Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (839)

Search Parameters:
Keywords = fracture mechanic approaches

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6716 KB  
Article
A Study on the Optimal Design of Subsurface Pumping Energy Storage Under Varying Reservoir Conditions
by Zhiwen Hu and Hanyi Wang
Energies 2025, 18(19), 5252; https://doi.org/10.3390/en18195252 - 3 Oct 2025
Abstract
To foster innovation in stored energy solutions and advance the development of green energy, this work presents a novel energy storage patented technology which involves storing energy in subsurface fractures through pumping. A new mechanical model was established to examine how variations in [...] Read more.
To foster innovation in stored energy solutions and advance the development of green energy, this work presents a novel energy storage patented technology which involves storing energy in subsurface fractures through pumping. A new mechanical model was established to examine how variations in fracture size and operating parameters (i.e., injection and flow-back rates) modulate the scale and efficiency of energy storage under various geological conditions, and an optimized design scheme is proposed. The study demonstrates that both the scale and efficiency of energy storage are influenced by geological conditions. Selecting reservoirs with greater fracture toughness or lower permeability can achieve higher efficiency. Additionally, increasing reservoir fracture toughness also significantly enhances the scale of energy storage. Variations in geological conditions have a small impact on the optimal design of fracture size and injection/flow-back rate. Whether dealing with shallow penny-shaped fractures or deep elliptical fractures, using a moderate injection/flow-back rate in larger fractures is the optimal approach. The model presented in this paper is essential for tackling design challenges and interpreting data in subsurface pumping energy storage field applications. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

18 pages, 4624 KB  
Article
Synthesis of Linear Modified Siloxane-Based Thickeners and Study of Their Phase Behavior and Thickening Mechanism in Supercritical Carbon Dioxide
by Pengfei Chen, Ying Xiong, Daijun Du, Rui Jiang and Jintao Li
Polymers 2025, 17(19), 2640; https://doi.org/10.3390/polym17192640 - 30 Sep 2025
Abstract
To address critical limitations of ultra-low viscosity supercritical CO2 fracturing fluids, including excessive fluid loss and inadequate proppant transport capacity, a series of thickeners designed to significantly enhance CO2 viscosity were synthesized. Initially, FT-IR and 1H NMR characterization confirmed successful [...] Read more.
To address critical limitations of ultra-low viscosity supercritical CO2 fracturing fluids, including excessive fluid loss and inadequate proppant transport capacity, a series of thickeners designed to significantly enhance CO2 viscosity were synthesized. Initially, FT-IR and 1H NMR characterization confirmed successful chemical reactions and incorporation of both solvation-enhancing and -thickening functional groups. Subsequently, dissolution and thickening performance were evaluated using a custom-designed high-pressure vessel featuring visual observation capability, in-line viscosity monitoring, and high-temperature operation. All thickener systems exhibited excellent solubility, with 5 wt% loading elevating CO2 viscosity to 3.68 mPa·s. Ultimately, molecular simulations performed in Materials Studio elucidated the mechanistic basis, electrostatic potential (ESP) mapping, cohesive energy density analysis, intermolecular interaction energy, and radial distribution function comparisons. These computational approaches revealed dissolution and thickening mechanisms of polymeric thickeners in CO2. Full article
(This article belongs to the Special Issue Application of Polymers in Enhanced Oil Recovery)
Show Figures

