Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = fracture point identification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 29670 KB  
Article
Slip-Surface Depth Inversion and Influencing Factor Analysis Based on the Integration of InSAR and GeoDetector: A Case Study of Typical Creep Landslide Groups in Li County
by Yue Shen, Xianmin Wang, Xiaoyu Yi, Li Cao and Haixiang Guo
Remote Sens. 2026, 18(2), 377; https://doi.org/10.3390/rs18020377 - 22 Jan 2026
Viewed by 96
Abstract
Creeping landslides constitute the predominant form of long-term, slow-moving geohazards in high mountain gorge regions. Under the combined influence of gravity and external triggering factors, these landslides undergo persistent deformation, posing continuous threats to major transportation corridors, hydropower infrastructures, and nearby settlements. Li [...] Read more.
Creeping landslides constitute the predominant form of long-term, slow-moving geohazards in high mountain gorge regions. Under the combined influence of gravity and external triggering factors, these landslides undergo persistent deformation, posing continuous threats to major transportation corridors, hydropower infrastructures, and nearby settlements. Li County is located within the active tectonic belt along the eastern margin of the Tibetan Plateau, characterized by highly variable topography, intensely fractured rock masses, and dense development of creeping landslides. The slip surfaces are typically deeply buried and concealed. Consequently, conventional drilling and profile-based investigations, limited by high costs, sparse sampling points, and poor spatial continuity, are insufficient for identifying the deep-seated structures of such landslides. To address this challenge, this study applies Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) to obtain ascending and descending deformation rate fields for 2022–2024, revealing pronounced spatial heterogeneity and persistent activity across three types of landslides. Based on the principle of mass conservation, the sliding-surface depths of eight typical landslides were inverted, revealing pronounced heterogeneity. The maximum sliding-surface depths range from 32 to 98 m and show strong agreement with borehole and profile data (R2 > 0.92; RMSE ±4.96–±16.56 m), confirming the reliability of the inversion method. The GeoDetector model was used to quantitatively evaluate the dominant factors controlling landslide depth. Elevation was identified as the primary control factor, while slope aspect exhibited significant influence in several landslides. All factor combinations showed either “bi-factor enhancement” or “nonlinear enhancement”, indicating that slip-surface depth is governed by synergistic interactions among multiple factors. Boxplot-based statistical analyses further revealed three typical patterns of slip-surface variation with elevation and slope, based on which the landslides were classified into rotational, push-type translational, and traction-type translational categories. By integrating statistical patterns with mechanical models, the study achieves a transition from “form” to “state”, enabling inference of the internal mechanical conditions and evolutionary stages from the observed surface morphology. The results of this study provide an effective technical approach for deep structural detection, identification of controlling factors, and stability evaluation of creeping landslides in high mountain gorge environments. Full article
Show Figures

