From Harm to Hope: Tackling Microplastics’ Perils with Recycling Innovation
Abstract
:1. Introduction
2. Plastics and Micro- and Nanoplastics
2.1. Plastics Classification
2.2. Micro- and Nanoplastics
2.3. Degradation of Plastics
3. Plastics’ Impact on the Ecosystem
3.1. Microplastics’ Impact on the Terrestrial Ecosystem
3.2. Microplastics’ Impact on the Aquatic Ecosystem
3.3. Microplastics’ Impact on the Atmosphere
3.4. The Plastisphere
4. Microplastics in Food
5. Microplastic Emissions in Culinary Environments
5.1. Kitchen Utensil Contamination
5.2. Food Packaging Contamination
5.3. Cooking Methods’ Interference with Plastic Contamination
6. Plastic Residues’ Impact on Human Health
6.1. Routes of Exposure
6.2. Harmful Effects on Human Health
7. Analytical Methods Used to Detect Plastic Residues
7.1. The Extraction of Microplastics from Biological Specimens
7.2. Plastics Characterization
Method | Detection Limit | Features | Advantages | Disadvantages | References |
---|---|---|---|---|---|
Optical microscopy | 50 μm | Quantification; non-destructive | Rapid and cost-effective identification of particle characteristics such as size, color, shape, and surface structure. | Major inaccuracies may occur, requiring a considerable amount of time; errors in identification. | [189,198] |
Electron microscopy | 1 nm | Quantification; non-destructive | Electron microscopes can achieve resolutions up to 0.2 nanometers. | Preparing samples for electron microscopy can be time-consuming and may alter the specimen, potentially introducing artifacts. | [189,198] |
FTIR | 10 μm | Identification; non-destructive | Non-destructive. It has a spectrum database. It can detect several thousand particles with a single measurement. Reliable outcomes, exceptional sensitivity, rapid screening capabilities, and eco-friendliness. | It is costly and requires skilled operators. Pretreatment is essential. It is labor-intensive and can be easily affected by water. Sample preprocessing, organic soil matter, and the age of microplastics may also alter the chemical bonds of the samples. | [190,191,198] |
Raman | 1 μm | Identification; non-destructive | Non-destructive nature; capable of identifying additives. Excellent spatial resolution, great precision, high sensitivity, exceptional specificity of fingerprint spectrum, and no harm to the sample, with no need for specific sample thickness. It has a spectrum database. | The spectral library is not as extensive as FTIR and may require a significant amount of time. Additives and impurities can lead to interference. Adequate sample preparation is essential. Choosing the appropriate wavelength is vital for reducing sample fluorescence and obtaining a strong signal. | [190,191,198] |
MS | The lowest detectable limit for PC is 27.7 µg/kg, while for PET is 178.3 µg/kg | Identification and quantification; destructive | It offers an effective detection limit, facilitates high-volume sample input, and operates quickly and automatically. Can measure additives. | Needs pretreatment. | [192,193,194,198] |
NMR | 0.2~10 µg/mL | Identification and quantification; non-destructive | NMR is infrequently employed for the characterization of higher-molecular-weight compounds because of the intricate nature of the spectra. | [197] |
8. Plastic Waste Management
9. MPs Legislation
10. Materials and Methods
10.1. Search Strategy
10.2. Inclusion Criteria
- Food toxicology: Plastic and microplastic residues in foods and a source of contamination of microplastic residues in foods.
- Analytical methods to detect microplastic residues in foods.
- Technological approaches and sustainable strategies to address the challenge of microplastics in foods.
