Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (338)

Search Parameters:
Keywords = food waste re-use

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 580 KiB  
Review
The Alarming Effects of Per- and Polyfluoroalkyl Substances (PFAS) on One Health and Interconnections with Food-Producing Animals in Circular and Sustainable Agri-Food Systems
by Gerald C. Shurson
Sustainability 2025, 17(15), 6957; https://doi.org/10.3390/su17156957 - 31 Jul 2025
Viewed by 160
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetically produced chemicals that are causing a major One Health crisis. These “forever chemicals” are widely distributed globally in air, water, and soil, and because they are highly mobile and extremely difficult to degrade in the environment. [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are synthetically produced chemicals that are causing a major One Health crisis. These “forever chemicals” are widely distributed globally in air, water, and soil, and because they are highly mobile and extremely difficult to degrade in the environment. They cause additional health concerns in a circular bioeconomy and food system that recycles and reuses by-products and numerous types of waste materials. Uptake of PFAS by plants and food-producing animals ultimately leads to the consumption of PFAS-contaminated food that is associated with numerous adverse health and developmental effects in humans. Contaminated meat, milk, and eggs are some of the main sources of human PFAS exposure. Although there is no safe level of PFAS exposure, maximum tolerable PFAS consumption guidelines have been established for some countries. However, there is no international PFAS monitoring system, and there are no standardized international guidelines and mechanisms to prevent the consumption of PFAS-contaminated foods. Urgent action is needed to stop PFAS production except for critical uses, implementing effective water-purification treatments, preventing spreading sewage sludge on land and pastures used to produce food, and requiring marketers and manufacturers to use packaging that is free of PFAS. Full article
27 pages, 940 KiB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Viewed by 609
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

20 pages, 4658 KiB  
Article
Valorizing Carasau Bread Residue Through Sourdough Fermentation: From Bread Waste to Bread Taste
by Simonetta Fois, Valentina Tolu, Vanna Sanna, Antonio Loddo, Manuela Sanna, Piero Pasqualino Piu, Daniela Piras, Tonina Roggio and Pasquale Catzeddu
Microorganisms 2025, 13(8), 1745; https://doi.org/10.3390/microorganisms13081745 - 25 Jul 2025
Viewed by 222
Abstract
Surplus bread accounts for a significant proportion of food waste in many countries. The focus of this study was twofold: firstly, to investigate the use of carasau bread residue as a sourdough substrate, and secondly, to reuse this sourdough into a new carasau [...] Read more.
Surplus bread accounts for a significant proportion of food waste in many countries. The focus of this study was twofold: firstly, to investigate the use of carasau bread residue as a sourdough substrate, and secondly, to reuse this sourdough into a new carasau baking process. Selected lactic acid bacteria (Lactiplantibacillus plantarum) and yeast strains (Saccharomyces cerevisiae and Wickerhamomyces anomalus) were used to inoculate three substrates: bread residue (S1), bread residue supplemented with durum wheat middlings (S2), and semolina (S3). Sourdoughs were refreshed for five days by backslopping, and microbiological and physicochemical analyses were performed. Results indicated that incorporating wheat middlings into bread residue enhanced microbial performance, as evidence by a decrease in pH from 6.0 to around 4.5 compared to using bread residue alone as a substrate. Carasau bread produced with the sourdough derived from bread residue and wheat middlings exhibited comparable physicochemical properties to commercial baker’s yeast carasau bread, but had better sensory properties, scoring a mean acceptability of 7.0 versus 6.0 for baker’s yeast bread. These results show that bread residue supplemented with wheat middlings can serve as a sourdough substrate, allowing its reuse in the baking process to produce high-quality carasau bread and promote the circular economy. Full article
Show Figures