Graphical abstract

31 pages, 25297 KB  
Article
AET-FRAP—A Periodic Reshape Transformer Framework for Rock Fracture Early Warning Using Acoustic Emission Multi-Parameter Time Series
by Donghui Yang, Zechao Zhang, Zichu Yang, Yongqi Li and Linhuan Jin
Sensors 2025, 25(24), 7580; https://doi.org/10.3390/s25247580 - 13 Dec 2025
Viewed by 420
Abstract
The timely identification of rock fractures is crucial in deep subterranean engineering. However, it remains necessary to identify reliable warning indicators and establish effective warning levels. This study introduces the Acoustic Emission Transformer for FRActure Prediction (AET-FRAP) multi-input time series forecasting framework, which [...] Read more.
The timely identification of rock fractures is crucial in deep subterranean engineering. However, it remains necessary to identify reliable warning indicators and establish effective warning levels. This study introduces the Acoustic Emission Transformer for FRActure Prediction (AET-FRAP) multi-input time series forecasting framework, which employs acoustic emission feature parameters. First, Empirical Mode Decomposition (EMD) combined with Fast Fourier Transform (FFT) is employed to identify and filter periodicities among diverse indicators and select input channels with enhanced informative value, with the aim of predicting cumulative energy. Thereafter, the one-dimensional sequence is transformed into a two-dimensional tensor based on its predominant period via spectral analysis. This is coupled with InceptionNeXt—an efficient multiscale convolution and amplitude spectrum-weighted aggregate—to enhance pattern identification across various timeframes. A secondary criterion is created based on the prediction sequence, employing cosine similarity and kurtosis to collaboratively identify abrupt changes. This transforms single-point threshold detection into robust sequence behavior pattern identification, indicating clearly quantifiable trigger criteria. AET-FRAP exhibits improvements in accuracy relative to long short-term memory (LSTM) on uniaxial compression test data, with R2 approaching 1 and reductions in Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). It accurately delineates energy accumulation spikes in the pre-fracture period and provides advanced warning. The collaborative thresholds effectively reduce noise-induced false alarms, demonstrating significant stability and engineering significance. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 4377 KB  
Article
GeoAssemble: A Geometry-Aware Hierarchical Method for Point Cloud-Based Multi-Fragment Assembly
by Caiqin Jia, Yali Ren, Zhi Wang and Yuan Zhang
Sensors 2025, 25(21), 6533; https://doi.org/10.3390/s25216533 - 23 Oct 2025
Viewed by 707
Abstract
Three-dimensional fragment assembly technology has significant application value in fields such as cultural relic restoration, medical image analysis, and industrial quality inspection. To address the common challenges of limited feature representation ability and insufficient assembling accuracy in existing methods, this paper proposes a [...] Read more.
Three-dimensional fragment assembly technology has significant application value in fields such as cultural relic restoration, medical image analysis, and industrial quality inspection. To address the common challenges of limited feature representation ability and insufficient assembling accuracy in existing methods, this paper proposes a geometry-aware hierarchical fragment assembly framework (GeoAssemble). The core contributions of our work are threefold: first, the framework utilizes DGCNN to extract local geometric features while integrating centroid relative positions to construct a multi-dimensional feature representation, thereby enhancing the identification quality of fracture points; secondly, it designs a two-stage matching strategy that combines global shape similarity coarse matching with local geometric affinity fine matching to effectively reduce matching ambiguity; finally, we propose an auxiliary transformation estimation mechanism based on the geometric center of fracture point clouds to robustly initialize pose parameters, thereby improving both alignment accuracy and convergence stability. Experiments conducted on both synthetic and real-world fragment datasets demonstrate that this method significantly outperforms baseline methods in matching accuracy and exhibits higher robustness in multi-fragment scenarios. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

17 pages, 2381 KB  
Article
Fibrous Minerals and Naturally Occurring Asbestos (NOA) in the Metacarbonate Hosted Fe Oxide-Cu-Au-Co Mineralized Rocks from the Guelb Moghrein Mine, Akjoujt, Mauritania: Implications for In Situ Hazard Assessment and Mitigation Protocols
by Jessica Shaye Schapira and Robert Bolhar
Minerals 2025, 15(9), 991; https://doi.org/10.3390/min15090991 - 18 Sep 2025
Viewed by 886
Abstract
The awareness of the potential risks associated with the environmental exposition of asbestos is on the rise and has facilitated a new interest in in situ identification and assessment of the hazards of fibrous minerals. The mineralised metacarbonate rocks of the Guelb Moghrein [...] Read more.
The awareness of the potential risks associated with the environmental exposition of asbestos is on the rise and has facilitated a new interest in in situ identification and assessment of the hazards of fibrous minerals. The mineralised metacarbonate rocks of the Guelb Moghrein deposit have not been studied regarding the identification and characterisation of fibrous minerals occurrences. Thus, the aim of this study was to collect samples from different lithotypes with visually identifiable fibrous minerals and to examine the geological–structural features pertaining to their mode of occurrence and formation. The mineral fibre components of the rock samples demonstrate that fibrous and asbestiform mineralisation occurred via several modes, including fracture fill, slip-fibre recrystallisation and replacement. The geological diversity of fibrous amphibole mineralisation points to the chemistry of the rocks in this area and open space being the major factors controlling the presence of NOA in this deposit. The variability of NOA due to different fibrous mineral intergrowths is investigated by determining the bulk mineralogical and geochemical properties of the fibrous mineral content of each sample. A novel observation was pointed out in this study, showing the coexistence of fibrous siderite and anthophyllite. The identification of the asbestiform features exhibited by siderite, anthophyllite and talc in the mineralised metacarbonate of the Guelb Moghrein deposit underlines the necessity for further mineralogical research to enhance our understanding of fibrous minerals and how we assess their potential hazards to health. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

