Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (176)

Search Parameters:
Keywords = free-radical quenching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 3844 KB  
Review
Bioinspired Improvement of Lignocellulosic Bio-Based Materials Against Fire and Fungi—A Comprehensive Review
by Jovale Vincent Tongco and Armando G. McDonald
Bioresour. Bioprod. 2026, 2(1), 3; https://doi.org/10.3390/bioresourbioprod2010003 - 16 Jan 2026
Viewed by 154
Abstract
Lignocellulosic bio-based materials, such as wood, biocomposites, and natural fibers, exhibit desirable structural properties. This comprehensive review emphasizes the foundational and latest advancements in bioinspired improvement strategies, such as direct mineralization, biomineralization, lignocellulosic nanomaterials, protein-based treatments, and metal-chelating processes. Significant focus was placed [...] Read more.
Lignocellulosic bio-based materials, such as wood, biocomposites, and natural fibers, exhibit desirable structural properties. This comprehensive review emphasizes the foundational and latest advancements in bioinspired improvement strategies, such as direct mineralization, biomineralization, lignocellulosic nanomaterials, protein-based treatments, and metal-chelating processes. Significant focus was placed on biomimetics, emulating natural protective mechanisms, with discussions on relevant topics including hierarchical mineral deposition, free-radical formation and quenching, and selective metal ion binding, and relating them to lignocellulosic bio-based material property improvements, particularly against fire and fungi. This review evaluates the effectiveness of different bioinspired processes: mineralized and biomineralized composites improve thermal stability, nanocellulose and lignin nanoparticles provide physical, thermal, and chemical barriers, proteins offer biochemical inhibition and mineral templating, and chelators interfere with fungal oxidative pathways while simultaneously improving fire retardancy through selective binding with metal ions. Synergistic approaches integrating various mechanisms could potentially lead to long-lasting and multifunctional protection. This review also highlights the research gaps, challenges, and potential for future applications. Full article
Show Figures

Figure 1

24 pages, 7995 KB  
Article
Study on Degradation of Sulfamethoxazole in Water by Activated Persulfate of Molybdenite Supported on Biochar
by Xuemei Li, Jian Wang, Xinglin Chen, Shengnan Li and Hai Lu
Molecules 2026, 31(2), 211; https://doi.org/10.3390/molecules31020211 - 7 Jan 2026
Viewed by 279
Abstract
In this study, the advanced oxidation system of peroxymonosulfate (PMS) was activated by molybdenite supported on biochar (Molybdenite@BC), and the degradation efficiency, influencing factors and degradation mechanism of sulfamethoxazole (SMX) were explored through experiments. Molybdenite@BC, a composite material used in the study, was [...] Read more.
In this study, the advanced oxidation system of peroxymonosulfate (PMS) was activated by molybdenite supported on biochar (Molybdenite@BC), and the degradation efficiency, influencing factors and degradation mechanism of sulfamethoxazole (SMX) were explored through experiments. Molybdenite@BC, a composite material used in the study, was prepared by pyrolysis at high temperature. The optimum pyrolysis temperature was 700 °C, and the mass ratio of molybdenite to biochar (BC) was 1:3. By changing dosage of Molybdenite@BC, pH value, initial concentration of PMS, and the types and concentration of inorganic anions, the effects of various factors on SMX degradation were systematically studied. The optimum reaction conditions of the Molybdenite@BC/PMS process were as follows: Molybdenite@BC dosage was 100 mg/L, PMS concentration was 0.2 mM, pH value was 6.9 ± 0.2, and initial SMX concentration was 6 mg/L. Under these conditions, the degradation rate of SMX was 97.87% after 60 min and 99.06% after 120 min. The material characterization analysis showed that Molybdenite@BC had a porous structure and rich active sites, which was beneficial to the degradation of pollutants. After the composite material was used, the peaks of MoO2 and MoS2 became weaker, which indicated that there was some loss of molybdenum from the material structure. Electron paramagnetic resonance (EPR) and radical quenching experiments revealed that Molybdenite@BC effectively catalyzed PMS to generate various reactive oxygen radicals and non-free radicals, including singlet oxygen (1O2), hydroxyl radical (OH), sulfate radical (SO4•−) and superoxide radical (O2). 1O2 played a leading role in the degradation of SMX, while OH and SO4•− had little influence. The intermediate products of the degradation of SMX in Molybdenite@BC/PMS system were analyzed by liquid chromatography–tandem mass spectrometry (LC–MS). The results showed that there were nine main intermediate products in the process of degradation, and the overall toxicity tended to decrease during the degradation of SMX. The degradation path analysis showed that with the gradual ring opening and bond breaking of SMX, small molecular compounds were generated, which were finally mineralized into H2O, CO2, CO32−, H2SO4 and other substances. The research results confirmed that the Molybdenite@BC/PMS process provided a feasible new method for the degradation of SMX in water. Full article
Show Figures