Graphical abstract

20 pages, 3712 KB  
Article
Analysis of Control Factors for Sensitivity of Coalbed Methane Reservoirs
by Peng Li, Cong Zhang, Bin Fan, Jie Zhang and Zhongxiang Zhao
Processes 2025, 13(10), 3133; https://doi.org/10.3390/pr13103133 - 29 Sep 2025
Abstract
Formation damage sensitivity is a primary constraint on productivity in coalbed methane (CBM) reservoirs. Conventional experimental methods, which often employ crushed or plug coal samples, disrupt the natural fracture network, thereby overestimating matrix damage and underestimating fracture-related damage. In this study, synchronous comparative [...] Read more.
Formation damage sensitivity is a primary constraint on productivity in coalbed methane (CBM) reservoirs. Conventional experimental methods, which often employ crushed or plug coal samples, disrupt the natural fracture network, thereby overestimating matrix damage and underestimating fracture-related damage. In this study, synchronous comparative experiments were conducted using raw coal and briquette coal cores, integrated with scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) analyses to characterize coal composition and pore structure. This approach elucidates the underlying mechanisms controlling reservoir sensitivity. The main findings are as follows: The dual-sample comparative system reveals substantial deviations in traditional experimental assessments. Due to post-dissolution compaction, briquette coal samples overestimate acid sensitivity while underestimating water sensitivity. Stress sensitivity is primarily attributed to the irreversible compression of natural fractures. Differences in acid sensitivity are governed by structural integrity: mineral dissolution leads to collapse in briquette coal, whereas fractures help maintain stability in raw coal. Raw coal exhibits a lower critical flow rate for velocity sensitivity and undergoes significant water sensitivity damage below 1 MPa. Both sample types show weak alkaline sensitivity, with damage acceleration observed within the pH range of 7 to 10. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 6146 KB  
Article
Research on Capacity Prediction and Interpretability of Dense Gas Pressure Based on Ensemble Learning
by Xuanyu Liu, Zhiwei Yu, Chao Zhou, Yu Wang and Yujie Bai
Processes 2025, 13(10), 3132; https://doi.org/10.3390/pr13103132 - 29 Sep 2025
Abstract
Data-driven modeling methods have been preliminarily applied in the development of tight-gas reservoirs, demonstrating unique advantages in post-fracturing productivity prediction. However, most of the established predictive models are “black-box” models, which provide productivity predictions based on a set of input parameters without revealing [...] Read more.
Data-driven modeling methods have been preliminarily applied in the development of tight-gas reservoirs, demonstrating unique advantages in post-fracturing productivity prediction. However, most of the established predictive models are “black-box” models, which provide productivity predictions based on a set of input parameters without revealing the internal prediction mechanisms. This lack of transparency reduces the credibility and practical utility of such models. To address the challenges of poor performance and low trustworthiness of “black-box” machine learning models, this study explores a data-driven approach to “black-box” predictive modeling by integrating ensemble learning with interpretability methods. The results indicate the following: The post-fracturing productivity prediction model for tight-gas reservoirs developed in this study, based on ensemble learning, achieves a goodness of fit of 0.923, representing a 26.09% improvement compared to the best-performing individual machine learning model. The stacking ensemble model predicts post-fracturing productivity for horizontal wells more accurately and effectively mitigates the prediction biases of individual machine learning models. An interpretability method for the “black-box” ensemble learning-based productivity prediction model was established, revealing the ranked importance of factors influencing post-fracturing productivity: reservoir properties, controllable operational parameters, and rock mechanics. This ranking aligns with the results of orthogonal experiments from mechanism-driven numerical models, providing mutual validation and enhancing the credibility of the ensemble learning-based productivity prediction model. In conclusion, this study integrates mechanistic numerical models and data-driven models to explore the influence of various factors on post-fracturing productivity. The cross-validation of results from both approaches underscores the reliability of the findings, offering theoretical and methodological support for the design of fracturing schemes and the iterative advancement of fracturing technologies in tight-gas reservoirs. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 4th Edition)
Show Figures

Figure 1

20 pages, 8746 KB  
Article
Fatigue Performance of Q500qENH Weathering Steel Welded Joints at Low Temperature
by Lei Kang, Xuanming Shi, Tao Lan, Xiaowei Zhang, Chen Xue, Xiaopeng Wang, Zhengfei Hu and Qinyuan Liu
Materials 2025, 18(19), 4515; https://doi.org/10.3390/ma18194515 - 28 Sep 2025
Abstract
A systematic study was conducted on the fatigue performance of Q500qENH weathering steel welded joints under low-temperature conditions of −40 °C in this paper. Low-temperature fatigue tests were conducted on V-groove butt joints and cross-shaped welded joints and S-N curves with a 95% [...] Read more.
A systematic study was conducted on the fatigue performance of Q500qENH weathering steel welded joints under low-temperature conditions of −40 °C in this paper. Low-temperature fatigue tests were conducted on V-groove butt joints and cross-shaped welded joints and S-N curves with a 95% reliability level were obtained. A comparative analysis with the Eurocode 3 reveals that low-temperature conditions lead to a regular increase in the design fatigue strength for both types of welded joints. Fracture surface morphology was examined using scanning electron microscopy, and combined with fracture characteristic analysis, the fatigue fracture mechanisms of welded joints under low-temperature conditions were elucidated. Based on linear elastic fracture mechanics theory, a numerical simulation approach was employed to investigate the fatigue crack propagation behavior of welded joints. The results indicate that introducing an elliptical surface initial crack with a semi-major axis length of 0.4 mm in the model effectively predicts the fatigue life and crack growth patterns of both joint types. A parametric analysis was conducted on key influencing factors, including the initial crack size, initial crack location, and initial crack angle. The results reveal that these factors exert varying degrees of influence on the fatigue life and crack propagation paths of welded joints. Among them, the position of the initial crack along the length direction of the fillet weld has the most significant impact on the fatigue life of cross-shaped welded joints. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

