Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = frequent glacial hazards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 52971 KiB  
Article
Frequent Glacial Hazard Deformation Detection Based on POT-SBAS InSAR in the Sedongpu Basin in the Himalayan Region
by Haoliang Li, Yinghui Yang, Xiujun Dong, Qiang Xu, Pengfei Li, Jingjing Zhao, Qiang Chen and Jyr-Ching Hu
Remote Sens. 2025, 17(2), 319; https://doi.org/10.3390/rs17020319 - 17 Jan 2025
Viewed by 1055
Abstract
The Sedongpu Basin is characterized by frequent glacial debris movements and glacial hazards. To accurately monitor and research these glacier hazards, Sentinel-1 Synthetic Aperture Radar images observed between 2014 and 2022 were collected to extract surface motion using SBAS-POT technology. The acquired temporal [...] Read more.
The Sedongpu Basin is characterized by frequent glacial debris movements and glacial hazards. To accurately monitor and research these glacier hazards, Sentinel-1 Synthetic Aperture Radar images observed between 2014 and 2022 were collected to extract surface motion using SBAS-POT technology. The acquired temporal surface deformation and multiple optical remote sensing images were then jointly used to analyze the characteristics of the long-term glacier movement in the Sedongpu Basin. Furthermore, historical meteorological and seismic data were collected to analyze the mechanisms of multiple ice avalanche chain hazards. It was found that abnormal deformation signals of glaciers SDP1 and SDP2 could be linked to the historical ice avalanche disaster that occurred around the Sedongpu Basin. The maximum deformation rate of SDP1 was 74 m/a and the slope cumulative deformation exceeded 500 m during the monitoring period from 2014 to 2022, which is still in active motion at present; for SDP2, a cumulative deformation of more than 300 m was also detected over the monitoring period. Glaciers SDP3, SDP4, and SDP5 have been relatively stable until now; however, ice cracks are well developed in SDP4 and SDP5, and ice avalanche events may occur if these ice cracks continue to expand under extreme natural conditions in the future. Therefore, this paper emphasizes the seriousness of the ice avalanche event in Sedongpu Basin and provides data support for local disaster management and disaster prevention and reduction. Full article
Show Figures

Figure 1

23 pages, 9348 KiB  
Review
Mass Balance of Maritime Glaciers in the Southeastern Tibetan Plateau during Recent Decades
by Xiaowei Lyu, Yong Zhang, Huanhuan Wang and Xin Wang
Sustainability 2024, 16(16), 7118; https://doi.org/10.3390/su16167118 - 19 Aug 2024
Viewed by 1159
Abstract
Maritime glaciers in the southeastern Tibetan Plateau (SETP) are particularly sensitive to changes in climate, and their changes directly and severely affect regional water security and glacier-related hazards. Given their large societal importance, a better understanding of the mass balance of maritime glaciers [...] Read more.
Maritime glaciers in the southeastern Tibetan Plateau (SETP) are particularly sensitive to changes in climate, and their changes directly and severely affect regional water security and glacier-related hazards. Given their large societal importance, a better understanding of the mass balance of maritime glaciers in the SETP, a key variable for characterizing the state of glacier health, is of great scientific interest. In this review, we synthesize in situ, satellite-based observations and simulations that present an overall accelerating negative mass balance of maritime glaciers in the SETP in recent decades. We hereby highlight a significant spatiotemporal difference in the mass balance of maritime glaciers across the SETP and investigate the drivers of the accelerated mass loss of these glaciers in recent years. We find that accelerated glacier mass loss agrees with the variabilities in temperatures rising and precipitation decreasing at regional scales, as well as the spatial patterns of widespread melt hotspots (e.g., thin debris, ice cliffs, supraglacial ponds, and surface streams), the expansion of glacial lakes, enlarged ice crevasses, and frequent ice avalanches. Finally, the challenges of the mass balance study of maritime glaciers and future perspectives are proposed. Our review confirms the urgent need to improve the existing glacier inventory and establish comprehensive monitoring networks in data-scarce glacierized catchments, and it suggests paying particular attention to the development of glacier mass-balance models that coupe multiple physical processes at different interfaces to predict the status of maritime glaciers and their responses to climate change. This study can inform the sustainable management of water resources and the assessment of socio-economic vulnerability due to glacier-related hazards in the SETP and its surroundings in the context of marked atmospheric warming. Full article
(This article belongs to the Special Issue Climate Impacts on Water Resources: From the Glacier to the Lake)
Show Figures