Figure 1

21 pages, 3331 KB  
Article
The Preparation of ZnFe2O4 from Coal Gangue for Use as a Photocatalytic Reagent in the Purification of Dye Wastewater via the PMS Reaction
by Mingxian Zhang, Jinsong Du, Xuemei Zheng and Aiyuan Ma
Materials 2026, 19(1), 169; https://doi.org/10.3390/ma19010169 - 2 Jan 2026
Viewed by 356
Abstract
The widespread application of Rhodamine B (RhB) poses a serious threat to the aquatic environment. ZnFe2O4, as a catalyst material, can effectively activate persulfate (PMS) and respond to visible light, thus effectively degrading RhB with the joint assistance of [...] Read more.
The widespread application of Rhodamine B (RhB) poses a serious threat to the aquatic environment. ZnFe2O4, as a catalyst material, can effectively activate persulfate (PMS) and respond to visible light, thus effectively degrading RhB with the joint assistance of sunlight and PMS. This study recovered Fe2O3 from high-iron coal gangue through an activating–acid leaching–extracting–back-extracting process and synthesized ZnFe2O4 catalysts (CG-ZFO) using coal gangue back-extraction liquid as the Fe source by a hydrothermal method and cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method. The characterization results of X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS) showed that the CG-ZFO has a pure crystal phase, and the addition of CTAB can effectively improve the photoelectric performance of the catalyst. The synthesized CG-ZFO can produce a significant synergistic effect with simulated sunlight (SS) and PMS, and the constructed SS/CG-ZFO/PMS system had a good degradation effect on RhB. Based on the conclusions of free radical-quenching experiments, electron paramagnetic resonance (EPR) spectroscopy, and X-ray photoelectron spectroscopy (XPS), the main active species in the SS/CG-ZFO/PMS system was identified as 1O2, and the degradation mechanism of RhB was elucidated. CG-ZFO prepared from coal gangue holds promising potential for application in the remediation of organic dye wastewater, and this study also provides a new approach for the resource regeneration of high-iron coal gangue. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Photocatalytic Application)
Show Figures