26 pages, 5655 KB  
Article
A Hierarchical Multi-Feature Point Cloud Lithology Identification Method Based on Feature-Preserved Compressive Sampling (FPCS)
by Xiaolei Duan, Ran Jing, Yanlin Shao, Yuangang Liu, Binqing Gan, Peijin Li and Longfan Li
Sensors 2025, 25(17), 5549; https://doi.org/10.3390/s25175549 - 5 Sep 2025
Viewed by 1413
Abstract
Lithology identification is a critical technology for geological resource exploration and engineering safety assessment. However, traditional methods suffer from insufficient feature representation and low classification accuracy due to challenges such as weathering, vegetation cover, and spectral overlap in complex sedimentary rock regions. This [...] Read more.
Lithology identification is a critical technology for geological resource exploration and engineering safety assessment. However, traditional methods suffer from insufficient feature representation and low classification accuracy due to challenges such as weathering, vegetation cover, and spectral overlap in complex sedimentary rock regions. This study proposes a hierarchical multi-feature random forest algorithm based on Feature-Preserved Compressive Sampling (FPCS). Using 3D laser point cloud data from the Manas River outcrop in the southern margin of the Junggar Basin as the test area, we integrate graph signal processing and multi-scale feature fusion to construct a high-precision lithology identification model. The FPCS method establishes a geologically adaptive graph model constrained by geodesic distance and gradient-sensitive weighting, employing a three-tier graph filter bank (low-pass, band-pass, and high-pass) to extract macroscopic morphology, interface gradients, and microscopic fracture features of rock layers. A dynamic gated fusion mechanism optimizes multi-level feature weights, significantly improving identification accuracy in lithological transition zones. Experimental results on five million test samples demonstrate an overall accuracy (OA) of 95.6% and a mean accuracy (mAcc) of 94.3%, representing improvements of 36.1% and 20.5%, respectively, over the PointNet model. These findings confirm the robust engineering applicability of the FPCS-based hierarchical multi-feature approach for point cloud lithology identification. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

12 pages, 3074 KB  
Article
Formability Limits in Square Tubes and L-Section Profiles
by Inês M. Almeida, João P. G. Magrinho and Maria Beatriz Silva
Materials 2025, 18(12), 2852; https://doi.org/10.3390/ma18122852 - 17 Jun 2025
Viewed by 521
Abstract
Understanding the formability limits of thin-walled tubes with square cross-sections and L-section profiles is crucial for improving manufacturing efficiency and ensuring structural reliability in industries such as automotive and aerospace. Unlike the usually studied circular tubes, square tubes and L-section profiles geometries present [...] Read more.
Understanding the formability limits of thin-walled tubes with square cross-sections and L-section profiles is crucial for improving manufacturing efficiency and ensuring structural reliability in industries such as automotive and aerospace. Unlike the usually studied circular tubes, square tubes and L-section profiles geometries present unique deformation and fracture behaviours that require specific analysis. To address this gap, this research establishes a novel methodology combining digital image correlation (DIC) with a time-dependent approach and precise thickness measurements, enabling accurate strain measurements essential to the onset of necking and fracture strain identification. Two experimental tests under different forming conditions allowed capturing a distinct range of strain paths leading to failure. This approach allowed the determination of the forming limit points associated with necking and the fracture forming lines associated with crack opening by tension (mode I) and by in-plane shear (mode II). The findings highlight the strong influence of geometry on the fracture mechanisms and provide valuable data for optimizing tube-forming processes for square tubes and L-section profiles, ultimately enhancing the design and performance of lightweight structural components. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