Graphical abstract

8 pages, 263 KiB  
Communication
Stomatal Blocker Delays Strawberry Production
by Jie Xiang, Laura Vickers, James M. Monaghan and Peter Kettlewell
Int. J. Plant Biol. 2025, 16(3), 80; https://doi.org/10.3390/ijpb16030080 - 19 Jul 2025
Viewed by 170
Abstract
Strawberries have a short shelf-life leading to food loss and waste when production unexpectedly exceeds demand. PGRs may have potential to delay production and reduce food loss and waste, but no PGRs are available for delaying strawberry production. The aim of this preliminary [...] Read more.
Strawberries have a short shelf-life leading to food loss and waste when production unexpectedly exceeds demand. PGRs may have potential to delay production and reduce food loss and waste, but no PGRs are available for delaying strawberry production. The aim of this preliminary study was to investigate re-purposing a stomatal blocking film antitranspirant polymer as a PGR to temporarily delay production. Poly-1-p-menthene or water was applied during early fruit ripening in two glasshouse experiments, one on a June-bearer cultivar and one on an everbearer cultivar. Ripe strawberries were harvested during the next 23 days, the cumulative yield was recorded, and the production curves were fitted using polynomial regression in groups. The statistical analysis showed that cubic polynomial regression curves could be fitted separately to each treatment. Application of the blocker delayed the production of both cultivars by 1–2 days during the period of rapid berry production. The delay diminished and cumulative yield returned to the water-treated value by 13 and 18 days after application in the June-bearer and everbearer cultivars, respectively. At 23 days after application, the blocker gave 8% greater cumulative yield in the June-bearer, but not in the everbearer. It was concluded that, if a greater delay could be achieved, there may be potential to use stomatal blockers as PGRs in some cultivars of strawberry to delay production and reduce food loss and waste when unanticipated lower demand occurs. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

24 pages, 237 KiB  
Article
Student Perceptions of Sustainability in the HoReCa Sector: Awareness, Engagement, and Challenges
by Marian Mocan, Larisa Ivascu, Timea Agache and Andrei Agache
Sustainability 2025, 17(14), 6384; https://doi.org/10.3390/su17146384 - 11 Jul 2025
Viewed by 328
Abstract
The HoReCa (Hotels, Restaurants, and Cafes) sector plays a pivotal role in the economy due to its strong connections with various other industries, including agriculture, food and beverage, construction, packaging, waste management, water, and textiles. Given its broad impact, understanding the perceptions of [...] Read more.
The HoReCa (Hotels, Restaurants, and Cafes) sector plays a pivotal role in the economy due to its strong connections with various other industries, including agriculture, food and beverage, construction, packaging, waste management, water, and textiles. Given its broad impact, understanding the perceptions of students—emerging consumers and future professionals—could provide valuable insights for businesses seeking to enhance sustainable practices in ways that resonate with younger generations and improve their competitiveness. However, there is still limited understanding of how students perceive and engage with sustainability in this sector. This study explores student perceptions of sustainability practices within the HoReCa sector, examining their awareness levels, expectations, and behavior. The objective is to assess how effectively current business approaches align with student values regarding sustainability initiatives and identify key factors influencing their engagement. A structured questionnaire was distributed among university students, and the collected data was analyzed using statistical techniques to identify meaningful trends and correlations. Findings revealed a notable disconnect between students’ professed sustainability values and their actual behavior. Primary obstacles included price sensitivity, skepticism toward environmental marketing claims, and insufficient access to clear sustainability information from businesses. Despite supporting sustainable initiatives in principle, students often struggle to translate their values into purchasing decisions. The research suggests that greater business transparency, enhanced sustainability education, and incentive programs could foster increased student engagement. Full article
44 pages, 10756 KiB  
Review
The Road to Re-Use of Spice By-Products: Exploring Their Bioactive Compounds and Significance in Active Packaging
by Di Zhang, Efakor Beloved Ahlivia, Benjamin Bonsu Bruce, Xiaobo Zou, Maurizio Battino, Dragiša Savić, Jaroslav Katona and Lingqin Shen
Foods 2025, 14(14), 2445; https://doi.org/10.3390/foods14142445 - 11 Jul 2025
Viewed by 717
Abstract
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit [...] Read more.
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends. Full article
Show Figures