Figure 1

29 pages, 4009 KB  
Article
Plant-Mediated Synthesis of Electrocatalytically Active Cd–Cs Mixed Oxide Nanocomposites and Their Multifunctional Antioxidant and Anticorrosive Performance
by Shivani Naik, Ruchi Bharti, Renu Sharma, Sónia A. C. Carabineiro and Manas Sutradhar
Surfaces 2025, 8(4), 91; https://doi.org/10.3390/surfaces8040091 - 17 Dec 2025
Viewed by 481
Abstract
Mild steel readily corrodes in acidic environments, and most industrial corrosion inhibitors are synthetic, often toxic, and environmentally harmful. In this study, electrocatalytically active Cd–Cs mixed oxide nanocomposites were synthesized via a green route using an aqueous extract of Trachyspermum ammi (ajwain) seeds [...] Read more.
Mild steel readily corrodes in acidic environments, and most industrial corrosion inhibitors are synthetic, often toxic, and environmentally harmful. In this study, electrocatalytically active Cd–Cs mixed oxide nanocomposites were synthesized via a green route using an aqueous extract of Trachyspermum ammi (ajwain) seeds as a natural reducing, stabilizing, and capping agent. This eco-friendly method eliminates harsh chemicals while producing nanomaterials with active surfaces capable of facilitating electron transfer and scavenging free radicals. Incorporation of cesium introduces basic, electron-rich sites on the Cd–Cs oxide surface, serving as inhibition promoters that enhance charge transfer at the metal/electrolyte interface and assist in the formation of an adsorbed protective film on steel. The nanocomposites were optimized by adjusting precursor ratios, pH, temperature, and reaction time, and were characterized by UV–Vis, FTIR, XRD, SEM–EDS, HR-TEM EDS, BET, DLS, XPS, and zeta potential analyses. Strong antioxidant activity in ABTS and DPPH assays confirmed efficient catalytic quenching of reactive radicals. Corrosion inhibition potential, evaluated by using potentiodynamic polarization, electrochemical impedance spectroscopy, and gravimetric analysis in 0.5 M HCl, shows an inhibition efficiency of 90–91%. This performance is associated with an electrocatalytically active, adsorbed barrier layer that suppresses both anodic dissolution and cathodic hydrogen evolution, which depicts mixed-type inhibition. Overall, the biosynthesized Cd–Cs mixed oxide nanocomposites function as promising green synthesized nanomaterial with dual antioxidant and corrosion-inhibiting functions, underscoring their potential for advanced surface engineering and corrosion protection. Full article
(This article belongs to the Special Issue Recent Advances in Catalytic Surfaces and Interfaces, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 1016 KB  
Article
Effect of bis-TEMPO Sebacate on Mechanical Properties and Oxidative Resistance of Peroxide-Crosslinked Polyolefin Compositions
by Artem Chizhov, Aleksandr Goriaev, Svetlana Belus and Maksim Svistunov
Polymers 2025, 17(24), 3325; https://doi.org/10.3390/polym17243325 - 17 Dec 2025
Viewed by 418
Abstract
TEMPO derivatives are well known as scorch retardants due to their ability to effectively quench free alkyl radicals during peroxide crosslinking of polymer compositions. However, in practice this leads to the loss of crosslinking density due to a irreversible decrease in the number [...] Read more.
TEMPO derivatives are well known as scorch retardants due to their ability to effectively quench free alkyl radicals during peroxide crosslinking of polymer compositions. However, in practice this leads to the loss of crosslinking density due to a irreversible decrease in the number of alkyl radicals involved in the crosslinking process. One approach to solving this problem is the use of TEMPO-based biradical molecules, which, on the one hand, are able to effectively quench alkyl radicals, and on the other hand, can couple macroradicals, partially compensating for the loss of crosslinking density. The aim of this work was to reveal the effect of bis(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl) sebacate (bis-TEMPO) in the concentration range of 0.11–0.44 phr on the delay in the onset of dynamic crosslinking of polyolefin composites initiated by peroxide, as well as the oxidative stability of the resulting crosslinked composites. The obtained data show that using bis-TEMPO at a concentration of less than 0.27 phr increases the crosslinking density of the polyolefin composite, with a crosslinking onset delay of up to 36 s achieved. Simultaneously, antioxidant functionality of bis-TEMPO in crosslinked composites is considered moderate and leads to an increase in the OIT values by 1.7–2.8 times. The crosslinking onset delay time under dynamic conditions is well described by a first-order kinetic model at a constant temperature. The obtained data confirm the efficiency and predictability of bis-TEMPO as a scorch retardant for polyolefin composites. Full article
(This article belongs to the Special Issue Sustainable Polymer Materials for Industrial Applications)
Show Figures

