Wettability Effect on Nanoconfined Water’s Spontaneous Imbibition: Interfacial Molecule–Surface Action Mechanism Based on the Integration of Profession and Innovation
Abstract
1. Introduction
2. Physical Model
3. Model Establishment
3.1. Nanoconfined Water Viscosity
3.2. Water Slip Length
3.3. Nanoconfined Capillary Filling
4. Model Validation
5. Results and Discussion
5.1. Wettability Effect
5.2. Pore Geometry
6. Conclusions
- A novel model for spontaneous water imbibition at the nanoscale, incorporating the spatially varying water viscosity and slippage mechanism, both of which are related to surface wettability and keep the critical theoretical consistency, is proposed for the first time. Comparing it with MD simulations clarifies the model’s reliability well, with an average difference of 2.8%, and indicates that the majority of current analytical models overestimate the water imbibition performance at the nanoscale due to the neglect of the enhanced water viscosity under nanoconfinement.
- The reduction in nanoconfined spontaneous water imbibition distance with enhanced water viscosity at the nanoscale results in could reach as high as 78.6%; conversely, the slippage mechanism promotes imbibition behavior. With increasing pore size, the impact of the slippage mechanism declines faster than the varying water viscosity at the nanoscale, leading to the enhancement factor reducing first and then approaching unity. The wettability effect could result in −20–30% deviation compared with the water imbibition behavior assessed by the classic L-W equation, particularly for pore sizes less than 20 nm.
- Effective viscosity in the nano-cylinder is always greater than in the nano-slit at a certain contact angle and pore size, leading to the imbibition ability in the nano-slit outperforming that in the nano-capillary. With increasing pore size, the ratio of imbibition distance inside the nano-capillary to nano-slit declines first and then approaches a stable value of 0.85, which is mainly attributed to the non-linear correlation between the difference in nanoconfined viscosity by pore geometry and pore size. The strong hydrophilic surface contributes to the decline in the ratio, the minimum of which reaches as low as 0.79.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khoramian, R.; Kharrat, R.; Pourafshary, P.; Golshokooh, S.; Hashemi, F. Spontaneous imbibition oil recovery by natural surfactant/nanofluid: An experimental and theoretical study. Nanomaterials 2022, 12, 3563. [Google Scholar] [CrossRef] [PubMed]
- Schmid, K.S.; Geiger, S. Universal scaling of spontaneous imbibition for water-wet systems. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Bila, A.; Torsæter, O. Experimental investigation of polymer-coated silica nanoparticles for EOR under harsh reservoir conditions of high temperature and salinity. Nanomaterials 2021, 11, 765. [Google Scholar] [CrossRef] [PubMed]
- Hamraoui, A.; Nylander, T. Analytical approach for the Lucas–Washburn equation. J. Colloid Interface Sci. 2002, 250, 415–421. [Google Scholar] [CrossRef]
- Karimova, M.; Kashiri, R.; Pourafshary, P.; Hazlett, R. A review of wettability alteration by spontaneous imbibition using low-salinity water in naturally fractured reservoirs. Energies 2023, 16, 2373. [Google Scholar] [CrossRef]
- Wang, K.; Li, Z.; Ye, K.; Jiang, B.; Tan, Y.; Zhang, R. A new dynamic imbibition model for penny-shaped blind pores in shale gas well. J. Nat. Gas Sci. Eng. 2022, 101, 104553. [Google Scholar] [CrossRef]
- Giraldo, M.A.; Zabala, R.D.; Bahamón, J.I.; Ulloa, J.M.; Usurriaga, J.M.; Cárdenas, J.C.; Mazo, C.; Guzmán, J.D.; Lopera, S.H.; Franco, C.A.; et al. Development and evaluation from laboratory to field trial of a dual-purpose fracturing nanofluid: Inhibition of associated formation damage and increasing heavy crude oil mobility. Nanomaterials 2022, 12, 2195. [Google Scholar] [CrossRef]
