predation by FLA is also thought to contribute to pathogen dispersal and [...] Read more.
Free-living amoebae (FLA) are common in both natural and engineered freshwater ecosystems. They play important roles in biofilm control and contaminant removal through the predation of bacteria and other taxa. Bacterial predation by FLA is also thought to contribute to pathogen dispersal and infectious disease transmission in freshwater environments via the egestion of viable bacteria. Despite their importance in shaping freshwater microbial communities, the diversity and function of FLA in many freshwater ecosystems are poorly understood. In this study, we isolated and characterized FLA from two groundwater sites in Canterbury, New Zealand using microbiological, microscopic, and molecular techniques. Different methods for groundwater FLA isolation and enrichment were trialed and optimized. The ability of these isolated FLA to predate on human pathogen Legionella pneumophila was assessed. FLA were identified by 18S metagenomic amplicon sequencing. Our study showed that Acanthamoeba spp. (including A. polyphaga) and Vermamoeba veriformis were the main FLA species present in both groundwater sites examined. While most of the isolated FLA co-existed with L. pneumophila, the FLA populations in the L. pneumophila co-culture experiments predominantly consisted of A. polyphaga, Acanthamoeba spp., Naegleria spp., V. vermiformis, Paravahlkampfia spp., and Echinamoeba spp. These observations suggest that FLA may have the potential to act as reservoirs for L. pneumophila in Canterbury, New Zealand groundwater systems and could be introduced into the local drinking water infrastructure, where they may promote the survival, multiplication, and dissemination of Legionella. This research addresses an important gap in our understanding of FLA-mediated pathogen dispersal in freshwater ecosystems. Full article
(This article belongs to the Special Issue Protists as Pathogens)
Show Figures

Figure 1

13 pages, 1150 KiB  
Article
Nanoplastic Contamination in Freshwater Biofilms Using Gel Permeation Chromatography and Plasmonic Nanogold Sensor Approaches
by Eva Roubeau Dumont and Francois Gagné
Nanomaterials 2024, 14(15), 1288; https://doi.org/10.3390/nano14151288 - 31 Jul 2024
Cited by 1 | Viewed by 1962
Abstract
The worldwide contamination of aquatic ecosystems by plastics is raising concern, including their potential impacts on the base of the food chain, which has been poorly documented. This study sought to examine, for the first time, the presence of nanoplastics (NPs) in biofilms [...] Read more.
The worldwide contamination of aquatic ecosystems by plastics is raising concern, including their potential impacts on the base of the food chain, which has been poorly documented. This study sought to examine, for the first time, the presence of nanoplastics (NPs) in biofilms from freshwater streams/rivers. They were collected at selected polluted sites, such as the industrial sector for plastic recycling and production, miscellaneous industries, agriculture, municipal wastewaters/effluents and road runoffs. In parallel, the functional properties of sampled biofilms were determined by proteins, lipids, esterase (lipase), viscosity and oxidative stress. The results revealed that biofilms collected at the plastic industries and road runoffs contained the highest NP levels based on size exclusion chromatography, fluorescence detection and a new nanogold sensor visualization method. Examination of the chromatographic elution profiles showed increased abundance and size of NPs in the 10–150 nm size range at the polluted sites. Biofilms from the plastic industry site had elevated levels of aldehydes (oxidative stress) and lipids compared to the other sites. Biofilms collected at the municipal sites had elevated levels of proteins and esterases/lipases, with a decrease in total lipids. Biofilms collected at agriculture sites had the lowest levels of NPs in this campaign, but more samples would be needed to confirm these trends. In conclusion, biofilms represent an important sink for plastics in freshwater environments and display signs of distress upon oxidative stress. Full article
(This article belongs to the Special Issue Environmental Fate, Transport and Effects of Nanoplastics)
Show Figures