Figure 1

729 KB  
Proceeding Paper
Radical Scavenging Activity of Polyphenols Contained in Black Raspberries: An Assay of the Reaction with Galvinoxyl Radical Using Absorption and Emission Spectra
by Miguel León and Franklin Vargas Tovar
Chem. Proc. 2025, 18(1), 117; https://doi.org/10.3390/ecsoc-29-26909 - 13 Nov 2025
Viewed by 70
Abstract
Black raspberries exhibit polyphenolic radical scavenging activity. This was demonstrated by analyzing changes in the absorption and emission spectra of galvinoxyl and black raspberry extract, respectively. Black raspberries are rich in polyphenols, such as anthocyanins and ellagic acid, which contribute to their potent [...] Read more.
Black raspberries exhibit polyphenolic radical scavenging activity. This was demonstrated by analyzing changes in the absorption and emission spectra of galvinoxyl and black raspberry extract, respectively. Black raspberries are rich in polyphenols, such as anthocyanins and ellagic acid, which contribute to their potent antioxidant activity. These polyphenols effectively neutralize free radicals such as the galvinoxyl radical, as demonstrated by studies that have measured their neutralization capacity. Absorption and emission spectroscopy were used to evaluate the efficacy of these antioxidants in neutralizing the galvinoxyl radical via quenching and/or scavenging. These spectra and chemiluminescence assays provide information about the interaction between the antioxidant extracts and the reactive oxygen substances (ROS). The position and number of hydroxyl groups in polyphenols can influence their scavenging ability, with ortho-hydroxy positions often being more effective. Polyphenols in black raspberries can donate electrons or hydrogen atoms to free radicals, neutralizing them and preventing oxidative damage. Polyphenols, particularly flavonoids, can effectively scavenge free radicals due to their structural features, such as the presence of a 3′,4′-dihydroxy group (catechol structure). Black raspberries extract showed efficient scavenging activity against galvinoxyl radical in ethanolic solutions when in darkness. The reactivity of this extract toward galvinoxyl (a model phenoxyl radical) in ethanol solution was also assessed. Full article
Show Figures

Figure 1

17 pages, 5460 KB  
Article
Peroxydisulfate Activation by Pyrolysis Products of Iron Grinding Sludge and Polyethylene Glycol for Methylene Blue Degradation: Mechanism and Performance
by De-Feng Kong, Hui-Lai Liu, Yi Han, Ting Shi, De-Jin Wang and Xing Chen
Nanomaterials 2025, 15(20), 1585; https://doi.org/10.3390/nano15201585 - 17 Oct 2025
Viewed by 550
Abstract
The pollution problem of iron grinding sludge (IS) and polyethylene glycol (PEG) threatens the ecosystem and human health. In this study, an iron-rich catalyst (ISPEG) was prepared by co-pyrolysis of grinding sludge and polyethylene glycol and used to activate peroxydisulfate (PDS) for degrading [...] Read more.
The pollution problem of iron grinding sludge (IS) and polyethylene glycol (PEG) threatens the ecosystem and human health. In this study, an iron-rich catalyst (ISPEG) was prepared by co-pyrolysis of grinding sludge and polyethylene glycol and used to activate peroxydisulfate (PDS) for degrading organic wastewater. In the ISPEG/PDS system, methylene blue (MB) was almost completely removed within 60 min with an apparent rate constant (Kobs) of 0.32 min−1 and a wide range of pH. The effects of IS doping ratio, pyrolysis temperature, catalyst injection, PDS concentration, co-existing ions, and pH on MB removal were investigated. The results showed that ISPEG/PDS had a high removal rate of various organics in the water column. The catalytic mechanism of the ISPEG/PDS system was explored by free radical quenching, electron paramagnetic resonance, and frontier orbital theory studies, in which the main active substance for degrading SDZ was SO4•−. Finally, the degradation pathways of MB in the ISPEG/PDS system were analyzed by LC-MS. These results indicate that the ISPEG/PDS system has the potential to treat organic wastewater under the concept of waste control waste. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

