Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = four-dimensional coupled system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3710 KiB  
Review
Problems and Strategies for Maintenance Scheduling of a Giant Cascaded Hydropower System in the Lower Jinsha River
by Le Li, Yushu Wu, Yuanyuan Han, Zixuan Xu, Xingye Wu, Yan Luo and Jianjian Shen
Energies 2025, 18(14), 3831; https://doi.org/10.3390/en18143831 - 18 Jul 2025
Viewed by 144
Abstract
Maintenance scheduling of hydropower units is essential for ensuring the operational security and stability of large-scale cascaded hydropower systems and for improving the efficiency of water energy utilization. This study takes the Cascaded Hydropower System of the Lower Jinsha River (CHSJS) as a [...] Read more.
Maintenance scheduling of hydropower units is essential for ensuring the operational security and stability of large-scale cascaded hydropower systems and for improving the efficiency of water energy utilization. This study takes the Cascaded Hydropower System of the Lower Jinsha River (CHSJS) as a representative case, identifying four key challenges facing maintenance planning: multi-dimensional influencing factor coupling, spatial and temporal conflicts with generation dispatch, coordination with transmission line maintenance, and compound uncertainties of inflow and load. To address these issues, four strategic recommendations are proposed: (1) identifying and quantifying the impacts of multi-factor influences on maintenance planning; (2) developing integrated models for the co-optimization of power generation dispatch and maintenance scheduling; (3) formulating coordinated maintenance strategies for hydropower units and associated transmission infrastructure; and (4) constructing joint models to manage the coupled uncertainties of inflow and load. The strategy proposed in this study was applied to the CHSJS, obtaining the weight of the impact factor. The coordinated unit maintenance arrangements of transmission line maintenance periods increased from 56% to 97%. This study highlights the critical need for synergistic optimization of generation dispatch and maintenance scheduling in large-scale cascaded hydropower systems and provides a methodological foundation for future research and practical applications. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

32 pages, 7296 KiB  
Article
Analytic Solutions for the Stationary Seismic Response of Three-Dimensional Structures with a Tuned Mass-Inerter Damper and Bracket
by Lin Deng, Cong Yao and Xinguang Ge
Buildings 2025, 15(14), 2483; https://doi.org/10.3390/buildings15142483 - 15 Jul 2025
Viewed by 215
Abstract
The ultimate goal of research on seismic mitigation technologies is engineering application. However, current studies primarily focus on the application of dampers in planar structures, while actual engineering structures are three-dimensional (3D) in nature. A type of damper, making up tuned mass dampers [...] Read more.
The ultimate goal of research on seismic mitigation technologies is engineering application. However, current studies primarily focus on the application of dampers in planar structures, while actual engineering structures are three-dimensional (3D) in nature. A type of damper, making up tuned mass dampers (TMDs) and inerters, has excellent vibration mitigation performance and needs brackets to connect to structures. In this work, a coupled dynamic model of an energy dissipation system (EDS) comprising a TMD, an inerter, a bracket, and a 3D building structure is presented, along with analytical solutions for stochastic seismic responses. The main work is as follows. Firstly, based on D’Alembert’s dynamics principle, the seismic dynamic equations of an EDS considering a realistic damper and a 3D structure are formulated. The general dynamic equations governing the bidirectional horizontal motion of the EDS are further derived using the dynamic finite element technique. Secondly, analytical expressions for spectral moments and variances of seismic responses are obtained. Finally, four numerical examples are presented to investigate the following: (1) verification of the proposed response solutions, showing that the calculation time of the proposed method is approximately 1/500 of that of the traditional method; (2) examination of spatial effects in 3D structures under unidirectional excitation, revealing that structural seismic responses in the direction along the earthquake ground motion is approximately 104 times that in the direction perpendicular to the ground motion; (3) investigation of the spatial dynamic characteristics of a 3D structure subjected to unidirectional seismic excitation, showing that the bracket parameters significantly affect the damping effects on an EDS; and (4) application of the optimization method for the damper’s parameters that considers system dynamic reliability and different weights of the damper’s parameters as constraints, indicating that the most economical damping parameters can achieve a reduction in displacement spectral moments by 30–50%. The proposed response solutions and parameter optimization technique provide an effective approach for evaluating stochastic seismic responses and optimizing damper parameters in large-scale and complex structures. Full article
(This article belongs to the Special Issue Advances in Building Structure Analysis and Health Monitoring)
Show Figures