Figure 1

15 pages, 677 KiB  
Article
Correlative Effects on Nanoplastic Aggregation in Model Extracellular Biofilm Substances Investigated with Fluorescence Correlation Spectroscopy
by Tobias Guckeisen, Rozalia Orghici and Silke Rathgeber
Polymers 2024, 16(15), 2170; https://doi.org/10.3390/polym16152170 - 30 Jul 2024
Cited by 2 | Viewed by 1389
Abstract
Recent studies show that biofilm substances in contact with nanoplastics play an important role in the aggregation and sedimentation of nanoplastics. Consequences of these processes are changes in biofilm formation and stability and changes in the transport and fate of pollutants in the [...] Read more.
Recent studies show that biofilm substances in contact with nanoplastics play an important role in the aggregation and sedimentation of nanoplastics. Consequences of these processes are changes in biofilm formation and stability and changes in the transport and fate of pollutants in the environment. Having a deeper understanding of the nanoplastics–biofilm interaction would help to evaluate the risks posed by uncontrolled nanoplastic pollution. These interactions are impacted by environmental changes due to climate change, such as, e.g., the acidification of surface waters. We apply fluorescence correlation spectroscopy (FCS) to investigate the pH-dependent aggregation tendency of non-functionalized polystyrene (PS) nanoparticles (NPs) due to intermolecular forces with model extracellular biofilm substances. Our biofilm model consists of bovine serum albumin (BSA), which serves as a representative for globular proteins, and the polysaccharide alginate, which is a main component in many biofilms, in solutions containing Na+ with an ionic strength being realistic for fresh-water conditions. Biomolecule concentrations ranging from 0.5 g/L up to at maximum 21 g/L are considered. We use non-functionalized PS NPs as representative for mostly negatively charged nanoplastics. BSA promotes NP aggregation through adsorption onto the NPs and BSA-mediated bridging. In BSA–alginate mixtures, the alginate hampers this interaction, most likely due to alginate–BSA complex formation. In most BSA–alginate mixtures as in alginate alone, NP aggregation is predominantly driven by weaker, pH-independent depletion forces. The stabilizing effect of alginate is only weakened at high BSA contents, when the electrostatic BSA–BSA attraction is not sufficiently screened by the alginate. This study clearly shows that it is crucial to consider correlative effects between multiple biofilm components to better understand the NP aggregation in the presence of complex biofilm substances. Single-component biofilm model systems based on comparing the total organic carbon (TOC) content of the extracellular biofilm substances, as usually considered, would have led to a misjudgment of the stability towards aggregation. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

23 pages, 14231 KiB  
Article
Environmentally Relevant Antibiotic Concentrations Exert Stronger Selection Pressure on River Biofilm Resistomes than AMR-Reservoir Effluents
by Gabriela Flores-Vargas, Jordyn Bergsveinson and Darren R. Korber
Antibiotics 2024, 13(6), 539; https://doi.org/10.3390/antibiotics13060539 - 10 Jun 2024
Cited by 2 | Viewed by 2384
Abstract
Freshwater environments are primary receiving systems of wastewater and effluents, which carry low concentrations of antibiotics and antimicrobial-resistant (AMR) bacteria and genes. Aquatic microbial communities are thus exposed to environmentally relevant concentrations of antibiotics (ERCA) that presumably influence the acquisition and spread of [...] Read more.
Freshwater environments are primary receiving systems of wastewater and effluents, which carry low concentrations of antibiotics and antimicrobial-resistant (AMR) bacteria and genes. Aquatic microbial communities are thus exposed to environmentally relevant concentrations of antibiotics (ERCA) that presumably influence the acquisition and spread of environmental AMR. Here, we analyzed ERCA exposure with and without the additional presence of municipal wastewater treatment plant effluent (W) and swine manure run-off (M) on aquatic biofilm resistomes. Microscopic analyses revealed decreased taxonomic diversity and biofilm structural integrity, while metagenomic analysis revealed an increased abundance of resistance, virulence, and mobile element-related genes at the highest ERCA exposure levels, with less notable impacts observed when solely exposed to W or M effluents. Microbial function predictions indicated increased gene abundance associated with energy and cell membrane metabolism and heavy metal resistance under ERCA conditions. In silico predictions of increased resistance mechanisms did not correlate with observed phenotypic resistance patterns when whole communities were exposed to antimicrobial susceptibility testing. This reveals important insight into the complexity of whole-community coordination of physical and genetic responses to selective pressures. Lastly, the environmental AMR risk assessment of metagenomic data revealed a higher risk score for biofilms grown at sub-MIC antibiotic conditions. Full article
Show Figures