19 pages, 1607 KB  
Article
Upcycled Carbon Dots as Multifunctional Boosters for Broad-Spectrum Photostable Sunscreens
by Gustavo Teixeira Machado, Caio Rui Chiabai, Isaac dos Santos Orgino, Leticia Neves Ferraz, Flavia Dayrell França, Fábio Luiz Partelli, Paulo Eduardo Narcizo de Souza, Ana Sofia Fernandes, Ana Luísa Gomes Júlio, André Rolim Baby, George Ricardo Santana Andrade and Fabiana Vieira Lima Solino Pessoa
Photochem 2025, 5(4), 32; https://doi.org/10.3390/photochem5040032 - 13 Oct 2025
Viewed by 1023
Abstract
Sustainable ultraviolet (UV) filters that couple photoprotection with antioxidant activity are needed. Carbon dots (CDots) derived from agro-industrial waste have emerged as promising candidates. CDots were prepared from Coffea canephora (coffee leaf) residues by a one-pot microwave route and characterized by UV–Vis, FTIR, [...] Read more.
Sustainable ultraviolet (UV) filters that couple photoprotection with antioxidant activity are needed. Carbon dots (CDots) derived from agro-industrial waste have emerged as promising candidates. CDots were prepared from Coffea canephora (coffee leaf) residues by a one-pot microwave route and characterized by UV–Vis, FTIR, and TEM. Antioxidant capacity was determined by CUPRAC and DPPH-EPR. The photoprotective efficacy was assessed in vitro by diffuse reflectance spectrophotometry before and after solar-simulator exposure. Nearly spherical CDots (3.3 ± 0.7 nm) displayed a 4.16 eV optical bandgap and broad absorption from 200 to 400 nm. At 10 μg mL−1, CDots exhibited 24.62 ± 0.19% antioxidant activity relative to Trolox by CUPRAC, while by DPPH-EPR, they showed 99.9 ± 12.5% of radical quenching at 240 µg mL−1. Addition of 4.5% w/w (dry basis) CDots to the sunscreen system increased the in vitro SPF from 26 ± 13 to 161 ± 8 (p < 0.05) while maintaining the critical wavelength at 380 ± 0.64 nm. After 30 min of irradiation, the SPF dropped only 10%, versus 44% for the CDots-free sample (control), indicating superior photostability. Coffee leaf CDots acted as an efficient broadband UV absorber and antioxidant that markedly enhanced and stabilized a conventional sunscreen formulation. The work positions waste-derived CDots as an eco-friendly, next-generation multifunctional ingredient, aligning with circular economy principles. Full article
Show Figures

Figure 1

20 pages, 1046 KB  
Article
Molecular Rearrangement in Aromatic Amino Acids and Proteins After Reaction with Hydroxyl and Hydroperoxyl Radicals and UV-C Radiation
by Irina Ivanova and Igor Piskarev
Molecules 2025, 30(20), 4046; https://doi.org/10.3390/molecules30204046 - 10 Oct 2025
Viewed by 761
Abstract
The fluorescence of aqueous solutions of the aromatic amino acids tryptophan, tyrosine, and phenylalanine, an albumin solution, and a mixture of water-soluble animal and plant proteins is investigated after treatment with hydroxyl and hydroperoxyl radicals and continuous UV-C radiation at λ = 253.7 [...] Read more.
The fluorescence of aqueous solutions of the aromatic amino acids tryptophan, tyrosine, and phenylalanine, an albumin solution, and a mixture of water-soluble animal and plant proteins is investigated after treatment with hydroxyl and hydroperoxyl radicals and continuous UV-C radiation at λ = 253.7 nm. The use of independent sources of active species allows for the study of activation and the development of free radical processes in model objects. The analysis is based on Stern–Volmer coefficients for the quenching of the fluorescence of the initial substrates and the ignition of the fluorescence of newly formed products. In the reaction with hydroxyl radicals, the hydrogen atom could be abstracted from any position in the target molecule. Under continuous UV-C radiation, the protein molecule as a whole was excited. Full article
Show Figures