27 pages, 4068 KB  
Article
Microscopic Phase-Field Modeling with Accurate Interface Thickness Representation: Applied to Ceramic Matrix Composites
by Tong Wang, Xiaofei Hu, Zhi Sun and Weian Yao
Materials 2025, 18(19), 4496; https://doi.org/10.3390/ma18194496 - 27 Sep 2025
Abstract
Ceramic matrix composites (CMCs) are promising candidates for high-temperature structural applications. However, their fracture toughness remains low due to strong chemical bonding between fibers and the matrix. To improve toughness, engineered interfaces such as pyrolytic carbon (PyC) and hexagonal boron nitride (h-BN) are [...] Read more.
Ceramic matrix composites (CMCs) are promising candidates for high-temperature structural applications. However, their fracture toughness remains low due to strong chemical bonding between fibers and the matrix. To improve toughness, engineered interfaces such as pyrolytic carbon (PyC) and hexagonal boron nitride (h-BN) are commonly introduced. These interfaces promote crack deflection and fiber bridging, leading to improved damage tolerance and pseudo-ductile behavior. To investigate the influence of interface thickness on mechanical performance and to identify optimal thickness ranges, we propose a microscopic phase-field model that accurately resolves interface thickness and material contrast. This model overcomes the limitations of conventional smeared interface approaches, particularly in systems with variable interface thickness and closely packed fibers. We apply the model to simulate the fracture behavior of unidirectional SiC fiber reinforced SiC matrix (SiCf/SiCm) composites with PyC and h-BN interfaces of varying thickness. The numerical results show strong agreement with experimental findings from the literature and reveal optimal interface thicknesses that maximize toughening effects. These results demonstrate the model’s predictive capabilities and its potential as a tool for interface design in brittle composite systems. Full article
Show Figures

Graphical abstract

47 pages, 12662 KB  
Review
Strength in Adhesion: A Multi-Mechanics Review Covering Tensile, Shear, Fracture, Fatigue, Creep, and Impact Behavior of Polymer Bonding in Composites
by Murat Demiral
Polymers 2025, 17(19), 2600; https://doi.org/10.3390/polym17192600 - 25 Sep 2025
Abstract
The growing demand for lightweight and reliable structures across aerospace, automotive, marine, and civil engineering has driven significant advances in polymer adhesive technology. These materials serve dual roles, functioning as matrices in composites and as structural bonding agents, where they must balance strength, [...] Read more.
The growing demand for lightweight and reliable structures across aerospace, automotive, marine, and civil engineering has driven significant advances in polymer adhesive technology. These materials serve dual roles, functioning as matrices in composites and as structural bonding agents, where they must balance strength, toughness, durability, and sometimes sustainability. Recent review efforts have greatly enriched understanding, yet most approach the topic from specialized angles—whether emphasizing nanoscale toughening, multifunctional formulations, sustainable alternatives, or microscopic failure processes in bonded joints. While such perspectives provide valuable insights, they often remain fragmented, leaving open questions about how nanoscale mechanisms translate into macroscopic reliability, how durability evolves under realistic service conditions, and how mechanical responses interact across different loading modes. To address this, the present review consolidates knowledge on the performance of polymer adhesives under tension, shear, fracture, fatigue, creep, and impact. By integrating experimental findings with computational modeling and emerging data-driven approaches, it situates localized mechanisms within a broader structure–performance framework. This unified perspective not only highlights persistent gaps—such as predictive modeling of complex failure, scalability of nanomodified systems, and long-term durability under coupled environments—but also outlines strategies for developing next-generation adhesives capable of delivering reliable, high-performance bonding solutions for demanding applications. Full article
(This article belongs to the Special Issue Polymer Composites: Design, Manufacture and Characterization)
Show Figures