- Xu, Y.; Sheng, G.; Zhao, H.; Hui, Y.; Zhou, Y.; Ma, J.; Rao, X.; Zhong, X.; Gong, J. A new approach for gas-water flow simulation in multi-fractured horizontal wells of shale gas reservoirs. J. Pet. Sci. Eng. 2021, 199, 108292. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, T.; Jia, Y.; Qin, F.; Gao, J.; Zhang, X.; He, J. Study on Demulsification via Vacuum Filtration with Superamphiphilic Diatomite/G-C3N4/Rice Husk Charcoal Composite Filter Layer. Nanomaterials 2025, 15, 344. [Google Scholar] [CrossRef]
- Li, L.; Chen, G.; Shao, Z.; Huang, H. Progress on smart integrated systems of seawater purification and electrolysis. Energy Environ. Sci. 2023, 16, 4994–5002. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, S.; Xiong, H.; Wu, K.; Shi, J. Optimal nanocone geometry for water flow. AIChE J. 2022, 68, e17543. [Google Scholar] [CrossRef]
- Gu, W.; Li, K.; Sun, Z. A Multiple-physics coupled model for nanoconfined CO2-CH4 mixture transport behavior: Implications for CO2 geological storage in ultra-tight formation. Chem. Eng. Sci. 2025, 302, 120810. [Google Scholar] [CrossRef]
- Leoni, F.; Calero, C.; Franzese, G. Nanoconfined fluids: Uniqueness of water compared to other liquids. ACS Nano 2021, 15, 19864–19876. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bagchi, B. Correlation lengths in nanoconfined water and transport properties. J. Chem. Phys. 2022, 156, 224501. [Google Scholar] [CrossRef] [PubMed]
- Khan, G.R.; Daschakraborty, S. What Is the Viscosity of Liquid Water Confined in a Hydrophobic Nanotube? Estimation Using a Novel Approach. J. Phys. Chem. C 2023, 127, 7027–7035. [Google Scholar] [CrossRef]
- Jin, J.; Asai, P.; Wang, X.; Miller, J.D.; Deo, M. Simulation and analysis of slip flow of water at hydrophobic silica surfaces of nanometer slit pores. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127032. [Google Scholar] [CrossRef]
- Zheng, C.; Guo, G.J.; Qin, X.; Dong, Y.; Lu, C.; Peng, B.; Tang, W.; Bian, H. Molecular simulation studies on the water/methane two-phase flow in a cylindrical silica nanopore: Formation mechanisms of water lock and implications for gas hydrate exploitation. Fuel 2023, 333, 126258. [Google Scholar] [CrossRef]
- Zhao, W.; Jia, C.; Zhang, T.; Jiang, L.; Li, X.; Jiang, Z.; Zhang, F. Effects of nanopore geometry on confined water flow: A view of lattice Boltzmann simulation. Chem. Eng. Sci. 2021, 230, 116183. [Google Scholar] [CrossRef]
- Li, H.; Ge, Z.; Aminpour, M.; Wen, L.; Galindo-Torres, S.A. Pressure-dependent flow enhancement in carbon nanotubes. J. Chem. Phys. 2024, 160, 054503. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, K.; Shi, J.; Zhang, T.; Feng, D.; Huang, L.; Li, X. An analytical model for transport capacity of water confined in nanopores. Int. J. Heat Mass Transf. 2019, 138, 620–630. [Google Scholar] [CrossRef]
- Collado, P.; Piñeiro, M.M.; Pérez-Rodríguez, M. Molecular simulation of CO2 and H2 encapsulation in a nanoscale porous liquid. Nanomaterials 2023, 13, 409. [Google Scholar] [CrossRef]
- Sofos, F.; Karakasidis, T.; Sarris, I.E. Molecular dynamics simulations of ion drift in nanochannel water flow. Nanomaterials 2020, 10, 2373. [Google Scholar] [CrossRef] [PubMed]
- Kavokine, N.; Bocquet, M.L.; Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 2022, 602, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Q.; Wang, F.; Wu, J.; Wang, Y. The carrying behavior of water-based fracturing fluid in shale reservoir fractures and molecular dynamics of sand-carrying mechanism. Processes 2024, 12, 2051. [Google Scholar] [CrossRef]
- Xu, R.; Yang, S.; Xiao, Z.; Jin, Y. Quantitatively study on imbibition of fracturing fluid in tight sandstone reservoir under high temperature and high pressure based on NMR technology. J. Pet. Sci. Eng. 2022, 208, 109623. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, D.; Cai, Y.; Cui, M.; Liu, Y.; Zhou, Y.; Yin, W.; Peng, Y. A Comprehensive Methodology for Investigating Cocurrent Spontaneous Imbibition in Coal. ACS Omega 2024, 9, 44407–44417. [Google Scholar] [CrossRef]