Figure 1

18 pages, 3895 KiB  
Article
Dynamic Monitoring of Debris-Covered Glacier Surface Velocity and Ice Thickness of Mt.Tomur, Tian Shan, China
by Changbin Bai, Feiteng Wang, Lin Wang, Chunhai Xu, Xiaoying Yue, Shujing Yang, Puyu Wang, Yanqun Bi and Haining Wei
Remote Sens. 2023, 15(1), 150; https://doi.org/10.3390/rs15010150 - 27 Dec 2022
Cited by 8 | Viewed by 2597
Abstract
The Mt.Tomur glaciers, in the Tian Shan mountains of Western China, are usually debris-covered, and due to climate change, glacial hazards are becoming more frequent in this region. However, no changes in the long-time series of glacier surface velocities have been observed in [...] Read more.
The Mt.Tomur glaciers, in the Tian Shan mountains of Western China, are usually debris-covered, and due to climate change, glacial hazards are becoming more frequent in this region. However, no changes in the long-time series of glacier surface velocities have been observed in this region. Conducting field measurements in high-altitude mountains is relatively difficult, and consequently, the dynamics and driving factors are less studied. Here, image-correlation offset tracking using Landsat images was exploited to estimate the glacier surface velocity of glaciers in the Mt.Tomur region from 2000 to 2020 and to assess glacier ice thickness. The results show that the glacier surface velocity in the Mt.Tomur region showed a significant slowdown during 2000–2020, from 6.71 ± 0.66 m a−1 to 3.95 ± 0.66 m a−1, an overall decrease of 41.13%. The maximum glacier ice thickness in the Mt.Tomur region was estimated based on the ice flow principle being 171.27 ± 17.10 m, and the glacier average thickness is 50.00 ± 5.0 m. Glacier thickness at first increases with increasing altitude, showing more than 100 ± 10 m ice thickness between 3400 m and 4300 m, and then decreases with further increases in altitude. The reliability of the surface velocity and ice thickness obtained from remote sensing was proved using the measured surface velocity and ice thickness of Qingbingtan glacier No. 72 stall (the correlation coefficient R2 > 0.85). The debris cover has an overall mitigating effect on the ablation and movement rate of Qingbingtan Glacier No. 72; however, it has an accelerating effect on the ablation and movement rate of glacier No. 74. Full article
Show Figures

Figure 1

26 pages, 20405 KiB  
Article
Landslide Susceptibility Mapping along a Rapidly Uplifting River Valley of the Upper Jinsha River, Southeastern Tibetan Plateau, China
by Xiaohui Sun, Jianping Chen, Yanrong Li and Ngambua N. Rene
Remote Sens. 2022, 14(7), 1730; https://doi.org/10.3390/rs14071730 - 3 Apr 2022
Cited by 22 | Viewed by 3995
Abstract
As a result of the influence of plate movement, the upper reaches of Jinsha River have strong geological tectonic activities, large topographic fluctuations, and complex climate characteristics, which result in the frequent occurrence of landslide disasters. Hence, there is the need to carry [...] Read more.
As a result of the influence of plate movement, the upper reaches of Jinsha River have strong geological tectonic activities, large topographic fluctuations, and complex climate characteristics, which result in the frequent occurrence of landslide disasters. Hence, there is the need to carry out landslide susceptibility mapping in the upper reaches of Jinsha River to ensure the safety of local people’s property and the safe exploitation of hydraulic resources. In this study, InSAR technology and a field geological survey were used to map the landslides. Then, the curvature watershed method was used to divide the slope units. A conditioning factor system was established, which can reflect the characteristics of the rapid uplift and vertical distribution of rainfall in the special geological environment of the study area. Finally, logistic regression, random forest, and artificial neural network models were used to establish the landslide susceptibility model. The results show that the random forest model is optimal for the landslide susceptibility mapping in this area. Additionally, the area percentages of the very low, low, moderate, high, and very high susceptibility classes were 40.13%, 20.06%, 13.39%, 12.55%, and 13.87%, respectively. Based on the analysis of the landslide susceptibility map, we suggest that the landslide geological hazards resulting from the rapid uplift of the Tibetan Plateau and the significant decrease in sea level during a glacial period in the upper reaches of Jinsha River are controlled by the double disaster effect of the geodynamic system. Consequently, this study can guide local prevention and mitigation. Full article
Show Figures

Figure 1

33 pages, 13835 KiB  
Article
Flood Assessment and Identification of Emergency Evacuation Routes in Seti River Basin, Nepal
by Bhabana Thapa, Teiji Watanabe and Dhananjay Regmi
Land 2022, 11(1), 82; https://doi.org/10.3390/land11010082 - 5 Jan 2022
Cited by 19 | Viewed by 7108
Abstract
Sudden floods frequently occur in the Himalayas under changing climates. Rapid glacial melt has resulted in the formation of glacial lakes and associated hazards. This research aimed to (1) identify flood-prone houses, (2) determine pedestrian emergency evacuation routes, and (3) analyze their relationships [...] Read more.
Sudden floods frequently occur in the Himalayas under changing climates. Rapid glacial melt has resulted in the formation of glacial lakes and associated hazards. This research aimed to (1) identify flood-prone houses, (2) determine pedestrian emergency evacuation routes, and (3) analyze their relationships to socioeconomic status in the Seti River Basin. Detailed hazard maps were created using field survey results from unmanned aerial vehicle photogrammetry and the Hydrologic Engineering Center River Analysis System. Questionnaire, focus-group, and key-informant surveys helped identify the socioeconomic situation. Inundation maps revealed that most residents are exposed to future flooding hazards without proper evacuation routes. Highly impoverished and immigrant households were at the highest risk in terms of income inequality and migration rate (p < 0.001) and were located on the riverside. The locations of 455 laborers’ houses were significantly correlated with inundation hazards (p < 0.001). Governmental and associated agencies must develop adequate plans to relocate low-income households. Group discussions revealed the need for stronger adaptive capacity-building strategies for future risk management. Pokhara requires better systematic and scientific land-use planning strategies to address this issue efficiently. A similar approach that combines flood modeling, proper evacuation route access, and socioeconomic survey is suggested for this river basin. Full article
(This article belongs to the Special Issue Landslide and Natural Hazard Monitoring)
Show Figures