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohre, A.; Jadhao, P.R.; Tripathi, K.; Pant, K.K.; Saha, B. Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts. ChemSusChem 2023, 16, e202300142. [Google Scholar] [CrossRef] [PubMed]
- Moutinho, L.G.; Soares, E.; Oliveira, M. Bio-based thermoplastic composites reinforced with natural fillers for sustainable packaging: A comprehensive review. Polym. Compos. 2025, 35, e6536. [Google Scholar] [CrossRef]
- Wong, S.L.; Nyakuma, B.B.; Wong, K.Y.; Lee, C.T.; Lee, T.H.; Lee, C.H. Microplastics and Nanoplastics in Global Food Webs: A Bibliometric Analysis (2009–2019). Mar. Pollut. Bull. 2020, 158, 111432. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, S.; Preethi, B.; Deena, S.R.; Vijayan, D.S.; Subbaiya, R.; Vickram, S.; Govarthanan, M. Systematic Assessment of Mechanisms, Developments, Innovative Solutions, and Future Perspectives of Microplastics and Ecotoxicity—A Review. Adv. Sust. Sys. 2024, 8, 2400294. [Google Scholar] [CrossRef]
- Makhdoumi, P.; Pirsaheb, M.; Amin, A.A.; Kianpour, S.; Hossini, H. Microplastic pollution in table salt and sugar: Occurrence, qualification and quantification and risk assessment. J. Food Compos. Anal. 2023, 119, 105261. [Google Scholar] [CrossRef]
- Shi, H.; Frias, J.; Sayed, A.; De-la-Torre, G.; Jong, M.; Uddin, S.; Rajaram, R.; Chavanich, S.; Najii, A.; Fernández-Severini, M.D.; et al. Small plastic fragments: A bridge between large plastic debris and micro-&nano-plastics. Trends Analyt. Chem. 2023, 168, 117308. [Google Scholar]
- Shen, M.; Ye, S.; Zeng, G.; Zhang, Y.; Xing, L.; Tang, W.; Wen, X.; Liu, S. Can microplastics pose a threat to ocean carbon sequestration? Mar. Pollut. Bull. 2020, 150, 110712. [Google Scholar] [CrossRef]
- Hamilton, L.A.; Feit, S.; Kelso, M.; Muffett, C.; Rubright, S.M.; Bernhardt, C.; Labbé-Bellas, R. Plastic & Climate. The Hidden Costs of a Plastic Planet. 2019, pp. 1–108. Available online: https://www.ciel.org/wp-content/uploads/2019/05/Plastic-and-Climate-FINAL-2019.pdf (accessed on 18 December 2021).
- Lavers, J.L.; Bond, A.L.; Rolsky, C. Far from a distraction: Plastic pollution and the planetary emergency. Biol. Conserv. 2022, 272, 109655. [Google Scholar] [CrossRef]
- Gilani, I.E.; Sayadi, S.; Zouari, N.; Al-Ghouti, M.A. Plastic waste impact and biotechnology: Exploring polymer degradation, microbial role, and sustainable development implications. Bioresour. Technol. Rep. 2023, 24, 101606. [Google Scholar] [CrossRef]
- Nayanathara Thathsarani Pilapitiya, P.G.C.; Ratnayake, A.S. The World of Plastic Waste: A Review. Clean. Mater. 2024, 11, 100220. [Google Scholar] [CrossRef]
- Elahi, A.; Bukhari, D.A.; Shamim, S.; Rehman, A. Plastics degradation by microbes: A sustainable approach. J. King Saud Univ. Sci. 2021, 33, 101538. [Google Scholar]
- Napper, I.; Thompson, R. Plastic Debris in the Marine Environment: History and Future Challenges. Glob. Chall. 2020, 4, 1900081. [Google Scholar] [CrossRef]
- Wilkes, R.A.; Aristilde, L. Degradation and Metabolism of Synthetic Plastics and Associated Products by Pseudomonas sp.: Capabilities and Challenges. J. Appl. Microbiol. 2017, 123, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Maddah, H.A. Polypropylene as a promising plastic: A review. Amer. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar]