Graphical abstract

15 pages, 2931 KB  
Case Report
Innovative Dynamic Ultrasound Diagnosis of First Rib Stress Fracture in an Adolescent Athlete—A Case Report
by Yonghyun Yoon, King Hei Stanley Lam, Chanwool Park, Jaeyoung Lee, Jangkeun Kye, Hyeeun Kim, Seonghwan Kim, Junhan Kang, Anwar Suhaimi, Teinny Suryadi, Daniel Chiung-Jui Su, Kenneth Dean Reeves and Stephen Cavallino
Diagnostics 2025, 15(19), 2437; https://doi.org/10.3390/diagnostics15192437 - 24 Sep 2025
Viewed by 95
Abstract
Background: First rib stress fractures (FRSFs) are exceptionally rare in skeletally immature athletes and are frequently overlooked because their symptoms mimic more common scapular conditions such as scapular dyskinesis or thoracic outlet syndrome. Early and accurate identification is critical to avoid delayed union, [...] Read more.
Background: First rib stress fractures (FRSFs) are exceptionally rare in skeletally immature athletes and are frequently overlooked because their symptoms mimic more common scapular conditions such as scapular dyskinesis or thoracic outlet syndrome. Early and accurate identification is critical to avoid delayed union, prolonged disability, and misdirected management. Case Presentation: We report a 12-year-old elite baseball pitcher with progressive scapular winging and audible snapping during pitching. Unlike typical posterior-type fractures near the costotransverse joint, imaging revealed a cortical discontinuity precisely at the serratus anterior enthesis, consistent with repetitive traction enthesopathy. High-resolution musculoskeletal ultrasound (MSK-US) identified cortical disruption with periosteal edema, and dynamic ultrasound reproduced the patient’s snapping and pain in real time, establishing a direct clinical–imaging correlation. Conservative three-phase rehabilitation (scapular stabilization, serratus anterior activation, and structured return-to-throwing) led to complete union and pain-free return to sport within 12 weeks. Discussion: This case highlights the superior diagnostic efficacy of MSK-US for FRSFs in adolescents. The posterior scanning approach facilitated bilateral comparison and growth plate assessment. Dynamic examination provided a functional correlation beyond static imaging, identifying a novel snapping mechanism. This underscores the value of MSK-US in visualizing not just anatomy but also pathophysiology. Conclusions: This is among the youngest documented cases of first rib stress fracture diagnosed with dynamic ultrasound. Its novelty lies in the following: (1) occurrence at the serratus anterior enthesis, (2) reproduction of snapping during provocative maneuvers, and (3) expansion of the etiological spectrum of scapular dyskinesis to include rib pathology. Dynamic ultrasound should be considered a frontline modality for adolescent throwers with unexplained periscapular pain. Full article
(This article belongs to the Special Issue Expanding Horizons in Fascial Diagnostics and Interventions)
Show Figures

Figure 1

41 pages, 18706 KB  
Article
Multiscale Analysis and Preventive Measures for Slope Stability in Open-Pit Mines Using a Multimethod Coupling Approach
by Hengyu Chen, Baoliang Wang and Zhongsi Dou
Appl. Sci. 2025, 15(19), 10367; https://doi.org/10.3390/app151910367 - 24 Sep 2025
Viewed by 77
Abstract
This study investigates slope stability in an open-pit mining area by integrating engineering geological surveys, field investigations, and laboratory rock mechanics tests. A coordinated multimethod analysis was carried out using finite element-based numerical simulations from both two-dimensional and three-dimensional perspectives. The integrated approach [...] Read more.
This study investigates slope stability in an open-pit mining area by integrating engineering geological surveys, field investigations, and laboratory rock mechanics tests. A coordinated multimethod analysis was carried out using finite element-based numerical simulations from both two-dimensional and three-dimensional perspectives. The integrated approach revealed deformation patterns across the slopes and established a multiscale analytical framework. The results indicate that the slope failure modes primarily include circular and compound types, with existing step slopes showing a potential risk of wedge failure. While the designed slope meets safety requirements under three working conditions overall, the strongly weathered layer in profile XL3 requires a slope angle reduction from 38° to 37° to comply with standards. Three-dimensional simulations identify the main deformations in the middle-lower sections of the western area and zones B and C, with faults located at the core of the deformation zone. Rainfall and blasting vibrations significantly increase surface tensile stress, accelerating deformation. Although wedges in profiles XL1 and XL4 remain generally stable, coupled blasting–rainfall effects may still induce potential collapse in fractured areas, necessitating preventive measures such as concrete support and bolt support, along with real-time monitoring to dynamically optimize reinforcement strategies for precise risk control. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