Figure 1

15 pages, 3103 KiB  
Article
Flood Hazard Mapping of Rivers in Snow- and Glacier-Fed Basins of Different Hydrological Regimes Using a Hydrodynamic Model under RCP Scenarios
by Huma Hayat, Muhammad Saifullah, Muhammad Ashraf, Shiyin Liu, Sher Muhammad, Romana Khan and Adnan Ahmad Tahir
Water 2021, 13(20), 2806; https://doi.org/10.3390/w13202806 - 9 Oct 2021
Cited by 2 | Viewed by 4498
Abstract
The global warming trends have accelerated snow and glacier melt in mountainous river basins, which has increased the probability of glacial outburst flooding. Recurrent flood events are a challenge for the developing economy of Pakistan in terms of damage to infrastructure and loss [...] Read more.
The global warming trends have accelerated snow and glacier melt in mountainous river basins, which has increased the probability of glacial outburst flooding. Recurrent flood events are a challenge for the developing economy of Pakistan in terms of damage to infrastructure and loss of lives. Flood hazard maps can be used for future flood damage assessment, preparedness, and mitigation. The current study focused on the assessment and mapping of flood-prone areas in small settlements of the major snow- and glacier-fed river basins situated in Hindukush–Karakoram–Himalaya (HKH) under future climate scenarios. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) model was used for flood simulation and mapping. The ALOS 12.5 m Digital Elevation Model (DEM) was used to extract river geometry, and the flows generated in these river basins using RCP scenarios were used as the inflow boundary condition. Severe flooding would inundate an area of ~66%, ~86%, ~37% (under mid-21st century), and an area of ~72%, ~93%, ~59% (under late 21st century RCP 8.5 scenario) in the Chitral, Hunza, and Astore river basins, respectively. There is an urgent need to develop a robust flood mitigation plan for the frequent floods occurring in northern Pakistan. Full article
(This article belongs to the Special Issue Remote Sensing for Flood Monitoring and Risk Assessment)
Show Figures

Figure 1

23 pages, 18288 KiB  
Article
Susceptibility Analysis of Glacier Debris Flow by Investigating the Changes in Glaciers Based on Remote Sensing: A Case Study
by Ruoshen Lin, Gang Mei, Ziyang Liu, Ning Xi and Xiaona Zhang
Sustainability 2021, 13(13), 7196; https://doi.org/10.3390/su13137196 - 26 Jun 2021
Cited by 9 | Viewed by 3064
Abstract
Glacier debris flow is one of the most critical categories of geological hazards in high-mountain regions. To reduce its potential negative effects, it needs to investigate the susceptibility of glacier debris flow. However, when evaluating the susceptibility of glacier debris flow, most research [...] Read more.
Glacier debris flow is one of the most critical categories of geological hazards in high-mountain regions. To reduce its potential negative effects, it needs to investigate the susceptibility of glacier debris flow. However, when evaluating the susceptibility of glacier debris flow, most research work considered the impact of existing glacier area, while ignoring the impact of changes in glacier ablation volume. In this paper, we considered the impact of the changes in the glacier ablation volume to investigate the susceptibility of glacier debris flow. We proposed to evaluate the susceptibility analysis in G217 gullies with frequent glacial debris flow on the Duku highway, Xinjiang Province. Specifically, by using the simple band ratio method with the manual correction to identify glacier outlines, we identified the ablation zone by comparing the glacier boundary in 2000 with that in 2015. We then calculated ablation volume by changes in glacier elevation and ablation area from 2000 to 2015. Finally, we used the volume of glacier melting in different watersheds as the main factor to evaluate the susceptibility based on the improved geomorphic information entropy (GIE) method. We found that, overall, the improved GIE method with a correction coefficient based on the glacier ablation volume is better than the previous method. Deglaciation can be adapted to analyze glacier debris flow susceptibility based on glaciology and geomorphology. Our presented work can be applied to other similar glacial debris flow events in high-mountain regions. Full article
(This article belongs to the Special Issue Geo-Hazards and Risk Reduction Approaches)
Show Figures

Figure 1

Back to TopTop