- Maafa, I.M. Pyrolysis of Polystyrene Waste: A Review. Polymers 2021, 13, 225. [Google Scholar] [CrossRef]
- Jankauskaite, V.; Macijauskas, G.; Lygaitis, R. Polyethylene terephthalate waste recycling and application possibilities: A review. Mater. Sci. 2008, 14, 119–127. [Google Scholar]
- Das, A.; Mahanwar, P. A brief discussion on advances in polyurethane applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Koller, M.; Mukherjee, A. A New Wave of Industrialization of PHA Biopolyesters. Bioengineering 2022, 9, 74. [Google Scholar] [CrossRef]
- Li, G.; Zhao, M.; Xu, F.; Yang, B.; Li, X.; Meng, X.; Teng, L.; Sun, F.; Li, Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020, 25, 5023. [Google Scholar] [CrossRef]
- Jiao, J.; Zeng, X.; Huang, X. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar]
- Barletta, M.; Aversa, C.; Ayyoob, M.; Gisario, A.; Hamad, K.; Mehrpouya, M.; Vahabi, H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog. Polym. Sci. 2022, 132, 101579. [Google Scholar] [CrossRef]
- Diyana, Z.N.; Jumaidin, R.; Selamat, M.Z.; Ghazali, I.; Julmohammad, N.; Huda, N.; Ilyas, R.A. Physical Properties of Thermoplastic Starch Derived from Natural Resources and Its Blends: A Review. Polymers 2021, 13, 1396. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Bhoi, P.R. An overview of non-biodegradable bioplastics. J. Clean. Prod. 2021, 294, 126218. [Google Scholar] [CrossRef]
- Archer, E.; Torretti, M.; Madbouly, S. Biodegradable polycaprolactone (PCL) based polymer and composites. Phys. Sci. Rev. 2021, 8, 255–278. [Google Scholar] [CrossRef]
- Vatanpour, V.; Pasaoglu, M.E.; Barzegar, H.; Teber, O.O.; Kaya, R.; Bastug, M.; Khataee, A.; Koyuncu, I. Cellulose acetate in fabrication of polymeric membranes: A review. Chemosphere 2022, 295, 133914. [Google Scholar] [CrossRef]
- Unni, R.; Reshmy, R.; Madhavan, A.; Binod, P.; Pandey, A.; Awasthi, M.K.; Sindhu, R. Cellulose-Based Bioplastics. In Second and Third Generation Bioplastics; CRC Press: Raton, FL, USA, 2024; pp. 57–68. [Google Scholar]
- Bhasney, S.M.; Das, S.R.; Prasad, A.; Mahto, B.; Thangavel, S. Recycling of biopolymersin. In Biodegradable Waste Processing for Sustainable Developments; Arbind, P., Atanu, K.P., Eds.; CRC: Abingdon Oxon, UK, 2024; p. 272. [Google Scholar]
- Khan, A.; Naveed, M.; Rabnawaz, M. Melt-reprocessing of mixed polyurethane thermosets. Green Chem. 2021, 23, 4771–4779. [Google Scholar] [CrossRef]
- Maraveas, C. The Sustainability of Plastic Nets in Agriculture. Sustainability 2020, 12, 3625. [Google Scholar] [CrossRef]
- Tang, K.H.D.; Zhou, J. Ecotoxicity of Biodegradable Microplastics and Bio-Based Microplastics: A Review of in Vitro and in Vivo Studies. Environ. Manag. 2024, 75, 663–679. [Google Scholar] [CrossRef] [PubMed]
- Ghasemlou, M.; Daver, F.; Murdoch, B.J.; Ball, A.S.; Ivanova, E.P.; Adhikari, B. Biodegradation of novel bioplastics made of starch, polyhydroxyurethanes and cellulose nanocrystals in soil environment. Sci. Total Environ. 2022, 815, 152684. [Google Scholar] [CrossRef]
- Han, Y.; Teng, Y.; Wang, X.; Ren, W.; Wang, X.; Luo, Y.; Zhang, H.; Christie, P. Soil type driven change in microbial community affects poly (butylene adipate-co-terephthalate) degradation potential. Environ. Sci. Technol. 2021, 55, 4648–4657. [Google Scholar] [CrossRef]