Figure 1

28 pages, 10447 KiB  
Review
Regenerative Oxidation Technology for VOC Treatment: A Review
by Peng Yang, Tao Zhang, Zhongqian Ling, Maosheng Liu and Xianyang Zeng
Energies 2025, 18(13), 3430; https://doi.org/10.3390/en18133430 - 30 Jun 2025
Viewed by 339
Abstract
Regenerative combustion represents an efficient and energy-saving combustion technology that significantly enhances thermal efficiency, reduces energy consumption, and minimizes pollutant emissions by recovering and reusing heat energy. This technology has found extensive applications in traditional industries, such as chemical engineering, coating, and printing, [...] Read more.
Regenerative combustion represents an efficient and energy-saving combustion technology that significantly enhances thermal efficiency, reduces energy consumption, and minimizes pollutant emissions by recovering and reusing heat energy. This technology has found extensive applications in traditional industries, such as chemical engineering, coating, and printing, as well as in contemporary fields, including food processing and pharmaceuticals. In recent years, advancements in the optimization of combustion devices and the development of efficient catalysts have successfully reduced the combustion temperature for treating organic waste gases while simultaneously improving pollutant removal efficiency. This paper reviews the current status of regenerative combustion technology, summarizes key achievements, analyzes the challenges faced in industrial applications, and anticipates future research directions. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process II)
Show Figures

Figure 1

18 pages, 5967 KiB  
Article
Incorporation of Poly (Ethylene Terephthalate)/Polyethylene Residue Powder in Obtaining Sealing Concrete Blocks
by Ana Paula Knopik, Roberta Fonseca, Rúbia Martins Bernardes Ramos, Pablo Inocêncio Monteiro, Wellington Mazer and Juliana Regina Kloss
Processes 2025, 13(7), 2050; https://doi.org/10.3390/pr13072050 - 28 Jun 2025
Viewed by 358
Abstract
Polymer residues can be reused in civil construction by partially replacing mineral aggregates in concrete, thereby reducing the extraction of natural resources. This study aimed to evaluate the use of powdered poly (ethylene terephthalate) (PET) and polyethylene (PE) residues, accumulated in shaving-mill filters [...] Read more.
Polymer residues can be reused in civil construction by partially replacing mineral aggregates in concrete, thereby reducing the extraction of natural resources. This study aimed to evaluate the use of powdered poly (ethylene terephthalate) (PET) and polyethylene (PE) residues, accumulated in shaving-mill filters during the extrusion of multilayer films used in food packaging, in the production of sealing masonry blocks. The PET/PE residues were characterized by Fourier Transform Infrared Spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Cylindrical specimens were produced in which part of the sand, by volume, was replaced with 10, 20, 30, 40 and 50% polymer residue. The cylindrical specimens were evaluated for specific mass, water absorption and axial and diametral compressive strengths. The 10% content provided the highest compressive strength. This formulation was selected for the manufacture of concrete blocks, which were evaluated and compared with the specifications of ABNT NBR 6136:2014. The concrete blocks showed potential for applications without structural function and were classified as Class C. The results, in line with previous investigations on the incorporation of plastic waste in concrete, underscore the promising application potential of this strategy. Full article
Show Figures