Figure 1

26 pages, 4477 KiB  
Article
A Parametric Study of a Fully Passive Oscillating Foil Turbine on a Swinging Arm in a Tandem Configuration
by Dominic Cloutier, Mathieu Olivier and Guy Dumas
Energies 2025, 18(13), 3253; https://doi.org/10.3390/en18133253 - 21 Jun 2025
Viewed by 271
Abstract
A fully passive oscillating foil turbine on a swinging arm in a tandem configuration consisting of two NACA 0015 foils at both ends of its arm and operating in an incompressible flow at a Reynolds number of 3.9×106 is investigated [...] Read more.
A fully passive oscillating foil turbine on a swinging arm in a tandem configuration consisting of two NACA 0015 foils at both ends of its arm and operating in an incompressible flow at a Reynolds number of 3.9×106 is investigated with numerical simulations. The turbine is free to oscillate passively in response to hydrodynamic forces and structural reactions from springs and dampers. The passive motion of the tandem turbine arises from a transfer of energy from the flow, and this motion is solved using a fluid-structure algorithm coupling the Newtonian dynamics of the system with two-dimensional, unsteady, and Reynolds-averaged Navier–Stokes equations. The performance metrics, i.e., the efficiency and power coefficient, of the proposed turbine concept are explored with a momentum gradient ascent algorithm, which uses the near-optimal configuration of an equivalent single-foil concept from a previous study as a starting point. These starting configurations consist of tandem foils operating either under coupled flutter or stall flutter instabilities. The use of gears to adjust the equilibrium position of the pitching motion is also considered, resulting in a total of four baseline configurations. The best configuration found with the gradient ascent algorithm presents an efficiency value near 75% and a power coefficient of 1.46, showing the great potential of fully passive oscillating foil turbines operating in a tandem configuration and providing valuable insight for further development of this technology through three-dimensional simulations and prototype testing. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

21 pages, 8888 KiB  
Article
A Study on the Deformation Mechanism of a Landslide Reinforced with an Anti-Slip Pile Under the Effect of Reservoir Water Level Decline
by Gang Yang, Zhuolin Wu, Lin Zhang, Jingfeng Hou, Shen Tong, Fei Liu and Yong Zheng
Water 2025, 17(9), 1390; https://doi.org/10.3390/w17091390 - 6 May 2025
Viewed by 490
Abstract
The fluctuation of reservoir water levels is a critical factor influencing the evolution of reservoir landslide–anti-slide pile systems. To investigate the reinforcement mechanism of anti-slide piles in reservoir landslides under the effect of reservoir water level fluctuations, this study employs numerical simulation methods [...] Read more.
The fluctuation of reservoir water levels is a critical factor influencing the evolution of reservoir landslide–anti-slide pile systems. To investigate the reinforcement mechanism of anti-slide piles in reservoir landslides under the effect of reservoir water level fluctuations, this study employs numerical simulation methods to establish a three-dimensional slope model, simulating the drawdown process of the reservoir water level from 175 m to 145 m. The displacement and strain fields of the reservoir landslide during the water level drawdown are analyzed. Furthermore, the strain characteristics of the anti-slide pile-reinforced reservoir landslide under stress–seepage coupling are studied, and the prevention effectiveness of the landslide–anti-slide pile interaction system is explored. The results indicate that the drawdown of the reservoir water level can lead to the gradual expansion of the strain and displacement zones in the landslide, as well as a reduction in the safety factor. Under the effect of anti-slide piles, the maximum deformation of the reservoir landslide is significantly reduced. The optimal reinforcement effect is achieved when the anti-slide piles are arranged in the middle of the reservoir landslide, with a pile spacing of four times the pile diameter and an embedded depth reaching the critical depth. The findings of this study can provide a scientific basis for analyzing the instability mechanisms and mitigation of reservoir landslides. Full article
Show Figures