- Malafeev, K.V.; Apicella, A.; Incarnato, L.; Scarfato, P. Understanding the Impact of Biodegradable Microplastics on Living Organisms Entering the Food Chain: A Review. Polymers 2023, 15, 3680. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, L.; Dombrowski, A.; Völker, C.; Wagner, M. Are Bioplastics and Plant-Based Materials Safer than Conventional Plastics? In Vitro Toxicity and Chemical Composition. Environ. Int. 2020, 145, 106066. [Google Scholar] [CrossRef] [PubMed]
- Mamin, E.A.; Pantyukhov, P.V.; Olkhov, A.A. Oxo-Additives for Polyolefin Degradation: Kinetics and Mechanism. Macromol 2023, 3, 477–506. [Google Scholar] [CrossRef]
- Goel, V.; Luthra, P.; Kapur, G.S.; Ramakumar, S.S.V. Biodegradable/Bio-plastics: Myths and Realities. J. Polym. Environ. 2021, 29, 3079–3104. [Google Scholar] [CrossRef]
- Efendy, M.; Amir, N.; Mahasin, M.Z.; Wahyu, F.M.; Aroua, M.K.; Gozan, M. Distribution and characteristics of microplastics in seawater, sediment, and crude salt from Madura Island, the largest solar salt production island in Indonesia. Reg. Stud. Mar Sci. 2024, 78, 103803. [Google Scholar] [CrossRef]
- Kabir, S.A.; Bhuiyan, M.A.; Zhang, G.; Pramanik, B.K. Microplastic distribution and ecological risks: Investigating road dust and stormwater runoff across land uses. Environ. Sci. Adv. 2024, 3, 62–75. [Google Scholar] [CrossRef]
- Mathew, J.T.; Inobeme, A.; Adetuyi, B.O.; Adetunji, C.O.; Popoola, O.A.; Olaitan, F.Y.; Akinbo, O.; Shahnawaz, M.; Oyewole, O.A.; Eniola, K.I.T.; et al. General Introduction of Microplastic: Uses, Types, and Generation. In Microplastic Pollution; Springer Nature: Singapore, 2024; pp. 3–21. [Google Scholar]
- Priyadarshini, S.; Jagatee, S.; Das, A.P. Synthetic Fabrics and Microfiber Pollution–An Assessment of Their Global Impact. In Renewable Energy Generation and Value Addition from Environmental Microfiber Pollution Through Advanced Greener Solution; Springer Nature: Cham, Switzerland, 2024; pp. 137–157. [Google Scholar]
- Dagwar, P.P.; Saole, P.; Jeevanasai, A.; Seetha Rama Raju, M.; Sharma, H.; Bahukhandi, K.D. Sources, Types, and Occurrences of Microplastics in Soil, Water, and Air. In Microplastics: Environmental Pollution and Degradation Process; Springer Nature: Singapore, 2024; pp. 23–56. [Google Scholar]
- Xu, Z.; Bai, X.; Ye, Z. Removal and generation of microplastics in wastewater treatment plants: A review. J. Clean. Prod. 2021, 291, 125982. [Google Scholar] [CrossRef]
- Pielichowski, K.; Njuguna, J.; Majka, T.M. Thermal Degradation of Polymeric Materials; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Oh, S.; Stache, E.E. Recent advances in oxidative degradation of plastics. Chem. Soc. Rev. 2024, 53, 7309–7327. [Google Scholar] [CrossRef]
- Mahmud, A.; Wasif, M.M.; Roy, H.; Mehnaz, F.; Ahmed, T.; Pervez, M.N.; Naddeo, V.; Islam, M.S. Aquatic Microplastic Pollution Control Strategies: Sustainable Degradation Techniques, Resource Recovery, and Recommendations for Bangladesh. Water 2022, 14, 3968. [Google Scholar] [CrossRef]
- Silva, R.R.A.; Marques, C.S.; Arruda, T.R.; Teixeira, S.C.; de Oliveira, T.V. Biodegradation of Polymers: Stages, Measurement, Standards and Prospects. Macromol 2023, 3, 371–399. [Google Scholar] [CrossRef]