26 pages, 4250 KB  
Article
Flexural Behavior and Sustainability of Dual-Waste Fiber-Reinforced Concrete Designed for Pavement Applications
by Mehmet Tevfik Seferoğlu, Yavuz Selim Aksüt and Ayşegül Güneş Seferoğlu
Buildings 2025, 15(19), 3454; https://doi.org/10.3390/buildings15193454 - 24 Sep 2025
Viewed by 138
Abstract
This study evaluates the mechanical performance and sustainability potential of fiber-reinforced concrete incorporating mine tailings as the fine aggregate and waste tire wire as the reinforcing fiber. The concrete mixtures contained 0.2%, 0.4%, and 0.6% waste tire wire with the natural fine aggregate [...] Read more.
This study evaluates the mechanical performance and sustainability potential of fiber-reinforced concrete incorporating mine tailings as the fine aggregate and waste tire wire as the reinforcing fiber. The concrete mixtures contained 0.2%, 0.4%, and 0.6% waste tire wire with the natural fine aggregate replaced entirely with Pb-Zn-Cu tailings. The mixtures were tested for porosity, water absorption, compressive strength, splitting tensile strength, flexural strength, toughness, fracture energy, and ductility to assess their mechanical performance and durability. The mine tailings improved the microstructure and reduced water absorption, particularly with tire wire. Using waste tire wire improved the compressive, tensile, and flexural performance; in particular, W-6 showed a 18.2% rise in compressive strength and a more than twofold increase in flexural strength relative to the control mix. The flexural toughness and fracture energy rose by up to 161%, while the ductility peaked at a fiber content of 0.2%. These gains were attributed to fiber crack-bridging and post-cracking energy absorption. The dual-waste system also reduced porosity, improved durability, and demonstrated strong potential for rigid pavement applications such as highways, industrial yards, and airport runways that require high fatigue resistance and a long service life. Beyond technical performance, this approach offers a sustainable solution that lowers maintenance, reduces life-cycle costs, and aligns with circular economy principles. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

15 pages, 2412 KB  
Article
A Physics-Informed Neural Network Integration Framework for Efficient Dynamic Fracture Simulation in an Explicit Algorithm
by Mingyang Wan, Yue Pan and Zhennan Zhang
Appl. Sci. 2025, 15(19), 10336; https://doi.org/10.3390/app151910336 - 23 Sep 2025
Viewed by 117
Abstract
The conventional dynamic fracture simulation by using the explicit algorithm often involves a large number of iteration computation due to the extremely small time interval. Thus, the most time-consuming process is the integration of constitutive relation. To improve the efficiency of the dynamic [...] Read more.
The conventional dynamic fracture simulation by using the explicit algorithm often involves a large number of iteration computation due to the extremely small time interval. Thus, the most time-consuming process is the integration of constitutive relation. To improve the efficiency of the dynamic fracture simulation, a physics-informed neural network integration (PINNI) model is developed to calculate the integration of constitutive relation. PINNI employs a shallow multilayer perceptron with integrable activations to approximate constitutive integrand. To train PINNI, a large number of strains in a reasonable range are generated at first, and then the corresponding stresses are calculated by the mechanical constitutive relation. With the generated strains as input data and the calculated stresses as output data, the PINNI can be trained to reach a very high precision, whose relative error is about 7.8×105%. Next, the mechanical integration of constitutive relation is replaced by the well-trained PINNI to perform the dynamic fracture simulation. It is found that the simulation results by the mechanical and PINNI approach are almost the same. This suggests that it is feasible to use PINNI to replace the rigorous mechanical integration of constitutive relation. The computational efficiency is significantly enhanced, especially for the complicated constitutive relation. It provides a new AI-combined approach to dynamic fracture simulation. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