Figure 1

53 pages, 56123 KiB  
Article
Coupling Relationship Between Tourists’ Space Perception and Tourism Image in Nanxun Ancient Town Based on Social Media Data Visualization
by Mengyan Jia, Jian Chen, Yile Chen, Yijin Ge, Liang Zheng and Shuai Yang
Buildings 2025, 15(9), 1465; https://doi.org/10.3390/buildings15091465 - 25 Apr 2025
Cited by 1 | Viewed by 759
Abstract
From the perspective of social media data, this study investigates the coupling relationship between tourists’ spatial perception and tourism image in traditional old urban areas. Using Nanxun Ancient Town as a case study, this paper reveals the interaction and mutual influence between tourists’ [...] Read more.
From the perspective of social media data, this study investigates the coupling relationship between tourists’ spatial perception and tourism image in traditional old urban areas. Using Nanxun Ancient Town as a case study, this paper reveals the interaction and mutual influence between tourists’ perception of space and tourism image in the development of traditional ancient town tourism. We employed Python 3.13.0 to gather 10,789 valuable comments from tourists from Dianping 11.35.3, Ctrip 8.78.4, and Mafengwo 11.2.6. Mini Tag Cloud software is used to analyze the text data, systematically classify the cognitive image of tourists, and identify negative emotional factors. This paper constructs a four-dimensional landscape spatial perception evaluation system centered on “high-frequency words”, “perceptual dimensions”, “semantic networks”, and “emotional tendencies”. The key findings are as follows: (1) Tourists’ spatial perception exhibits pronounced characteristics of subjective preference and emotional attachment influenced by emotional factors. Overall, tourists exhibited positive emotional perceptions, with 59.51% positive emotions, 21.16% neutral emotions, and 19.33% negative emotions. (2) The perception of Nanxun Ancient Town’s tourism image can be summarized into four dimensions. Here are the dimensions in order of how important they are: historical culture and folk heritage (34.18%), perceptions of natural landscape and architectural style (31.03%), perceptions of tourism services and facilities (18.37%), and psychological identity and emotional interaction (16.42%). (3) Tourism image reciprocally influences tourists’ spatial perception. A positive tourism image is anticipated to encourage tourists to explore the spatial details of the ancient town more deeply, enhancing their positive spatial perception and experience. There exists a coupling relationship between tourists’ spatial perception and tourism image. (4) Key aspects of tourists’ perception of Nanxun Ancient Town include its historical and cultural significance, as well as commercialization. Future studies could focus on tourists’ spatial perception and tourism destination brand image building, and tourism policy makers should pay attention to tourists’ perception of Nanxun Ancient Town’s history, culture and commercialization, and use the coupling of the two to improve development and service policies. Full article
Show Figures

Figure 1

20 pages, 1299 KiB  
Article
Measurement and Comparative Analysis of Chinese New-Type Urbanization and Eco-Environment System Coordination
by Na Cao, Shicong Ling and Xinlei Cui
Sustainability 2025, 17(5), 1824; https://doi.org/10.3390/su17051824 - 21 Feb 2025
Cited by 1 | Viewed by 453
Abstract
The coordinated relationship of new-type urbanization (NU) and the eco-environment (EE) is of great significance for high-quality and healthy development. A multi-dimensional index system of NU and EE was established to measure and compare the coordinated level of 30 Chinese provinces from 2009 [...] Read more.
The coordinated relationship of new-type urbanization (NU) and the eco-environment (EE) is of great significance for high-quality and healthy development. A multi-dimensional index system of NU and EE was established to measure and compare the coordinated level of 30 Chinese provinces from 2009 to 2020 by the entropy method, coupling coordination degree model, and Markov chain. Furthermore, the regional differences in and distribution dynamic evolution of the coordination level of the four east, west, central, and northeast regions in China were analyzed using the Dagum Gini coefficient and the kernel density estimation method. The results showed that China’s NU and EE was in the low coordination state, and the distribution was uneven. In addition, the coordinated evolution was continuous. The study also revealed that intra-regional differences in coordination level were small and stable in China, and the overall difference in NU and EE coordination was mainly ascribed to inter-regional difference. The national coordination level rose, and the polarization phenomenon gradually disappeared. In the process of NU, the environmental capacity in China should be considered to promote the coordinated development of regions and fully reflect the sustainable development requirements of NU. Full article
Show Figures