Figure 1

18 pages, 2398 KB  
Article
Synergistic Radical and Non-Radical Pathways in Phenol Degradation: Electron Transfer Mechanism Dominated by N-Doped Carbon/Peroxymonosulfate System
by Qiongqiong He, Xuewen Wu, Ping Ma, Xiaoqi Wu and Zhenyong Miao
Catalysts 2025, 15(10), 968; https://doi.org/10.3390/catal15100968 - 10 Oct 2025
Viewed by 978
Abstract
Phenolic compounds constitute the predominant group of recalcitrant organic contaminants in coal chemical wastewater. In this study, humic acid and urea were used as carbon and nitrogen sources to prepare nitrogen-doped carbon material (labeled as NC-800) through a two-step calcination process. Using this [...] Read more.
Phenolic compounds constitute the predominant group of recalcitrant organic contaminants in coal chemical wastewater. In this study, humic acid and urea were used as carbon and nitrogen sources to prepare nitrogen-doped carbon material (labeled as NC-800) through a two-step calcination process. Using this catalyst (NC-800) to activate PMS for phenol degradation achieved 100% phenol removal across a wide pH range (1–9). The removal rate remained at 99.62% even with high concentrations of inorganic anions or natural organic matter, breaking through the limitations of traditional Fenton-like reactions in terms of acid–base environment and anion influence. The quenching experiment and electron spin resonance (ESR) spectroscopy results indicated that the N-C/PMS system generated three active species hydroxyl radicals (•OH), superoxide radicals (O2•−), and singlet oxygen (1O2) through the active sites in electron-rich regions such as graphite nitrogen, pyrrole nitrogen, and C=O. An electrochemical test revealed that the system formed a metastable NC-800-PMS* complex during the reaction, indicating the existence of a non-radical pathway of electron transfer. The combination of free radicals (•OH, O2•−) and non-free radicals (1O2, electron transfer) facilitated the rapid degradation of phenol, providing a theoretical basis for phenol degradation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

15 pages, 2094 KB  
Article
Scavenger-Probed Mechanisms in the Ultrasound/Chlorine Sono-Hybrid Advanced Oxidation Process
by Oualid Hamdaoui and Abdulaziz Alghyamah
Catalysts 2025, 15(10), 922; https://doi.org/10.3390/catal15100922 - 28 Sep 2025
Viewed by 815
Abstract
Sonochlorination (US/chlorine) is an emerging sonohybrid advanced oxidation process whose performance reportedly surpasses that of its individual components. However, the underlying oxidant budget is still being debated. We mapped the mechanism by systematically probing the US/chlorine system with selective scavengers (ascorbic acid, nitrobenzene, [...] Read more.
Sonochlorination (US/chlorine) is an emerging sonohybrid advanced oxidation process whose performance reportedly surpasses that of its individual components. However, the underlying oxidant budget is still being debated. We mapped the mechanism by systematically probing the US/chlorine system with selective scavengers (ascorbic acid, nitrobenzene, tert-butanol, 2-propanol, and phenol), competing anions (nitrite), and natural organic matter (humic acid). The kinetic hierarchy US/chlorine > US > chlorine remained consistent across all conditions, though its magnitude depended heavily on the matrix composition. Efficient OH traps, such as alcohols and nitrobenzene, only partially suppressed the US/chlorine system. However, they greatly slowed sonolysis. This reveals a substantial non-OH channel in the hybrid process. Ascorbic acid eliminated synergy by stoichiometrically removing free chlorine. Phenol quenched HOCl and chlorine-centered radicals. Nitrite imposed a dual penalty by scavenging OH and consuming HOCl via the nitryl chloride (ClNO2) pathway. Humic acid acted as a three-way sink for OH, HOCl, and chlorine radicals. These patterns suggest that reactivity is co-controlled by Cl, Cl2•−, and ClO. The results obtained are mechanistically consistent with cavitation-assisted activation of HOCl/OCl at pH 5–6, where HOCl concentration is maximal. This yields a mixed oxidant suite in which Cl2•− is the dominant bulk oxidant, Cl provides fast interfacial initiation, and ClO offers selective support. Full article
Show Figures