Figure 1

15 pages, 1371 KiB  
Article
The Characterization of Peach Pomace and the Influence of Its Incorporation on the Chemical Composition of Biscuits
by Maria Mandache, Carmen Mihaela Topală, Loredana Elena Vijan and Sina Cosmulescu
Appl. Sci. 2025, 15(13), 6983; https://doi.org/10.3390/app15136983 - 20 Jun 2025
Viewed by 300
Abstract
The processing of peaches generates large quantities of by-products, including peels, pomace, and seeds. Despite containing high levels of bioactive compounds with antioxidant properties, these by-products are often discarded as waste, thereby contributing to increased food waste. The present paper aimed to evaluate [...] Read more.
The processing of peaches generates large quantities of by-products, including peels, pomace, and seeds. Despite containing high levels of bioactive compounds with antioxidant properties, these by-products are often discarded as waste, thereby contributing to increased food waste. The present paper aimed to evaluate the total bioactive compound content in peach pomace and biscuits fortified with various concentrations of peach pomace (5%, 10%, and 15%), with a view to utilizing this valuable by-product in functional foods. Compositional analysis revealed that peach pomace is a significant source of polyphenols (1771.64 mg GAE 100 g−1), flavonoids (478.99 mg RE 100 g−1), and anthocyanins (21.18 mg C3GE 100 g−1), and has a radical scavenging capacity of 40.41%. The FTIR analysis confirmed the presence of multiple functional groups in peach pomace that can be associated with polyphenols, polysaccharides, organic acids, esters, monosaccharides, and structurally bound water. Among the individual phenolic compounds, high concentrations of rutin (8.12 mg 100 g−1), chlorogenic acid (3.77 mg 100 g−1), and sinapic acid (2.70 mg 100 g−1) were recorded. Following the replacement of wheat flour with peach pomace, increases in the content of bioactive compounds were observed. At the maximum level of 15% pomace, the biscuits presented the highest concentrations of polyphenols (444.04 mg GAE 100 g−1), flavonoids (211.11 mg RE 100 g−1), anthocyanins (25.43 mg C3GE 100 g−1), sugars (46.48 g GluE 100 g−1), and radical scavenging activity (27.21%). Similar bands were found in the FTIR spectra of the biscuits, indicating the presence of phenolic compounds and glycosides. The 1366 cm−1 band, which is associated with C–O stretching and C–H and N–H deformation in peach pomace, appeared in the enriched biscuit samples at 1340–1374 cm−1 but not in the control sample. These results suggest that peach pomace represents an ingredient with significant potential for use in the food industry, having the ability to improve the nutritional value of biscuits. Full article
Show Figures

Figure 1

15 pages, 578 KiB  
Review
Utilization of Agro-Industrial Residues from the Rosa damascena Mill. Oil Industry: A Literature Review on Biomass Potential for Food and Feed Ingredients
by Nikolay Kolev, Mihaela Ivanova, Alexandar Balabanov, Desislava Vlahova-Vangelova, Aneta Kišová and Francesco Vizzarri
Processes 2025, 13(6), 1945; https://doi.org/10.3390/pr13061945 - 19 Jun 2025
Viewed by 472
Abstract
The re-usage of byproducts needs urgent attention as the recycling and reduction in wastes can minimize environmental pollution and ameliorate the present situation by creating new products, such as animal feed and ingredients for the food industry. The industrial production of rose oil [...] Read more.
The re-usage of byproducts needs urgent attention as the recycling and reduction in wastes can minimize environmental pollution and ameliorate the present situation by creating new products, such as animal feed and ingredients for the food industry. The industrial production of rose oil from Rosa damascena Mill. generates tons of byproducts, due to the low oil yield. Byproducts such as spent petals are systematically used as feed supplements, while the polyphenol-rich extracts are incorporated in numerous animal products. Among their benefits, exogenous (through a dietary strategy) antioxidants such as polyphenols, play a pivotal role in the antioxidant system in intensive farmed animals—influencing the growth performance and increasing the feed conversion. On the other hand, incorporated extracts serve as natural antioxidants retaining the discoloration of meat products, as well as inhibiting the lipid and protein oxidation during storage, extending their shelf-life. Rosa damascena Mill. extracts are used as additives in functional and more healthier products with reduced nitrite content and enhanced the biological value of the consumed products. The aim is to systematize the existing knowledge about the potential use of spent Rosa damascena Mill. petals and their extracts, as well as highlight the need for further research in dairy and meat products. Full article
Show Figures

Figure 1

29 pages, 2667 KiB  
Review
From Harm to Hope: Tackling Microplastics’ Perils with Recycling Innovation
by Irene Dini, Andrea Mancusi and Serenella Seccia
Molecules 2025, 30(12), 2535; https://doi.org/10.3390/molecules30122535 - 10 Jun 2025
Viewed by 801
Abstract
This review examines how plastics break down into dangerous pollutants like microplastics, nanoplastics, and persistent organic pollutants (POPs) that can contaminate the environment, make their way into the human food chain, and provoke toxicological effects in humans. According to the reviewed literature, new [...] Read more.
This review examines how plastics break down into dangerous pollutants like microplastics, nanoplastics, and persistent organic pollutants (POPs) that can contaminate the environment, make their way into the human food chain, and provoke toxicological effects in humans. According to the reviewed literature, new biomarkers associated with their exposure should be identified, and new methods for detecting them in the environment and in food should be developed and validated. It would also be interesting to improve research on the interaction between micro- and nanoplastics and human cells, their impact on DNA, and their long-term health effects. Promoting sustainable practices and adherence to the 3R strategies (reduce, reuse, and recycle) to transform hazardous waste into valuable resources is crucial to protecting public health from dangerous contaminants as we wait on the development of new diagnostic methods and more stringent legislation. Full article
Show Figures