Figure 1

11 pages, 297 KiB  
Article
Transition from Inflation to Dark Energy in Superfluid Vacuum Theory
by Konstantin G. Zloshchastiev
Quantum Rep. 2025, 7(1), 7; https://doi.org/10.3390/quantum7010007 - 8 Feb 2025
Cited by 1 | Viewed by 1592
Abstract
The laminar constant-velocity superflow of a physical vacuum modelled by logarithmic quantum Bose liquid is considered. We demonstrate that this three-dimensional non-relativistic quantum flow generates a four-dimensional relativistic quinton system, which comprises the dilaton and quintom (a combination of the quintessence and tachyonic [...] Read more.
The laminar constant-velocity superflow of a physical vacuum modelled by logarithmic quantum Bose liquid is considered. We demonstrate that this three-dimensional non-relativistic quantum flow generates a four-dimensional relativistic quinton system, which comprises the dilaton and quintom (a combination of the quintessence and tachyonic phantom fields); all three fields are thus shown to be projections of the dynamical evolution of superfluid vacuum density and its fluctuations onto the measuring apparatus of a relativistic observer. The unified model describes the transition from the inflationary period in the early universe to the contemporary accelerating expansion of the universe, commonly referred to as the “dark energy” period. The quintessence and tachyonic scalar components of the derived model turn out to be non-minimally coupled, which is a hitherto unexplored generalization of cosmological phantom models. Full article
(This article belongs to the Special Issue Exclusive Feature Papers of Quantum Reports in 2024–2025)
19 pages, 6136 KiB  
Article
Numerical Simulation Study of the Motion Characteristics of Autonomous Underwater Vehicles During Mooring Lurking Procedure
by Yuyang Hu, Zhaoyong Mao, Bo Cheng, Bo Li and Wenlong Tian
J. Mar. Sci. Eng. 2025, 13(2), 275; https://doi.org/10.3390/jmse13020275 - 31 Jan 2025
Viewed by 940
Abstract
A two-dimensional coupled dynamics model for a moored autonomous underwater vehicle (AUV) was developed using the lumped mass method for mooring cable dynamics and the Newton-Euler method for rigid body dynamics. This model enables the integrated simulation of AUV motion, flow field interactions, [...] Read more.
A two-dimensional coupled dynamics model for a moored autonomous underwater vehicle (AUV) was developed using the lumped mass method for mooring cable dynamics and the Newton-Euler method for rigid body dynamics. This model enables the integrated simulation of AUV motion, flow field interactions, and mooring cable behavior. The study investigates the effects of varying ocean current velocities and mooring cable lengths on AUV motion responses. The results indicate that under the influence of mooring forces, the AUV stabilizes near its equilibrium position after release and undergoes periodic oscillatory motion. Specifically, when the X-direction oscillation completes two cycles and the Y-direction oscillation completes four cycles, the AUV demonstrates an 8-shaped trajectory, with maximum motion amplitudes observed. These findings provide insights into the dynamic behavior of moored AUVs in ocean environments, contributing to the design and operation of long-term underwater monitoring systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 2361 KiB  
Article
How Does Rural Resilience Affect Return Migration: Evidence from Frontier Regions in China
by Yiqing Su, Meiqi Hu and Xiaoyin Zhang
Systems 2025, 13(2), 89; https://doi.org/10.3390/systems13020089 - 31 Jan 2025
Cited by 3 | Viewed by 1230
Abstract
An important way to realize urban–rural integration and regional coordinated development is to attract labor forces back to rural areas. Most of the existing studies consider the impact of individual factors on population migration, they lack a systematic framework to analyze the combined [...] Read more.
An important way to realize urban–rural integration and regional coordinated development is to attract labor forces back to rural areas. Most of the existing studies consider the impact of individual factors on population migration, they lack a systematic framework to analyze the combined impact of different factors on rural return migration. Furthermore, in practice, the interaction within the rural social ecosystem as an important driver of return migration is always ignored. Using data from 131 villages in 14 cities in Guangxi, China, combined with the Coupled Infrastructure System framework and the sustainable livelihoods framework, this paper analyzes the comprehensive impact of internal components of the rural social ecosystem on return migration. Qualitative comparative analysis is used to identify four condition combinations that can effectively promote return migration and five condition combinations that make return migration vulnerable. The main conclusions are as follows. First, high-level public infrastructure providers are an important driving factor for labor return to rural areas, and a substitution effect exists between them and livelihood capitals. Second, sufficient human capital and social capital are crucial for return migration, highlighting the importance of the structure of rural members and the collective atmosphere. Third, natural capital and economic capital emphasized by previous research are not key conditions for forming a high level of return migration. Fourth, the vulnerability of return migration is mainly caused by the decline of social capital, the loss of public infrastructure providers, and excessive dependence on economic or physical capital input. To attract return migration, rural areas need to pay attention to the integration and synergy of multi-dimensional capital and public infrastructure providers, and special emphasis should be placed on the cultivation of public leadership to promote the enhancement of human capital and social capital. This paper provides a more comprehensive and instrumental analytical perspective for understanding and promoting rural return migration. While deepening the understanding of the dynamic relationship between rural social ecosystem and labor mobility, it also offers policy insights for developing countries to achieve integrated urban–rural development. Full article
Show Figures