- Paras; Yadav, K.; Kumar, P.; Teja, D.R.; Chakraborty, S.; Chakraborty, M.; Hang, D.R. A review on low-dimensional nanomaterials: Nanofabrication, characterization and applications. Nanomaterials 2022, 13, 160. [Google Scholar] [CrossRef]
- Cai, J.; Jin, T.; Kou, J.; Zou, S.; Xiao, J.; Meng, Q. Lucas–Washburn equation-based modeling of capillary-driven flow in porous systems. Langmuir 2021, 37, 1623–1636. [Google Scholar] [CrossRef]
- Gong, F.; Zhong, C.; Hou, D.; Zhu, H. A Review of the Study of Fluid Phase Behavior at the Confined Scale of Shale Reservoirs: A Theoretical and Experimental Perspective. Langmuir 2025, 41, 9141–9161. [Google Scholar] [CrossRef]
- Shuvo, A.A.; Paniagua-Guerra, L.E.; Choi, J.; Kim, S.H.; Alvarado, B.R. Hydrodynamic slip in nanoconfined flows: A review of experimental, computational, and theoretical progress. Nanoscale 2024, 17, 635–660. [Google Scholar] [CrossRef]
- Luo, Y.; Xiao, H.; Liu, X.; Qin, Y.; Wu, Z.; Zheng, T. Multiphase nanoconfined fluid flow mechanisms in nanopores, insights derived from molecular dynamics. Chem. Eng. J. 2023, 474, 145946. [Google Scholar] [CrossRef]
- Rashidi, R.; Wu, T.; Sun, C.; Peeters, F.M.; Neek-Amal, M. Slip length and rapid fluid flow in hybrid nanochannels. Phys. Fluids 2024, 36, 122028. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, B.; Ye, K.; Li, H.; Tan, Y. Spontaneous imbibition model for micro–nano–scale pores in shale gas reservoirs considering gas–water interaction. J. Pet. Sci. Eng. 2022, 209, 109893. [Google Scholar] [CrossRef]
- Feng, D.; Li, X.; Wang, X.; Li, J.; Zhang, T.; Sun, Z.; He, M.; Liu, Q.; Qin, J.; Han, S. Capillary filling of confined water in nanopores: Coupling the increased viscosity and slippage. Chem. Eng. Sci. 2018, 186, 228–239. [Google Scholar] [CrossRef]
- Ortiz-Young, D.; Chiu, H.C.; Kim, S.; Voïtchovsky, K.; Riedo, E. The interplay between apparent viscosity and wettability in nanoconfined water. Nat. Commun. 2013, 4, 2482. [Google Scholar] [CrossRef] [PubMed]
- Bakli, C.; Chakraborty, S. Anomalous interplay of slip, shear and wettability in nanoconfined water. Nanoscale 2019, 11, 11254–11261. [Google Scholar] [CrossRef]
- Lynch, C.I.; Rao, S.; Sansom, M.S. Water in nanopores and biological channels: A molecular simulation perspective. Chem. Rev. 2020, 120, 10298–10335. [Google Scholar] [CrossRef]
- Yu, H.; Xu, H.; Fan, J.; Zhu, Y.B.; Wang, F.; Wu, H. Transport of shale gas in microporous/nanoporous media: Molecular to pore-scale simulations. Energy Fuels 2020, 35, 911–943. [Google Scholar] [CrossRef]
- Nie, R.S.; Li, J.S.; Guo, J.C.; Chen, Z.; Liu, J.; Lu, C.; Zeng, F.H. Mechanism and Models of Nano-Confined Slip Flow of Shale Oil. Nat. Resour. Res. 2025, 34, 483–513. [Google Scholar] [CrossRef]
- Wang, R.; Chai, J.; Luo, B.; Liu, X.; Zhang, J.; Wu, M.; Wei, M.; Ma, Z. A review on slip boundary conditions at the nanoscale: Recent development and applications. Beilstein J. Nanotechnol. 2021, 12, 1237–1251. [Google Scholar] [CrossRef]
- Wu, K.; Chen, Z.; Li, J.; Li, X.; Xu, J.; Dong, X. Wettability effect on nanoconfined water flow. Proc. Natl. Acad. Sci. USA 2017, 114, 3358–3363. [Google Scholar] [CrossRef]
- Shaat, M. Viscosity of water interfaces with hydrophobic nanopores: Application to water flow in carbon nanotubes. Langmuir 2017, 33, 12814–12819. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wei, M.; Zhang, X.; Wang, Y. Effect of hydrophilicity on water transport through sub-nanometer pores. J. Membr. Sci. 2020, 611, 118297. [Google Scholar] [CrossRef]