Figure 1

7 pages, 255 KiB  
Communication
Validation of a Loop-Mediated Isothermal Amplification-Based Kit for the Detection of Legionella pneumophila in Environmental Samples According to ISO/TS 12869:2012
by Giorgia Caruso, Maria Anna Coniglio, Pasqualina Laganà, Teresa Fasciana, Giuseppe Arcoleo, Ignazio Arrigo, Paola Di Carlo, Mario Palermo and Anna Giammanco
Microorganisms 2024, 12(5), 961; https://doi.org/10.3390/microorganisms12050961 - 10 May 2024
Cited by 5 | Viewed by 1664
Abstract
Legionella pneumophila is a freshwater opportunistic pathogen and the leading cause of severe pneumonia known as Legionnaires’ disease. It can be found in all water systems and survives in biofilms, free-living amoebae, and a wide variety of facilities, such as air conditioning and [...] Read more.
Legionella pneumophila is a freshwater opportunistic pathogen and the leading cause of severe pneumonia known as Legionnaires’ disease. It can be found in all water systems and survives in biofilms, free-living amoebae, and a wide variety of facilities, such as air conditioning and showers in hospitals, hotels and spas. The reference cultural method allows for the isolation and identification in many days, and in addition, it does not detect viable but rather non-culturable bacteria, increasing the risk of infection. In this context, a new LAMP-based (loop-mediated isothermal amplification) kit was developed, allowing for the rapid, sensitive, and labor-saving detection of L. pneumophila. The kit, “Legionella pneumophila Glow”, was validated according to ISO/TS 12869:2012, testing sensitivity, inclusivity and exclusivity, and kit robustness. Sensitivity showed that the “Legionella pneumophila Glow” kit can detect up to 28 plasmid copies/µL. Robustness tests showed consistent results, with both contamination levels and the matrices used giving reproducible results. Furthermore, real samples were evaluated to compare the performance of the two methods. The LAMP kit “Legionella pneumophila Glow” proved a useful option for the rapid, efficient, and labor-saving screening of different typologies of water samples, offering significant advantages over the traditional method, as it is characterized by a high sensitivity, ease of use for laboratory testing, and a large reduction in analysis time, making it an asset to official controls. Full article
16 pages, 1497 KiB  
Article
Comprehensive Profiling of Klebsiella in Surface Waters from Northern Portugal: Understanding Patterns in Prevalence, Antibiotic Resistance, and Biofilm Formation
by Sara Araújo, Vanessa Silva, Maria de Lurdes Enes Dapkevicius, José Eduardo Pereira, Ângela Martins, Gilberto Igrejas and Patricia Poeta
Water 2024, 16(9), 1297; https://doi.org/10.3390/w16091297 - 2 May 2024
Cited by 2 | Viewed by 3174
Abstract
This study investigates the prevalence of resistance and virulence genes in Klebsiella isolates from surface waters in Northern Portugal, within the broader context of freshwater quality challenges in Southern Europe. The aim of this research is to explain how Klebsiella dynamics, antibiotic resistance, [...] Read more.
This study investigates the prevalence of resistance and virulence genes in Klebsiella isolates from surface waters in Northern Portugal, within the broader context of freshwater quality challenges in Southern Europe. The aim of this research is to explain how Klebsiella dynamics, antibiotic resistance, and biofilm formation interact in surface waters. Antimicrobial susceptibility was examined using the Kirby–Bauer disk diffusion method against 11 antibiotics and screening for Extended-Spectrum Beta-Lactamase (ESBL) production using the double-disk synergy. PCR was employed to detect resistance and virulence genes, while biofilm production was assessed using the microplate method. Out of 77 water isolates, 33 Klebsiella (14 Klebsiella spp. and 19 K. pneumoniae strains) were isolated. ESBL production was observed in 36.8% of K. pneumoniae and 28.6% of Klebsiella spp. High resistance rates to blaCTX-U were observed in both. The papC gene was prevalent, signifying potential environmental risks. Biofilm production averaged 81.3% for K. pneumoniae and 86.9% for Klebsiella spp. These findings underscore the intricate interplay between Klebsiella’s dynamics and freshwater quality, with ESBL’s prevalence raising concerns about waterborne dissemination and public health implications. This work supports the need for vigilance of Klebsiella in surface waters in Southern Europe. Full article
Show Figures