Figure 1

19 pages, 8676 KiB  
Article
Experimental Study on the Uplift Bearing Capacity of Pre-Drilled Planted Piles in Isolated Stone Strata Based on Transparent Soil Technology
by Wenli Liao, Qipeng Cai, Xiangyu Guo, Hao Lin, Jiajin Zhou and Shizhuo Su
Appl. Sci. 2025, 15(1), 304; https://doi.org/10.3390/app15010304 - 31 Dec 2024
Cited by 1 | Viewed by 868
Abstract
The presence of isolated stones in the soil layers of engineering sites has significantly increased. Currently, the existing methods for dealing with isolated stones are inadequate to meet engineering needs. This paper combines pile-planting technology with isolated stones to incorporate them into the [...] Read more.
The presence of isolated stones in the soil layers of engineering sites has significantly increased. Currently, the existing methods for dealing with isolated stones are inadequate to meet engineering needs. This paper combines pile-planting technology with isolated stones to incorporate them into the load-bearing system, resulting in a new type of pre-drilled composite pile suitable for isolated stone sites. A visualization testing system for pile-soil deformation is developed using Particle Image Velocimetry (PIV) technology and transparent soil, conducting non-intrusive model tests on pile-planting and boulder-capped piles under different uplift load conditions, and comparing the results with a discrete-continuous coupled three-dimensional numerical model analysis. The results indicate that when an isolated stone with a cross-sectional area four times that of the pile exists at the pile tip, the ultimate pullout bearing capacity of the pile increases by a factor of two. Regarding the distribution of internal and external side friction resistances of the core and outer concrete of the piles, the internal friction resistance of piles without isolated stones is approximately 1.47 times that of the external friction resistance and about 0.8 times the ratio of the diameters of the pile and core. For piles with isolated stones at the tip, the internal friction resistance is approximately 1.37 times that of the external friction resistance. Under the ultimate load, the displacement field around the pile without an isolated stone exhibits an “inverted triangular” distribution; the displacement field around the pile with an isolated stone at the tip exhibits a “trapezoidal” distribution. This study investigates the bearing capacity and load transfer mechanisms of the new pre-drilled composite piles in isolated stone engineering sites, and the research findings may provide new solutions for similar construction projects involving rubble reclamation. Full article
Show Figures

Figure 1

24 pages, 5390 KiB  
Article
Mathematical Dimensional Synthesis of Four-Bar Linkages Based on Cognate Mechanisms
by Enrique Soriano-Heras, Carlos Pérez-Carrera and Higinio Rubio
Mathematics 2025, 13(1), 11; https://doi.org/10.3390/math13010011 - 24 Dec 2024
Viewed by 1760
Abstract
In the field of mechanical engineering, understanding mechanisms is essential for designing and developing devices and systems. Mechanisms, composed of interconnected elements, transform the energy applied to the input link into motion or force in the output link. Mechanisms are found in a [...] Read more.
In the field of mechanical engineering, understanding mechanisms is essential for designing and developing devices and systems. Mechanisms, composed of interconnected elements, transform the energy applied to the input link into motion or force in the output link. Mechanisms are found in a wide variety of machines, from industrial machines to household machines. In this paper, a mechanism synthesis method is developed that can model four-bar linkages and build their cognate mechanisms to be able to select the mechanism that best suits the required work. Studying four-bar mechanisms offers a strong foundation for grasping more complex mechanical systems. The concepts and principles learned from four-bar mechanisms are widely applicable to advanced mechanical systems, making them a crucial starting point in mechanical engineering education and research. The mechanism synthesis method proposed in this article is organized into three main sections. The first section provides a comprehensive overview of the theoretical and mathematical foundations required for modeling mechanisms, laying the groundwork for understanding the subsequent calculations. The second section delves into the process of obtaining and analyzing the initial mechanism and constructing cognate mechanisms, detailing the procedures and algorithms used for modeling and calculating the coupling curve. Finally, the third section discusses the practical implementation of the method, including the graphical representation of mechanisms and a comparative analysis of the solutions obtained, assessing dimensional differences, design and manufacturing efficiency, and their suitability for various practical applications. The proposed four-bar mechanism synthesis method serves as a valuable tool for mechanism design, offering versatile and adaptable solutions that can optimize both technical performance and economic viability across a wide range of engineering applications. Full article
(This article belongs to the Special Issue Applied Mathematics to Mechanisms and Machines II)
Show Figures