- Wu, C.; Lin, F.; Pan, X.; Chen, G.; Zeng, Y.; Xu, L.; He, Y.; Chen, Q.; Sun, D.; Hai, Z. Abnormal Graphitization Behavior in Near-Surface/Interface Region of Polymer-Derived Ceramics. Small 2023, 19, 2206628. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Samanta, S.; Tress, M.; Li, B.; Xing, K.; Dieudonné-George, P.; Genix, A.-C.; Cao, P.-F.; Dadmun, M.; Sokolov, A.P. Critical role of the interfacial layer in associating polymers with microphase separation. Macromolecules 2021, 54, 4246–4256. [Google Scholar] [CrossRef]
- Wang, C.; Ou, J.; Chen, J. Numerical study of hypersonic near-continuum flow by improved slip boundary condition. AIAA J. 2024, 62, 18–30. [Google Scholar] [CrossRef]
- Wedel, J.; Štrakl, M.; Ravnik, J.; Steinmann, P.; Hriberšek, M. A specific slip length model for the Maxwell slip boundary conditions in the Navier–Stokes solution of flow around a microparticle in the no-slip and slip flow regimes. Theor. Comput. Fluid Dyn. 2022, 36, 723–740. [Google Scholar] [CrossRef]
- Wu, S.; Wang, X.; Yu, Y.; Yu, Y.; Zhang, L.; Mao, R.; Wu, K. Nanoconfined Gas Flow Behavior in Organic Shale: Wettability Effect. Geofluids 2022, 2022, 1549003. [Google Scholar] [CrossRef]
- Wan, Y.; Niu, N.; Lu, W.; Zhou, Y.; Wang, B.; Lu, S. Unusual Water Flow in Ultra-Tight Porous Media: Integration of Profession and Innovation. Processes 2023, 11, 1245. [Google Scholar] [CrossRef]
- Wu, G.; Zeng, C.; Cheng, L.; Luan, J.; Zhang, R.; Chen, Z.; Pang, Y.; Sun, Z. The Influence of Wettability Effect and Adsorption Thickness on Nanoconfined Methane Phase Behavior: Vapor-Liquid Co-Existence Curves and Phase Diagrams. Processes 2024, 12, 215. [Google Scholar] [CrossRef]
- Stroberg, W.; Keten, S.; Liu, W.K. Hydrodynamics of capillary imbibition under nanoconfinement. Langmuir 2012, 28, 14488–14495. [Google Scholar] [CrossRef]
- Wang, J.; Rahman, S.S. Investigation of water leakoff considering the component variation and gas entrapment in shale during hydraulic-fracturing stimulation. SPE Reserv. Eval. Eng. 2016, 19, 511–519. [Google Scholar] [CrossRef]
- He, S.G. Research of Water Imbibition Model in Shale Multiple Pores. Ph.D. Thesis, Southwest Petroleum University, Chengdu, China, 2017. [Google Scholar]
Scholars | Approach | Pore Shape/Size | Slip Length | Spatially Varying Viscosity |
---|---|---|---|---|
Stroberg et al., 2012 [51] | MD simulation | Cylinder, 5 nm | Considered | Considered |
Wang and Rahman, 2016 [52] | Analytical model | Cylinder, 5 nm | Not considered | Not considered |
He et al., 2017 [53] | Analytical model | Cylinder, 5 nm | A fixed value | Not considered |
Wang et al., 2022 [33] | Analytical model | Cylinder, 5 nm | A fixed value | Not considered |
The proposed model | Analytical model | Cylinder, 5 nm | Considered | Considered |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Lu, W.; Jiao, Y.; Li, F.; Zhan, M.; Wang, Z.; Sun, Z. Wettability Effect on Nanoconfined Water’s Spontaneous Imbibition: Interfacial Molecule–Surface Action Mechanism Based on the Integration of Profession and Innovation. Nanomaterials 2025, 15, 1447. https://doi.org/10.3390/nano15181447
Wan Y, Lu W, Jiao Y, Li F, Zhan M, Wang Z, Sun Z. Wettability Effect on Nanoconfined Water’s Spontaneous Imbibition: Interfacial Molecule–Surface Action Mechanism Based on the Integration of Profession and Innovation. Nanomaterials. 2025; 15(18):1447. https://doi.org/10.3390/nano15181447
Chicago/Turabian StyleWan, Yanglu, Wei Lu, Yang Jiao, Fulong Li, Mingfang Zhan, Zichen Wang, and Zheng Sun. 2025. "Wettability Effect on Nanoconfined Water’s Spontaneous Imbibition: Interfacial Molecule–Surface Action Mechanism Based on the Integration of Profession and Innovation" Nanomaterials 15, no. 18: 1447. https://doi.org/10.3390/nano15181447
APA StyleWan, Y., Lu, W., Jiao, Y., Li, F., Zhan, M., Wang, Z., & Sun, Z. (2025). Wettability Effect on Nanoconfined Water’s Spontaneous Imbibition: Interfacial Molecule–Surface Action Mechanism Based on the Integration of Profession and Innovation. Nanomaterials, 15(18), 1447. https://doi.org/10.3390/nano15181447