Graphical abstract

15 pages, 3565 KB  
Article
Interactions of Extracts from Selected Plant Materials Supporting the Treatment of Alzheimer’s Disease with Free Radicals—EPR and UV-Vis Studies
by Damian Łomankiewicz, Barbara Pilawa, Ewa Chodurek and Magdalena Zdybel
Pharmaceuticals 2025, 18(9), 1421; https://doi.org/10.3390/ph18091421 - 21 Sep 2025
Viewed by 823
Abstract
Background/objectives: Interactions of infusions of Ginkgo biloba, ginseng, Yerba Mate, and green tea, with free radicals, were examined. The aim of these studies was to determine quenching of free radicals by the extracts from the selected plant raw materials that are [...] Read more.
Background/objectives: Interactions of infusions of Ginkgo biloba, ginseng, Yerba Mate, and green tea, with free radicals, were examined. The aim of these studies was to determine quenching of free radicals by the extracts from the selected plant raw materials that are useful in the treatment of Alzheimer’s disease. Methods: The interactions were tested by an X-band (9.3 GHz) EPR spectroscopy and UV-Vis spectrophotometry. The model DPPH free radicals were used. The magnitude and changes with time of EPR and UV-Vis spectra of DPPH by the tested extracts were measured. Results: EPR and UV-Vis lines of DPPH free radicals decrease with increasing time of interactions of the extracts with DPPH, and after reaching the minimum value, it does not change with time. Ginseng infusion quenched free radicals the least. Ginkgo biloba extract quenches free radicals a little stronger than ginseng extract. Taking into account the tested extracts, Ginkgo biloba and ginseng extracts interact with free radicals less effectively compared to extracts of Yerba mate and green tea. Ginkgo biloba and ginseng extracts quench free radicals weaker than Yerba Mate and green tea extracts. Conclusions: Yerba Mate extract definitely had the strongest antioxidant properties. This extract quenches free radicals most effectively, what can be useful in the case of Alzheimer’s disease. Given its strong antioxidant properties, green tea extract can also be particularly recommended in the case of Alzheimer’s disease. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

24 pages, 2898 KB  
Article
Evaluating UV Stability of Miscanthus × giganteus Particles via Radiografting of UV Absorbers
by Roland El Hage, Dominique Lafon-Pham and Rodolphe Sonnier
Molecules 2025, 30(17), 3649; https://doi.org/10.3390/molecules30173649 - 8 Sep 2025
Viewed by 940
Abstract
Miscanthus × giganteus particles possess excellent advantages in biodegradability and sustainability. However, their susceptibility to ultraviolet (UV) degradation limits wider outdoor applications. In the present work, electron beam (e-beam) radiation-induced grafting was used for the first time to attempt covalent grafting [...] Read more.
Miscanthus × giganteus particles possess excellent advantages in biodegradability and sustainability. However, their susceptibility to ultraviolet (UV) degradation limits wider outdoor applications. In the present work, electron beam (e-beam) radiation-induced grafting was used for the first time to attempt covalent grafting of UV absorbers onto miscanthus particles to address a major challenge in natural fiber stabilization. Two UV absorbers, 2-hydroxy-4-(methacryloyloxy) benzophenone (HMB) and 2-(4-benzoyl-3-hydroxyphenoxy) ethyl acrylate (BHEA), were explored using both pre-irradiation and simultaneous approaches. Pre-irradiation grafting did not achieve useful covalent fixation of HMB or BHEA, due in part to the premature decay of radicals at elevated temperatures and with solvent use, and the lignin-based quenching of radicals. Solvent-free mutual irradiation grafting failed due to immobility of the UV absorbers, while grafting of HMB in solvent failed due to radical-scavenging behavior. Grafting of BHEA was successfully achieved under solvent-based simultaneous irradiation, reaching up to 38 wt % DG in a butanone/2.5% H2SO4 system. This condition led to the improved UV stability of miscanthus particles, in which color change was reduced significantly after 1000 h of accelerated weathering; this was mainly linked to a beneficial pre-darkening effect which was induced by the presence of the acid. This work proposes a route of grafting strategy that aims to improve the photostability of miscanthus particles, paving the way for durable bio-based materials in outdoor composite applications. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