Figure 1

20 pages, 3561 KiB  
Article
Comparative Study of the Fracture Resistance of 3D-Printed and Prefabricated Artificial Teeth for Removable Dentures
by Mariya Dimitrova, Rada Kazakova and Angelina Vlahova
Polymers 2024, 16(23), 3381; https://doi.org/10.3390/polym16233381 - 30 Nov 2024
Viewed by 1464
Abstract
The integration of three-dimensional (3D) printed resin denture teeth represents a significant advancement in digital dentistry. This study aims to assess the ability of 3D-printed denture teeth to withstand chipping and indirect tensile fractures, comparing them with conventionally manufactured resin denture teeth. Four [...] Read more.
The integration of three-dimensional (3D) printed resin denture teeth represents a significant advancement in digital dentistry. This study aims to assess the ability of 3D-printed denture teeth to withstand chipping and indirect tensile fractures, comparing them with conventionally manufactured resin denture teeth. Four groups, each comprising 30 specimens, were examined: Group 1 featured 3D-printed denture teeth (NextDent, 3D Systems, Soesterberg, The Netherlands), while the others included commercially obtained Ivostar Shade, SpofaDent Plus, and Major Super Lux teeth. Stereolithography 3D printing was utilized to produce methacrylate-based photopolymerized resin teeth models for Group 1, while the remaining groups were commercially sourced. Chipping and indirect tensile fracture tests were performed at a rate of 0.8 mm/min until material failure, offering valuable insights into the mechanical properties of the tested denture teeth. Statistical analysis was carried out using one-way analysis of variance (ANOVA), coupled with Tukey’s honestly significant difference test to compare multiple groups, with a significance threshold of p < 0.05. The findings showed that 3D-printed resin denture teeth exhibited greater indirect tensile fracture resistance than Major Super Lux and Ivostar Shade, though they were surpassed by SpofaDent Plus. In the chipping test, the 3D-printed teeth experienced buccal chipping without distortion, indicating their structural stability under localized force. Fractures during the indirect tensile test originated near the loading point and extended cervically along the inner slopes of both cusps, displaying consistent fracture patterns. These results demonstrate that 3D-printed denture teeth made from resin materials provide adequate fracture resistance for clinical use, although further refinement of materials could enhance their performance relative to conventional alternatives. Full article
(This article belongs to the Special Issue Resin Additives—Spices for Polymers)
Show Figures

Figure 1

23 pages, 11503 KiB  
Article
A Multi-Objective Optimization Framework for Coupled Grey–Green Infrastructure of Areas with Contamination-Induced Water Shortages Under Future Multi-Dimensional Scenarios
by Zixiang Xu, Jiaqing Cheng, Haishun Xu and Jining Li
Land 2024, 13(11), 1932; https://doi.org/10.3390/land13111932 - 16 Nov 2024
Viewed by 1289
Abstract
Stormwater resource utilization is an important function of coupled grey–green infrastructure (CGGI) that has received little research focus, especially in multi-objective optimization studies. Given the complex water problems in areas with contamination-induced water shortages, it is important to incorporate more objectives into optimization [...] Read more.
Stormwater resource utilization is an important function of coupled grey–green infrastructure (CGGI) that has received little research focus, especially in multi-objective optimization studies. Given the complex water problems in areas with contamination-induced water shortages, it is important to incorporate more objectives into optimization systems. Therefore, this study integrated economic performance, hydrological recovery, water quality protection, and stormwater resource utilization into an optimization framework based on the non-dominant sorting genetic algorithm III (NSGA-III). A sponge city pilot area with contamination-induced water shortages in the Yangtze River Delta was considered, optimizing four objectives under different future multi-dimensional scenarios. The results showed a time series and scenarios composed of shared socioeconomic pathways and representative concentration pathways (SSP-RCP scenarios) which, together, affected future climate change and the benefits of a CGGI. In the near and middle periods, the SSP126 scenario had the greatest influence on stormwater management, whereas, in the far period, the SSP585 scenario had the greatest influence. The far period had the greatest influence under three SSP-RCP scenarios. Under the combined influence of SSP-RCP scenarios and a time series, the SSP585-F scenario had the greatest impact. Specific costs could be used to achieve different and no stormwater-resource utilization effects through different configurations of the CGGI. This provided various construction ideas regarding CGGIs for areas with contamination-induced water shortages. Full article
Show Figures