24 pages, 9061 KB  
Article
Study on the Mechanical Characteristics and Degradation Response of Unloading Rocks Surrounding Tunnels in Cold Regions
by Xinyu Liu, Xingzhou Chen, Yimeng Wei, Lili Chen and Sheng Gong
Appl. Sci. 2025, 15(3), 1269; https://doi.org/10.3390/app15031269 - 26 Jan 2025
Cited by 2 | Viewed by 1126
Abstract
The excavation of the rock mass at the tunnel entrance in regions characterized by high altitudes and elevated stress levels results in the direct exposure of the surrounding rock to atmospheric conditions. This surrounding rock is subjected to the compounded effects of excavation-induced [...] Read more.
The excavation of the rock mass at the tunnel entrance in regions characterized by high altitudes and elevated stress levels results in the direct exposure of the surrounding rock to atmospheric conditions. This surrounding rock is subjected to the compounded effects of excavation-induced unloading damage and freeze–thaw erosion, which contribute to the degradation of its mechanical properties. Such deterioration has a negative impact on production and construction operations. Following tunnel excavation, the lateral stress exerted by the surrounding rock at the tunnel face is reduced, leading to a predominance of uniaxial compressive stress. As a result, the failure mode and mechanical behavior of the rock exhibit characteristics similar to those observed in uniaxial loading tests conducted in controlled laboratory environments. This study conducts laboratory-based uniaxial loading and unloading tests, as well as freeze–thaw tests, to examine the strength, deformation characteristics, and fracture attributes of unloading sandstone subjected to freeze–thaw erosion. A damage deterioration model for unloading sandstone under uniaxial conditions is developed, and the patterns of damage response are further analyzed through the identification of compaction points and the definition of damage response points. The results indicate that (1) as the degree of freeze–thaw erosion increases, the failure threshold of the sandstone significantly decreases, with the residual rock fragments on the fracture surface transitioning from hard and sharp to soft and sandy; (2) freeze–thaw erosion has a pronounced negative impact on the cohesion of the sandstone, while the reduction in the internal friction angle is relatively moderate; and (3) the strain induced by damage following three, six, and nine freeze–thaw cycles exhibits a gradual decline and appears to reach a state of stabilization when compared to conditions without freeze–thaw exposure. Investigating the mechanical properties and deterioration mechanisms of the rock in this specific context is crucial for establishing a theoretical foundation to assess the stability of the tunnel’s surrounding rock and determine the necessary support measures. Full article
(This article belongs to the Special Issue Recent Research on Tunneling and Underground Engineering)
Show Figures

Figure 1

15 pages, 6899 KB  
Article
Influence of Potting Radius on the Structural Performance and Failure Mechanism of Inserts in Sandwich Structures
by Filippos Filippou and Alexis Τ. Kermanidis
Machines 2025, 13(1), 34; https://doi.org/10.3390/machines13010034 - 7 Jan 2025
Viewed by 2316
Abstract
In this study, the mechanical performance and failure modes of cold-potted inserts within sandwich structures were examined, focusing on the influence of the potting radius, while maintaining constant insert radius and specimen characteristics. In this research, destructive testing was used to evaluate the [...] Read more.
In this study, the mechanical performance and failure modes of cold-potted inserts within sandwich structures were examined, focusing on the influence of the potting radius, while maintaining constant insert radius and specimen characteristics. In this research, destructive testing was used to evaluate the pull out, load-carrying capacity, and failure mechanisms of the inserts. The methods of stiffness degradation and acoustic emissions (AE) were employed for structural health monitoring to capture real-time data on failure progression, including core buckling, core rupture, and skin delamination. The results indicated that increasing the potting radius significantly altered the failure modes and critical failure load of the insert system. A critical potting radius was identified where maximum stiffness was achieved. Beyond this point, insert fracture became the dominant failure mode, with minimal damage to the surrounding core and CFRP skins. Larger potting radii also led to reduced displacement at failure, increased ultimate loads, and elevated stiffness, which were maintained until sudden structural failure. Through detailed isolation and observation of each failure event and with the use of AE data, precise identification of system damage in real time was allowed, offering insights into the progression and causes of failure. Full article
Show Figures