Figure 1

13 pages, 286 KiB  
Article
Assessment of Food Sustainability in School Canteens: Menu Quality and Environmental Performance
by Joana Maria Sousa, Ana Catarina Teixeira and Margarida Liz Martins
Sustainability 2025, 17(12), 5346; https://doi.org/10.3390/su17125346 - 10 Jun 2025
Viewed by 756
Abstract
This study aims to evaluate the environmental performance and menu sustainability in Portuguese primary school canteens. A total of 58 canteens were assessed using two checklists: one evaluating the sustainability and nutritional quality of menus (maximum score: 183 points), another assessing canteen environmental [...] Read more.
This study aims to evaluate the environmental performance and menu sustainability in Portuguese primary school canteens. A total of 58 canteens were assessed using two checklists: one evaluating the sustainability and nutritional quality of menus (maximum score: 183 points), another assessing canteen environmental performance (maximum score: 195 points). Canteens were categorized into four performance levels based on their final scores: Very good (90–100%), Good (75–89.9%), Acceptable (50–74.9%), and Not Acceptable (<50%). The mean sustainability score was 130.5 ± 2.8. None of the canteens fully meet the recommended standards for vegetable portion sizes, reuse of leftovers, or inclusion of pulses in soups. The average environmental performance score was 137.9 ± 12.2. Canteens with on-site meal preparation demonstrated better environmental performance (142.3 ± 2.5) than those relying on off-site prepared meals (106.0 ± 3.6; p < 0.001). Additionally, canteens serving more than 150 meals daily achieved higher environmental performance scores (144.5 ± 1.7) compared to those serving fewer than 50 meals (125.5 ± 18.3). No significant correlation was observed between environmental performance and menu sustainability scores. Findings indicate a generally positive evaluation of both environmental performance and menu sustainability. Nevertheless, substantial improvements are needed, particularly in ensuring adequate vegetable portion sizes, minimizing food waste, and increasing the inclusion of plant-based protein sources. Full article
(This article belongs to the Section Sustainable Food)
20 pages, 2030 KiB  
Article
Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development
by Gonzalo Hernández-López, Laura Leticia Barrera-Necha, Silvia Bautista-Baños, Mónica Hernández-López, Odilia Pérez-Camacho, José Jesús Benítez-Jiménez, José Luis Acosta-Rodríguez and Zormy Nacary Correa-Pacheco
Foods 2025, 14(11), 1991; https://doi.org/10.3390/foods14111991 - 5 Jun 2025
Viewed by 1210
Abstract
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. [...] Read more.
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. Extracted green coffee bean oil (CO) was used as a plasticizer, and CP was used as a filler with and without functionalization. A solution of chitosan nanoparticles (ChNp) as a coating was applied to the ribbons. For the raw material, proximal analysis of the CP showed cellulose and lignin contents of 53.09 ± 3.42% and 23.60 ± 1.74%, respectively. The morphology of the blends was observed via scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) showed an increase in the ribbons’ thermal stability with the functionalization. The results of differential scanning calorimetry (DSC) revealed better miscibility for the functionalized samples. The mechanical properties showed that with CP incorporation into the blends and with the ChNp coating, the Young’s modulus and the tensile strength decreased with no significant changes in the elongation at break. This work highlights the potential of reusing different by-products from the coffee industry, such as coffee oil from green beans and coffee parchment as a filler, and incorporating them into PLA PBAT biodegradable polymer blend ribbons with a nanostructured antimicrobial coating based on chitosan for future applications in food packaging. Full article
Show Figures