Figure 1

22 pages, 1961 KiB  
Review
The Impact of Climate Change and Urbanization on Compound Flood Risks in Coastal Areas: A Comprehensive Review of Methods
by Xuejing Ruan, Hai Sun, Wenchi Shou and Jun Wang
Appl. Sci. 2024, 14(21), 10019; https://doi.org/10.3390/app142110019 - 2 Nov 2024
Cited by 7 | Viewed by 6080
Abstract
Many cities worldwide are increasingly threatened by compound floods resulting from the interaction of multiple flood drivers. Simultaneously, rapid urbanization in coastal areas, which increases the proportion of impervious surfaces, has made the mechanisms and simulation methods of compound flood disasters more complex. [...] Read more.
Many cities worldwide are increasingly threatened by compound floods resulting from the interaction of multiple flood drivers. Simultaneously, rapid urbanization in coastal areas, which increases the proportion of impervious surfaces, has made the mechanisms and simulation methods of compound flood disasters more complex. This study employs a comprehensive literature review to analyze 64 articles on compound flood risk under climate change from the Web of Science Core Collection from 2014 to 2024. The review identifies methods for quantifying the impact of climate change factors such as sea level rise, storm surges, and extreme rainfall, as well as urbanization factors like land subsidence, impervious surfaces, and drainage systems on compound floods. Four commonly used quantitative methods for studying compound floods are discussed: statistical models, numerical models, machine learning models, and coupled models. Due to the complex structure and high computational demand of three-dimensional joint probability statistical models, along with the increasing number of flood drivers complicating the grid interfaces and frameworks for coupling different numerical models, most current research focuses on the superposition of two disaster-causing factors. The joint impact of three or more climate change-driving factors on compound flood disasters is emerging as a significant future research trend. Furthermore, urbanization factors are often overlooked in compound flood studies and should be considered when establishing models. Future research should focus on exploring coupled numerical models, statistical models, and machine learning models to better simulate, predict, and understand the mechanisms, evolution processes, and disaster ranges of compound floods under climate change. Full article
Show Figures

Figure 1

26 pages, 3196 KiB  
Article
Finite Difference Methods Based on the Kirchhoff Transformation and Time Linearization for the Numerical Solution of Nonlinear Reaction–Diffusion Equations
by Juan I. Ramos
Computation 2024, 12(11), 218; https://doi.org/10.3390/computation12110218 - 1 Nov 2024
Viewed by 1262
Abstract
Four formulations based on the Kirchhoff transformation and time linearization for the numerical study of one-dimensional reaction–diffusion equations, whose heat capacity, thermal inertia and reaction rate are only functions of the temperature, are presented. The formulations result in linear, two-point boundary-value problems for [...] Read more.
Four formulations based on the Kirchhoff transformation and time linearization for the numerical study of one-dimensional reaction–diffusion equations, whose heat capacity, thermal inertia and reaction rate are only functions of the temperature, are presented. The formulations result in linear, two-point boundary-value problems for the temperature, energy or heat potential, and may be solved by either discretizing the second-order spatial derivative or piecewise analytical integration. In both cases, linear systems of algebraic equations are obtained. The formulation for the temperature is extended to two-dimensional, nonlinear reaction–diffusion equations where the resulting linear two-dimensional operator is factorized into a sequence of one-dimensional ones that may be solved by means of any of the four formulations developed for one-dimensional problems. The multidimensional formulation is applied to a two-dimensional, two-equation system of nonlinearly coupled advection–reaction–diffusion equations, and the effects of the velocity and the parameters that characterize the nonlinear heat capacities and thermal conductivity are studied. It is shown that clockwise-rotating velocity fields result in wave stretching for small vortex radii, and wave deceleration and thickening for counter-clockwise-rotating velocity fields. It is also shown that large-core, clockwise-rotating velocity fields may result in large transient periods, followed by time intervals of apparent little activity which, in turn, are followed by the propagation of long-period waves. Full article
Show Figures

Figure 1

Back to TopTop