Figure 1

23 pages, 7487 KB  
Article
Bolt Loosening and Preload Loss Detection Technology Based on Machine Vision
by Zhiqiang Shang, Xi Qin, Zejun Zhang and Hongtao Jiang
Buildings 2024, 14(12), 3897; https://doi.org/10.3390/buildings14123897 - 5 Dec 2024
Cited by 4 | Viewed by 2893
Abstract
Steel bridges often experience bolt loosening and even fatigue fracture due to fatigue load, forced vibration, and other factors during operation, affecting structural safety. This study proposes a high-precision bolt key point positioning and recognition method based on deep learning to address the [...] Read more.
Steel bridges often experience bolt loosening and even fatigue fracture due to fatigue load, forced vibration, and other factors during operation, affecting structural safety. This study proposes a high-precision bolt key point positioning and recognition method based on deep learning to address the high cost, low efficiency, and poor safety of current bolt loosening identification methods. Additionally, a bolt loosening angle recognition method is proposed based on digital image processing technology. Using image recognition data, the angle-preload curve is revised. The established correlation between loosening angle and pretension for commonly utilized high-strength bolts provides a benchmark for identifying loosening angles. This finding lays a theoretical foundation for defining effective detection intervals in future bolt loosening recognition systems. Consequently, it enhances the system’s ability to deliver timely warnings, facilitating swift manual inspections and repairs. Full article
Show Figures

Figure 1

10 pages, 621 KB  
Article
Evaluating the SarQoL® Questionnaire as a Screening Tool for Sarcopenia among Korean Older Adults
by Haneul Lee and Jiyoun Kim
Healthcare 2024, 12(19), 2000; https://doi.org/10.3390/healthcare12192000 - 7 Oct 2024
Cited by 3 | Viewed by 1854
Abstract
Background/objectives: Sarcopenia, characterized by the progressive loss of muscle mass and strength, poses significant risks to physical health, leading to a reduced quality of life (QoL), increased disability, and higher mortality rates among older adults. Early detection and intervention are crucial to prevent [...] Read more.
Background/objectives: Sarcopenia, characterized by the progressive loss of muscle mass and strength, poses significant risks to physical health, leading to a reduced quality of life (QoL), increased disability, and higher mortality rates among older adults. Early detection and intervention are crucial to prevent the cascading effects of sarcopenia, including falls, fractures, and hospitalization. This study determined an optimal cut-off point of the SarQoL® score that can serve as an effective screening tool among community-dwelling Korean older adults. Methods: The study involved 451 South Korean older adults, assessing the correlation between SarQoL® scores and sarcopenia as defined by the Asian Working Group for Sarcopenia (AWGS) criteria. Participants completed the Korean version of the SarQoL questionnaire. Results: Findings revealed that individuals diagnosed with sarcopenia had significantly lower SarQoL® scores compared to non-sarcopenic participants, with a cut-off score of ≤58.5 providing good diagnostic accuracy (AUC = 0.768, sensitivity = 69.3%, specificity = 75.2%). Conclusions: These results underscore the questionnaire’s reliability and validity in screening for sarcopenia-related QoL impairment and its potential utility as a clinical tool. Implementing the SarQoL® in routine assessments could improve clinical outcomes by enabling earlier and more precise identification of sarcopenia. Full article
(This article belongs to the Special Issue Aging and Quality of Life: Second Edition)
Show Figures