20 pages, 5803 KB  
Article
Cooperative Failure Modes of Overlying Strata and Stressed Distribution Mechanism in Shallow Coal Seam Mining
by Chi Mu, Xiaowei Zhai, Bingchao Zhao, Xueyi Yu, Jianhua Zhang, Hui Chen and Jun Zhu
Processes 2025, 13(10), 3033; https://doi.org/10.3390/pr13103033 - 23 Sep 2025
Viewed by 97
Abstract
With the deepening implementation of the coordinated development strategy for energy exploitation and ecological conservation, green coal mining technology has become a critical pathway to achieve balanced resource development and environmental protection. This study investigates the stress field evolution and dynamic fracture propagation [...] Read more.
With the deepening implementation of the coordinated development strategy for energy exploitation and ecological conservation, green coal mining technology has become a critical pathway to achieve balanced resource development and environmental protection. This study investigates the stress field evolution and dynamic fracture propagation mechanisms in overlying strata during shallow coal seam mining in the Shenfu mining area. By employing a multidisciplinary approach combining triaxial compression tests (0–15 MPa confining pressure), scanning electron microscopy (SEM) microstructural characterization, elastoplastic theoretical modeling, and FLAC3D numerical simulations, the synergistic failure mechanisms of overlying strata were systematically revealed. Gradient-controlled triaxial tests demonstrated significant variations in stress-strain responses across lithological types. Notably, Class IV sandstone exhibited exceptional uniaxial compressive strength of 106.7 MPa under zero confining pressure, surpassing the average strength of Class I–III sandstones (86.2 MPa) by 23.6%, attributable to its highly compacted grain structure. A nonlinear regression-derived linear strengthening model quantified that each 1 MPa increase in confining pressure enhanced axial peak stress by 4.2%. SEM microstructural analysis established critical linkages between microcrack networks/grain-boundary slippage at the mesoscale and macroscopic brittle failure patterns. Numerical simulations demonstrated that strata failure manifests as tensile-shear composite fractures, with lateral crack propagation inducing bed separation spaces. The stress field exhibited spatiotemporal heterogeneity, with maximum principal stress concentrating near the initial mining cut during early excavation. Fractures propagated obliquely at angles of 55–65° to the horizontal plane in an ‘inverted V’ pattern from the goaf boundaries, extending vertically 12–18 m before transitioning to the bent zone, ultimately forming a characteristic three-zone structure. Experimental and simulated vertical stress distributions showed minimal deviation (≤2.8%), confirming constitutive model reliability. This research quantitatively characterizes the spatiotemporal synergy of strata failure mechanisms in ecologically vulnerable northwestern China, proposing a confining pressure-effect quantification model for support parameter optimization. The revealed fracture dynamics provide critical insights for determining ecological restoration timelines, while establishing a novel theoretical framework for optimizing green mining systems and mitigating ecological damage in the Shenfu mining area. Full article
(This article belongs to the Special Issue Advanced Technology in Unconventional Resource Development)
Show Figures

Figure 1

22 pages, 4725 KB  
Article
Data-Driven Optimization and Mechanical Assessment of Perovskite Solar Cells via Stacking Ensemble and SHAP Interpretability
by Ruichen Tian, Aldrin D. Calderon, Quanrong Fang and Xiaoyu Liu
Materials 2025, 18(18), 4429; https://doi.org/10.3390/ma18184429 - 22 Sep 2025
Viewed by 142
Abstract
Perovskite solar cells (PSCs) have emerged as promising photovoltaic technologies owing to their high power conversion efficiency (PCE) and material versatility. Conventional optimization of PSC architectures largely depends on iterative experimental approaches, which are often labor-intensive and time-consuming. In this study, a data-driven [...] Read more.
Perovskite solar cells (PSCs) have emerged as promising photovoltaic technologies owing to their high power conversion efficiency (PCE) and material versatility. Conventional optimization of PSC architectures largely depends on iterative experimental approaches, which are often labor-intensive and time-consuming. In this study, a data-driven modeling strategy is introduced to accelerate the design of efficient and mechanically robust PSCs. Seven supervised regression models were evaluated for predicting key photovoltaic parameters, including PCE, short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF). Among these, a stacking ensemble framework exhibited superior predictive accuracy, achieving an R2 of 0.8577 and a root mean square error of 2.084 for PCE prediction. Model interpretability was ensured through Shapley Additive exPlanations(SHAP) analysis, which identified precursor solvent composition, A-site cation ratio, and hole-transport-layer additives as the most influential parameters. Guided by these insights, ten device configurations were fabricated, achieving a maximum PCE of 24.9%, in close agreement with model forecasts. Furthermore, multiscale mechanical assessments, including bending, compression, impact resistance, peeling adhesion, and nanoindentation tests, were conducted to evaluate structural reliability. The optimized device demonstrated enhanced interfacial stability and fracture resistance, validating the proposed predictive–experimental framework. This work establishes a comprehensive approach for performance-oriented and reliability-driven PSC design, providing a foundation for scalable and durable photovoltaic technologies. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