16 pages, 2773 KB  
Article
Anti-Interference Fe-N-C/PMS System: Synergistic Radical-Nonradical Pathways Enabled by sp2 Carbon and Metal-N Coordination
by Qiongqiong He, Xuewen Wu, Ping Ma, Zhaoyang Song, Xiaoqi Wu, Ruize Gao and Zhenyong Miao
Catalysts 2025, 15(9), 850; https://doi.org/10.3390/catal15090850 - 3 Sep 2025
Cited by 1 | Viewed by 1145
Abstract
Phenol is a refractory organic pollutant that is difficult to degrade in wastewater treatment, and efficiently and stably degrading phenol presents a significant challenge. In this study, iron-doped humic acid-based nitrogen–carbon materials were prepared to activate peroxymonosulfate (PMS) for the degradation of phenol. [...] Read more.
Phenol is a refractory organic pollutant that is difficult to degrade in wastewater treatment, and efficiently and stably degrading phenol presents a significant challenge. In this study, iron-doped humic acid-based nitrogen–carbon materials were prepared to activate peroxymonosulfate (PMS) for the degradation of phenol. The Fe-N-C/PMS system achieved a phenol degradation rate of 99.71%, which follows a first-order kinetic model, with the reaction rate constant of 0.1419 min−1. The phenol degradation rate remained above 92% in inorganic anions (Cl, SO42−, HCO3) and humic acid and the system maintained a 100% phenol removal rate over a wide pH range (3–9). The iron in the catalyst predominantly exists in the forms of Fe0 and Fe3C, and Fe0, Fe2+/Fe3+ are the main active sites that promote PMS activation during the reaction. Additionally, Fe-N-C has a large specific surface area (1041.36 m2/g). Quenching experiments and electron spin resonance (ESR) spectroscopy detected the active free radicals in the Fe-N-C/PMS system: SO4•−, •OH, O2•−, and 1O2. The mechanism for phenol degradation was discussed, involving radical pathways (SO4•−, •OH, O2•−) and the non-radical pathway (1O2), in the Fe-N-C/PMS system activated by Fe0, Fe2+/Fe3+, sp2 hybridized carbon, C-O/C-N, C=O, and graphitic nitrogen active sites. This study provides new insights into the synthesis of efficient carbon-based catalysts for phenol degradation and water remediation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

17 pages, 1223 KB  
Article
Molecular Hydrogen as an Antioxidant and Radioprotector: Mechanistic Insights from Monte Carlo Radiation-Chemical Simulations
by Sumaiya Akhter Ria, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Antioxidants 2025, 14(9), 1054; https://doi.org/10.3390/antiox14091054 - 27 Aug 2025
Viewed by 1966
Abstract
(1) Background: Water, comprising about 70–80% of cellular mass, is the most abundant constituent of living cells. Upon exposure to ionizing radiation, water undergoes radiolysis, generating a variety of reactive species, including free radicals and molecular products. Among these, hydroxyl radicals ( [...] Read more.
(1) Background: Water, comprising about 70–80% of cellular mass, is the most abundant constituent of living cells. Upon exposure to ionizing radiation, water undergoes radiolysis, generating a variety of reactive species, including free radicals and molecular products. Among these, hydroxyl radicals (OH) are particularly damaging due to their very high reactivity and their capacity to induce oxidative injury to vital biomolecules such as DNA, membrane lipids, and proteins. From a radiation-chemical perspective, this study investigates the selective scavenging ability of molecular hydrogen (H2) toward OH radicals, with the aim of evaluating its potential as an antioxidant and radioprotective agent; (2) Methods: We employed our Monte Carlo track chemistry simulation code, IONLYS-IRT, to model the time-dependent yields of ROS in a neutral, aerated aqueous environment. The simulations included varying concentrations of dissolved H2 and, for comparison, cystamine—a well-known sulfur-containing radioprotector and antioxidant. Irradiation was simulated using 300 MeV protons, chosen to mimic the radiolytic effects of low linear energy transfer (LET) radiation, such as that of 60Co γ-rays or fast (>1 MeV) electrons; (3) Results: Our simulations quantitatively demonstrated that H2 selectively scavenges OH radicals. Nevertheless, its scavenging efficiency was consistently lower than that of cystamine, which produced a faster and more pronounced suppression of OH due to its higher reactivity and superior radical-quenching capacity; (4) Conclusions: Molecular hydrogen offers several unique advantages, including low toxicity, high diffusivity, selective scavenging of OH radicals, and well-documented anti-inflammatory effects. Although it is less potent than cystamine in terms of radical-scavenging efficiency, its excellent safety profile and biological compatibility position H2 as a promising radioprotector and antioxidant for therapeutic applications targeting radiation-induced oxidative stress and inflammation. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

Back to TopTop