Figure 1

16 pages, 8184 KB  
Article
Bending Strength of Continuous Fiber-Reinforced (CFR) Polyamide-Based Composite Additively Manufactured through Material Extrusion
by Maciej Łakomy, Janusz Kluczyński, Bartłomiej Sarzyński, Katarzyna Jasik, Ireneusz Szachogłuchowicz and Jakub Łuszczek
Materials 2024, 17(12), 2937; https://doi.org/10.3390/ma17122937 - 15 Jun 2024
Cited by 7 | Viewed by 1832
Abstract
This paper shows the three-point bending strength analysis of a composite material consisting of polyamide doped with chopped carbon fiber and reinforced with continuous carbon fiber produced by means of the material extrusion (MEX) additive manufacturing technique. For a comparison, two types of [...] Read more.
This paper shows the three-point bending strength analysis of a composite material consisting of polyamide doped with chopped carbon fiber and reinforced with continuous carbon fiber produced by means of the material extrusion (MEX) additive manufacturing technique. For a comparison, two types of specimens were produced: unreinforced and continuous fiber-reinforced (CFR) with the use of carbon fiber. The specimens were fabricated in two orientations that assure the highest strength properties. Strength analysis was supplemented by additional digital image correlation (DIC) analysis that allowed for the identification of regions with maximum strain within the specimens. The utilization of an optical microscope enabled a fractographic examination of the fracture surfaces of the specimens. The results of this study demonstrated a beneficial effect of continuous carbon fiber reinforcement on both the stiffness and strength of the material, with an increase in flexural strength from 77.34 MPa for the unreinforced composite to 147.03 MPa for the composite reinforced with continuous carbon fiber. Full article
Show Figures

Figure 1

11 pages, 1006 KB  
Article
Time to Positivity in Blood Culture Bottles Inoculated with Sonication Fluid from Fracture-Related Infections
by Leopold Henssler, Lena Schellenberger, Susanne Baertl, Lisa Klute, Robert Heyd, Maximilian Kerschbaum, Volker Alt and Daniel Popp
Microorganisms 2024, 12(5), 862; https://doi.org/10.3390/microorganisms12050862 - 26 Apr 2024
Viewed by 2237
Abstract
The timely and accurate identification of causative agents is crucial for effectively managing fracture-related infections (FRIs). Among various diagnostic methods, the “time to positivity” (TTP) of cultures has emerged as a valuable predictive factor in infectious diseases. While sonication of implants and inoculation [...] Read more.
The timely and accurate identification of causative agents is crucial for effectively managing fracture-related infections (FRIs). Among various diagnostic methods, the “time to positivity” (TTP) of cultures has emerged as a valuable predictive factor in infectious diseases. While sonication of implants and inoculation of blood culture bottles with sonication fluid have enhanced sensitivity, data on the TTP of this microbiological technique remain limited. Therefore, patients with ICM criteria for confirmed FRI treated at our institution between March 2019 and March 2023 were retrospectively identified and their microbiological records were analyzed. The primary outcome parameter was TTP for different microorganism species cultured in a liquid culture collected from patients with confirmed FRI. A total of 155 sonication fluid samples from 126 patients (average age 57.0 ± 17.4 years, 68.3% males) was analyzed. Positive bacterial detection was observed in 78.7% (122/155) of the liquid culture pairs infused with sonication fluid. Staphylococcus aureus was the most prevalent organism (42.6%). Streptococcus species exhibited the fastest TTP (median 11.9 h), followed by Staphylococcus aureus (median 12.1 h) and Gram-negative bacteria (median 12.5 h), all of which had a 100% detection rate within 48 h after inoculation. Since all Gram-negative pathogens yielded positive culture results within 24 h, it could be discussed if empirical antibiotic therapy could be de-escalated early and limited towards the Gram-positive germ spectrum if no Gram-negative pathogens are detected up to this time point in the context of antibiotic stewardship. Full article
(This article belongs to the Special Issue Device-Related Infections and Bacterial Biofilms)
Show Figures