Figure 1

19 pages, 391 KiB  
Review
Nutritional Intervention Programs for Sustainability: A Scoping Review on Full Food Utilization and the Clean Leftovers Reuse
by Emanuely Rocha de Souza, Mona N. BinMowyna, Hani A. Alfheeaid, António Raposo, Pâmela Gracielle da Fonseca, Maria João Lima, Najla A. Albaridi, Thamer Alslamah, Nada Alqarawi and Nathalia Sernizon Guimarães
Nutrients 2025, 17(11), 1829; https://doi.org/10.3390/nu17111829 - 28 May 2025
Viewed by 700
Abstract
Background: Food waste is a significant global issue with environmental, social, and economic consequences. In 2022, approximately 1.05 billion tons of food were wasted worldwide, with 220 million tons lost during the production and processing stages. Strategies to reduce food waste include full [...] Read more.
Background: Food waste is a significant global issue with environmental, social, and economic consequences. In 2022, approximately 1.05 billion tons of food were wasted worldwide, with 220 million tons lost during the production and processing stages. Strategies to reduce food waste include full food utilization and the reuse of clean leftovers, which promote food security, efficient resource use, and the valorization of nutrients found in food. Objective: The aim of this study was to map existing scientific literature on nutritional intervention programs that incorporate full food utilization and the reuse of clean leftovers as tools for promoting sustainability and reducing food waste. The review seeks to consolidate existing knowledge, support public policy development, and encourage the adoption of sustainable food practices. Methods: A scoping review was conducted based on the Joanna Briggs Institute (JBI) manual and following the PRISMA-ScR checklist. The search was conducted in four scientific databases (PubMed, Embase, Cochrane Library, and Virtual Health Library) and included articles published between 2014 and 2025. Intervention studies promoting full utilization of plant-based foods and the reuse of clean leftovers were included. Results: After analyzing 2268 studies, 14 relevant studies were selected, with interventions including culinary workshops and educational programs on using parts of food typically discarded, such as peels and seeds. These programs were successful in reducing waste and promoting more sustainable and nutritious diets. Conclusions: Nutritional intervention programs that promote full food utilization and clean leftover reuse are effective in reducing waste and fostering sustainable diets. To maximize their impact, these practices should be integrated into public policies and scaled in institutional settings such as schools, hospitals, and community kitchens. Full article
(This article belongs to the Special Issue Sustainable and Resilient Food Systems)
Show Figures

Figure 1

20 pages, 3941 KiB  
Article
Ecological Packaging: Reuse and Recycling of Rosehip Waste to Obtain Biobased Multilayer Starch-Based Material and PLA for Food Trays
by Yuliana Monroy, Florencia Versino, Maria Alejandra García and Sandra Rivero
Foods 2025, 14(11), 1843; https://doi.org/10.3390/foods14111843 - 22 May 2025
Viewed by 693
Abstract
This study investigates the valorization of agri-food residues by repurposing industrial rosehip oil waste for sustainable food packaging development. Market demands for environmentally friendly alternatives to conventional packaging materials prompted the development of laminated multilayer materials for trays through thermo-compression, using modified cassava [...] Read more.
This study investigates the valorization of agri-food residues by repurposing industrial rosehip oil waste for sustainable food packaging development. Market demands for environmentally friendly alternatives to conventional packaging materials prompted the development of laminated multilayer materials for trays through thermo-compression, using modified cassava starch with citric acid as a compatibilizer. Physicochemical characterization revealed appropriate surface roughness (Rz of 31–64 μm) and controlled water absorption capacities of the composite materials (contact angle of 85–95°), properties critical for food quality preservation and safety. The incorporation of polylactic acid (PLA) films in the laminates significantly enhanced the mechanical performance, increasing the stress resistance by 5 to 10 times, and improved moisture resistance, showing a 78–82% reduction in the materials’ water absorption capacity and an almost 50% decrease in water content and solubility, depending on the processing method. Results indicated that these biocomposite laminates represent a viable alternative to conventional polystyrene foam trays for food packaging. Two distinct multilayer manufacturing processes were comparatively evaluated to optimize production efficiency by reducing the energy consumption and processing time. This research contributes to circular economy principles by transforming agricultural waste into value-added laminated materials with commercial potential. Full article
Show Figures

Figure 1

Back to TopTop