18 pages, 2110 KB  
Article
Wettability Effect on Nanoconfined Water’s Spontaneous Imbibition: Interfacial Molecule–Surface Action Mechanism Based on the Integration of Profession and Innovation
by Yanglu Wan, Wei Lu, Yang Jiao, Fulong Li, Mingfang Zhan, Zichen Wang and Zheng Sun
Nanomaterials 2025, 15(18), 1447; https://doi.org/10.3390/nano15181447 - 19 Sep 2025
Viewed by 203
Abstract
The effect of molecule–surface interaction strength on water becomes pronounced when pore size shrinks to the nanoscale, leading to the spatially varying viscosity and water slip phenomena that break the theoretical basis of the classic Lucas–Washburn (L-W) equation for the spontaneous imbibition of [...] Read more.
The effect of molecule–surface interaction strength on water becomes pronounced when pore size shrinks to the nanoscale, leading to the spatially varying viscosity and water slip phenomena that break the theoretical basis of the classic Lucas–Washburn (L-W) equation for the spontaneous imbibition of water. With the purpose of fulfilling the knowledge gap, the viscosity of nanoconfined water is investigated in relation to surface contact angle, a critical parameter manifesting microscopic molecule–surface interaction strength. Then, the water slip length at the nanoscale is determined in accordance with the mechanical balance of the first-layer water molecules, which enlarges gradually with increasing contact angle, indicating a weaker surface–molecule interaction. After that, a novel model for the spontaneous imbibition of nanoconfined water incorporating spatially inhomogeneous water viscosity and water slip is developed for the first time, demonstrating that the conventional model yields overestimations of 16.7–103.2%. Hydrodynamics affected by pore geometry are considered as well. The results indicate the following: (a) Enhanced viscosity resulting from the nanopore surface action reduces the water imbibition distance, the absolute magnitude of which could be 3 times greater than the positive impact of water slip. (b) With increasing pore size, the impact of water slip declines much faster than the enhanced viscosity, leading to the ratio of the nanoconfined water imbibition distance to the result of the L-W equation dropping rapidly at first and then approaching unity. (c) Water imbibition performance in slit nanopores is superior to that in nanoscale capillaries, stemming from the fact that the effective water viscosity in nano-capillaries is greater than that in slit nanopores by 5.1–22.1%, suggesting stronger hydrodynamic resistance. This research is able to provide an accurate prediction of spontaneous imbibition of nanoconfined water with microscopic mechanisms well captured, sharing broad application potential in hydraulic fracturing water analysis and water-flooding-enhanced oil/gas recovery. Full article
Show Figures

Figure 1

33 pages, 5483 KB  
Review
Possibilities and Principles of Formation of Functionally Graded Ceramic Armor by Additive Manufacturing
by Eugene Medvedovski and Nahum Travitzky
Materials 2025, 18(18), 4370; https://doi.org/10.3390/ma18184370 - 18 Sep 2025
Viewed by 399
Abstract
Ceramic armor with improved ballistic performance, lower weight, and, in specific cases, complex geometry is of high importance for the armor integrators and users. The combination of a high level of consolidation and the tailored heterogeneous structures of these ceramics may be important [...] Read more.
Ceramic armor with improved ballistic performance, lower weight, and, in specific cases, complex geometry is of high importance for the armor integrators and users. The combination of a high level of consolidation and the tailored heterogeneous structures of these ceramics may be important for reducing fracturing and delaying crack propagation under high-velocity ballistic impacts, therefore improving their ballistic performance. This can be attained by a beneficial combination of advanced ceramic compositions and processing, e.g., through an additive manufacturing (AM) approach. For example, the functionally graded (FG) monolithic ceramic armor obtained by AM can encompass a few layers, where the front layer has higher hardness, and the layer(s) behind may have higher fracture toughness. The ingredients reinforcing the ceramic structure may also be involved. The graded architecture should provide the internal stress reduction under high-velocity mechanical (ballistic) impacts. The reaction bonding that provides consolidation of the AM-based ceramic armor may also be involved. The considered principles of the FG materials’ formation may be employed for personnel, vehicular, and structural armor systems. The possibility of formation of ceramic armor with graded structures and compositions using AM was reviewed and analyzed for the first time. The proposed armor designs, which can be obtained by AM, may provide enhanced ballistic performance combined with lower weight. Full article
Show Figures

Figure 1

Back to TopTop