Figure 1

35 pages, 5859 KB  
Article
Analysis of Potential Environmental Risks in the Hydraulic Fracturing Operation in the “La Luna” Formation in Colombia
by Camilo Andrés Guerrero-Martin and Alexandre Szklo
Sustainability 2024, 16(5), 2063; https://doi.org/10.3390/su16052063 - 1 Mar 2024
Cited by 3 | Viewed by 4555
Abstract
This article presents an in-depth analysis of potential environmental risks associated with hydraulic fracturing operations within the “La Luna” formation in Colombia. Using the Conesa methodology, it assesses the environmental impacts of unconventional reservoir production in Colombia, including water usage, chemical additives, air [...] Read more.
This article presents an in-depth analysis of potential environmental risks associated with hydraulic fracturing operations within the “La Luna” formation in Colombia. Using the Conesa methodology, it assesses the environmental impacts of unconventional reservoir production in Colombia, including water usage, chemical additives, air emissions, and the potential for groundwater contamination. This study incorporates comprehensive data on geological characteristics, operational procedures, and environmental conditions specific to the region. This analysis highlights the need for a proactive approach to managing potential environmental risks associated with hydraulic fracturing in Colombia. The findings underscore the importance of implementing robust regulatory measures, comprehensive monitoring systems, and the industry’s best practices to mitigate and prevent adverse environmental impacts. This research contributes to the ongoing global dialogue on the environmental implications of hydraulic fracturing in regions with sensitive ecological conditions. The environmental impacts of unconventional reservoirs are widely recognized as a general consensus; however, the absence of applied studies with the rigor of an explicit methodology in Andean countries highlights the need for specific research in this region. This article addresses this gap by proposing a detailed and structured methodology to assess and mitigate environmental impacts in unconventional reservoirs. Emphasizing the importance of knowing the characteristics of reservoir fluids, this research highlights that this critical information is only revealed by drilling exploration wells and PVT (pressure, volume, and temperature) analysis. Obtaining this data is crucial for shaping specific mitigation measures, thus allowing for the formulation of a robust environmental management plan tailored to the conditions of the reservoirs in the Andean region. This precise and contextualized approach contributes to closing the knowledge gap and promotes more sustainable practices in the exploitation of unconventional reservoirs in this specific geographical context. The methodology used in this study proved its effectiveness by accurately quantifying the risks associated with each of the environmental alterations inherent to the hydraulic fracturing process in the La Luna formation. The results obtained allowed for the identification of the critical points most susceptible to environmental impacts, serving as a solid basis for the elaboration of an environmental management plan. This strategic approach not only enabled the delineation of specific mitigation measures but also facilitated the selection of the most appropriate locations for the implementation of the plan, maximizing the effectiveness of corrective actions. It is noteworthy that the successful application of the Conesa methodology in this unconventional reservoir context evidences the versatility and applicability of this approach, consolidating it as a valuable tool for environmental assessment and effective planning in the hydraulic fracturing industry. Full article
Show Figures

Figure 1

15 pages, 2212 KB  
Article
Recognition of Tunnel Fracture Zones in Seismic Waves and Ground-Penetrating Radar Data
by Chuan Li, Haichun Wang, Yunsheng Wang, Lulu Wang, Xi Yang and Xiaorong Wan
Appl. Sci. 2024, 14(3), 1282; https://doi.org/10.3390/app14031282 - 3 Feb 2024
Cited by 4 | Viewed by 2484
Abstract
Fracture zones in front of tunnel faces can easily cause falling blocks and landslides during the construction process. Using seismic waves and ground-penetrating radar (GPR) data, we extracted the features of fracture zones and achieved the advanced prediction of tunnel fracture zones. The [...] Read more.
Fracture zones in front of tunnel faces can easily cause falling blocks and landslides during the construction process. Using seismic waves and ground-penetrating radar (GPR) data, we extracted the features of fracture zones and achieved the advanced prediction of tunnel fracture zones. The energy variation in the reflected waves propagated by seismic waves at interfaces with different impedances of contact waves was found to manifest as positive and negative reflections, and the amplitude of reflected signals within the fracture zone areas thus increased. We designed a superimposed velocity spectrum, divided the areas of variation in wave velocity, and constructed the three-dimensional spatial distribution of the tunnel fracture zones. Based on the phase change, increase in amplitude, and increase in the center-frequency characteristics of the one-dimensional time waveform of the electromagnetic waves in the fault zone area (A-scan), we located the characteristic points of the fracture zones and observed the occurrence of in-phase axis misalignment in two-dimensional scanning (B-scan). We then implemented the identification of fracture zones. This method predicted the fractured area in the rock surrounding the Liangwangshan Tunnel, and during the tunnel excavation, the fracture zones appeared in the recognition area. Full article
Show Figures