Graphical abstract

12 pages, 847 KiB  
Article
The Hard Reality of Biogas Production through the Anaerobic Digestion of Algae Grown in Dairy Farm Effluents
by Marianne Hull-Cantillo, Mark Lay, Graeme Glasgow and Peter Kovalsky
Fermentation 2024, 10(3), 137; https://doi.org/10.3390/fermentation10030137 - 29 Feb 2024
Cited by 1 | Viewed by 2494
Abstract
Much emphasis has been given to algal biomass growth in dairy farm wastewater. Most of the systems examined require productive land to be converted and/or freshwater use to dilute high concentrations of nutrients found in dairy effluent. A rotating algal biofilm (RABR) provides [...] Read more.
Much emphasis has been given to algal biomass growth in dairy farm wastewater. Most of the systems examined require productive land to be converted and/or freshwater use to dilute high concentrations of nutrients found in dairy effluent. A rotating algal biofilm (RABR) provides the capacity to grow algae without sacrificing productive land or freshwater. In theory, this system would overcome some of the economic and environmental challenges that other systems have. A combination of theoretical information, nutrient uptake formulas, and economic formulas were used to calculate the potential of biogas production from algae grown in an RABR with dairy effluents. The average nutrient uptake was 0.8 mgN/m2 per day and 0.1 mgP/m2 per day. The maximum methane production from the anaerobic digestion of algae was 112 m3/RABR·year. The minimum and maximum economic scenarios resulted in gross profits of NZD −2101 and −1922. After evaluating this system for the first time in the New Zealand dairy farming context, it was found that biogas production from an RABR is not a feasible option for New Zealand dairy farmers. Full article
Show Figures

Figure 1

18 pages, 2513 KiB  
Article
Antibiotic Effect of High-Power Blue Laser Radiation
by Mattes Hintmann, Stanislav Zimbelmann, Benjamin Emde, Rebekka Biedendieck and Dieter Jahn
Photonics 2024, 11(3), 220; https://doi.org/10.3390/photonics11030220 - 28 Feb 2024
Cited by 6 | Viewed by 2206
Abstract
The development of sustainable alternatives to chemical and mechanical biofilm removal for submerged technical devices used in freshwater and marine environments represents a major technical challenge. In this context, the antibiotic impact of blue light with its low absorption underwater provides a potentially [...] Read more.
The development of sustainable alternatives to chemical and mechanical biofilm removal for submerged technical devices used in freshwater and marine environments represents a major technical challenge. In this context, the antibiotic impact of blue light with its low absorption underwater provides a potentially useful alternative. However, former technical limitations led to hours of treatment. Here, we applied high-power blue laser irradiation (1500 W) with a wavelength of 448 nm to demonstrate its strong antibiotic and algicidal effect on different bacteria and algae in seconds. High-power blue light treatment (139 W/cm2) for only 8.9 s led to the efficient deactivation of all tested organisms. Analyses of the underlying biological mechanisms revealed the absorption of the blue light by endogenous chromophores (flavins, tetrapyrroles) with the generation of reactive oxygen species (ROS). In agreement, Escherichia coli transcriptome analyses demonstrated a stress response at the level of DNA damage repair, respiration, and protein biosynthesis. Spectroscopic measurements of the irradiated algae indicated the irreversible damage of chlorophyll by photooxidation with the formation of singlet oxygen. In conclusion, high-power blue laser radiation provides a strong sustainable tool for the removal of biofouling in a very short time for applications in aquatic systems. Full article
Show Figures