Figure 1

13 pages, 1377 KB  
Article
Effects of Ankle Stabilization Exercises Using Sonic Balance Pad on Proprioception and Balance in Subjects with Ankle Instability
by Merve Nur Uygun, Dong-Kyu Yang, Jung-Su Moon and Dae-Sung Park
Healthcare 2023, 11(18), 2544; https://doi.org/10.3390/healthcare11182544 - 14 Sep 2023
Cited by 2 | Viewed by 2930
Abstract
Sound waves generate acoustic resonance energy that penetrates deeply and safely into body areas normal mechanical vibrations cannot reach. The sonic balance pad utilizes these sound waves to create an optimal musculoskeletal response. The purpose of this study was to investigate the effects [...] Read more.
Sound waves generate acoustic resonance energy that penetrates deeply and safely into body areas normal mechanical vibrations cannot reach. The sonic balance pad utilizes these sound waves to create an optimal musculoskeletal response. The purpose of this study was to investigate the effects of a 4-week ankle stabilization exercise program using a sonic balance pad on proprioceptive sense and balance ability in individuals with ankle instability. This study was conducted as a randomized control-group pre-and post-test design in 30 participants (21 females and 9 males) who had experienced an ankle fracture or sprain within the last 5 years or who scored 11 points or more on The Identification of Functional Ankle Instability. The ankle stabilization exercise program was conducted for 4 weeks in the experimental group (n = 15), to which sonic pads were applied, and the control group (n = 15), to which balance pads were applied. All participants were assessed for their intrinsic proprioceptive sense of dorsiflexion and plantarflexion, static balance test, dynamic balance test, and long jump test were measured before and after 4 weeks as dependent variables. After 4 weeks of training, a significant difference was shown in the right dorsiflexion error (Balance pad = PRE: 2.47 ± 0.92; POST: 2.33 ± 1.40, Sonic pad = PRE: 3.27 ± 1.39; POST: 1.20 ± 0.77) and the left plantar flexion error (Balance pad = PRE: 2.00 ± 1.36; POST: 2.73 ± 1.22, Sonic pad = PRE: 3.53 ± 1.25; POST: 2.20 ± 1.01) (p < 0.05) between the experimental and control groups in the proprioception test. In the static balance test, there was no significant difference between the experimental and control groups during the pre, post, and variation stages. However, in the Y-Balance test, which is one of the dynamic balance tests, there was a significant difference between the experimental and control groups at various points, including anterior left (Balance pad = PRE: 72.85 ± 19.95; POST: 63.41 ± 8.66, Sonic pad = PRE: 68.16 ± 6.38; POST: 76.17 ± 3.67), posteromedial right (Balance pad = PRE: 78.59 ± 15.34; POST: 81.41 ± 10.37, Sonic pad = PRE: 86.33 ± 16.44; POST: 102.23 ± 11.53), posteromedial left (Balance pad = PRE: 78.00 ± 16.99; POST: 83.36 ± 10.15, Sonic pad = PRE: 88.96 ± 19.92; POST: 102.45 ± 12.98), posterolateral right (Balance pad = PRE: 78.16 ± 14.33; POST: 82.61 ± 10.73, Sonic pad = PRE: 87.95 ± 17.51; POST: 101.34 ± 15.37), and posterolateral left (Balance pad = PRE: 80.86 ± 14.96; POST: 81.31 ± 7.16, Sonic pad = PRE: 91.23 ± 17.35; POST: 104.18 ± 11.78) (p < 0.05). Moreover, in the single-leg long jump test, which is another dynamic balance test, the experimental group (Sonic pad = PRE: 100.27 ± 29.00; POST: 116.80 ± 28.86) also demonstrated a significant difference in the right single-leg long jump compared to the control group (Balance pad = PRE: 91.87 ± 17.74; POST: 97.67 ± 17.70) (p < 0.05). When a sonic balance pad using sound waves was applied in addition to a 4-week ankle stabilization exercise program for participants with ankle stability, it helped to improve proprioception and dynamic balance ability. Full article
Show Figures

Figure 1

Back to TopTop