Figure 1

17 pages, 19177 KiB  
Article
Antibacterial Mechanisms and Antivirulence Activities of Oridonin against Pathogenic Aeromonas hydrophila AS 1.1801
by Lunji Wang, Huijuan Li, Jinhao Chen, Yi Wang, Yuqing Gu and Min Jiu
Microorganisms 2024, 12(2), 415; https://doi.org/10.3390/microorganisms12020415 - 19 Feb 2024
Cited by 6 | Viewed by 2330
Abstract
Aeromonas hydrophila, a Gram-negative bacterium widely found in freshwater environments, acts as a common conditional pathogen affecting humans, livestock, and aquatic animals. In this study, the impact of oridonin, an ent-kaurane diterpenoid compound derived from Rabdosia rubescens, on the virulence [...] Read more.
Aeromonas hydrophila, a Gram-negative bacterium widely found in freshwater environments, acts as a common conditional pathogen affecting humans, livestock, and aquatic animals. In this study, the impact of oridonin, an ent-kaurane diterpenoid compound derived from Rabdosia rubescens, on the virulence factors of A. hydrophila AS 1.1801 and its antibacterial mechanism was elucidated. The minimum inhibitory concentration (MIC) of oridonin against A. hydrophila AS 1.1801 was 100 μg/mL. Oridonin at inhibitory concentrations could significantly increase the electrical conductivity in the supernatant and escalate nucleic acid leakage (p < 0.01). This effect was concomitant with observed distortions in bacterial cells, the formation of cytoplasmic cavities, cellular damage, and pronounced inhibition of protein and nucleic acid synthesis. Additionally, oridonin at inhibitory levels exhibited a noteworthy suppressive impact on A. hydrophila AS 1.1801 across biofilm formation, motility, hemolytic activity, lipase activity, and protease activity (p < 0.05), demonstrating a dose-dependent enhancement. qRT-PCR analysis showed that the gene expression of luxR, qseB and omp were significantly downregulated after oridonin treatment in A. hydrophila AS 1.1801 (p < 0.05). Our results indicated that oridonin possessed significant antibacterial and anti-virulence effects on A. hydrophila AS 1.1801. Full article
(This article belongs to the Special Issue Advances in Novel Antibacterial Agents)
Show Figures

Figure 1

12 pages, 583 KiB  
Article
Aeromonas spp. in Freshwater Bodies: Antimicrobial Resistance and Biofilm Assembly
by Maria Nascimento, Joao Rodrigues, Rui Matias and Luisa Jordao
Antibiotics 2024, 13(2), 166; https://doi.org/10.3390/antibiotics13020166 - 8 Feb 2024
Cited by 4 | Viewed by 3157
Abstract
Aeromonas spp. are environmental bacteria able to infect animals and humans. Here, we aim to evaluate the role of biofilms in Aeromonas persistence in freshwater. Aeromonas were isolated from water and biofilm samples and identified by Vitek-MS and 16S rRNA sequencing. Antibiotic susceptibility [...] Read more.
Aeromonas spp. are environmental bacteria able to infect animals and humans. Here, we aim to evaluate the role of biofilms in Aeromonas persistence in freshwater. Aeromonas were isolated from water and biofilm samples and identified by Vitek-MS and 16S rRNA sequencing. Antibiotic susceptibility profiles were determined according to EUCAST, and a crystal violet assay was used to assess biofilm assembly. MTT and the enumeration of colony-forming units were used to evaluate biofilm and planktonic Aeromonas susceptibility to chlorination, respectively. Identification at the species level was challenging, suggesting the need to improve the used methodologies. Five different Aeromonas species (A. salmonicida, A. hydrophila, A. media, A. popoffii and A. veronii) were identified from water, and one species was identified from biofilms (A. veronii). A. veronnii and A. salmonicida presented resistance to different antibiotics, whith the highest resistance rate observed for A. salmonicida (multiple antibiotic resistance index of 0.25). Of the 21 isolates, 11 were biofilm producers, and 10 of them were strong biofilm producers (SBPs). The SBPs presented increased tolerance to chlorine disinfection when compared with their planktonic counterparts. In order to elucidate the mechanisms underlying biofilm tolerance to chlorine and support the importance of preventing biofilm assembly in water reservoirs, further research is required. Full article
(This article belongs to the Section Antibiofilm Strategies)
Show Figures

Figure 1

Back to TopTop