- Kaabel, S.; Therien, J.P.; Dschênes, C.; Dustin, D.D.; Friščić, T.; Auclair, K. Enzymatic depolymerization of highly crystalline polyethylene terephthalate enabled in moist-solid reaction mixtures. Proc. Natl. Acad. Sci. USA 2021, 118, e2026452118. [Google Scholar] [CrossRef] [PubMed]
- Heris, Y.S. Bacterial Biodegradation of Synthetic Plastics: A Review. Bull. Natl. Res. Cent. 2024, 48, 87. [Google Scholar] [CrossRef]
- Rocha-Santos, T.; Duarte, A.C. Characterization and Analysis of Microplastics; Elsevier: Amsterdam, The Netherlands, 2017; Volume 75. [Google Scholar]
- Dimassi, S.N.; Hahladakis, J.N.; Yahia, M.N.D.; Ahmad, M.I.; Sayadi, S.; Al-Ghouti, M.A. Degradation-Fragmentation of Marine Plastic Waste and Their Environmental Implications: A Critical Review. Arab. J. Chem. 2022, 15, 104262. [Google Scholar] [CrossRef]
- Yu, Y.; Lin, S.; Sarkar, B.; Wang, J.; Liu, X.; Wang, D.; Ge, T.; Li, Y.; Zhu, B.; Yao, H. Mineralization and microbial utilization of poly (lactic acid) microplastic in soil. J. Hazard. Mater. 2024, 476, 135080. [Google Scholar] [CrossRef]
- Goudriaan, M.; Morales, V.H.; van der Meer, M.T.J.; Mets, A.; Ndhlovu, R.T.; van Heerwaarden, J.; Simon, S.; Heuer, V.B.; Hinrichs, K.-U.; Niemann, H. A Stable Isotope Assay with C-Labeled Polyethylene to Investigate Plastic Mineralization Mediated by Rhodococcus ruber. Mar. Pollut. Bull. 2023, 186, 114369. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J.; Huang, X.P.; Xiang, L.; Wang, Y.Z.; Li, Y.W.; Li, H.; Cai, Q.Y.; Mo, C.H.; Wong, M.H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef]
- Mbachu, O.; Jenkins, G.; Kaparaju, P.; Pratt, C. The rise of artificial soil carbon inputs: Reviewing microplastic pollution effects in the soil environment. Sci. Total Environ. 2021, 780, 146569. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Pant, G.; Pant, K.; Aloo, B.N.; Kumar, G.; Singh, H.B.; Tripathi, V. Microplastic Pollution in Terrestrial Ecosystems and Its Interaction with Other Soil Pollutants: A Potential Threat to Soil Ecosystem Sustainability. Resources 2023, 12, 67. [Google Scholar] [CrossRef]
- Maity, S.; Guchhait, R.; Sarkar, M.B.; Pramanick, K. Occurrence and distribution of micro/nanoplastics in soils and their phytotoxic effects: A review. Plant Cell Environ. 2022, 45, 1011–1028. [Google Scholar] [CrossRef]
- Azeem, I.; Adeel, M.; Ahmad, M.A.; Shakoor, N.; Jiangcuo, G.D.; Azeem, K.; Ishfaq, M.; Shakoor, A.; Ayaz, M.; Xu, M.; et al. Uptake and Accumulation of Nano/Microplastics in Plants: A Critical Review. Nanomaterials 2021, 11, 2935. [Google Scholar] [CrossRef]
- Rillig, M.C.; Leifheit, E.; Lehmann, J. Microplastic effects on carbon cycling processes in soils. PLoS Biol. 2021, 19, e3001130. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.; Das, S. Environmental impacts of microplastic and role of plastisphere microbes in the biodegradation and upcycling of microplastic. Chemosphere 2023, 334, 138928. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wei, Y.; Yang, C.; He, Z. Interaction of microplastics and soil pollutants in soil-plant systems. Environ. Pollut. 2022, 315, 120357. [Google Scholar] [CrossRef]
- Upadhyay, S.; Sharma, P.K.; Dogra, K.; Bhattacharya, P.; Kumar, M.; Tripathi, V.; Karmakar, R. Microplastics in freshwater: Unveiling sources, fate, and removal strategies. Groundw. Sustain. Dev. 2024, 26, 101185. [Google Scholar] [CrossRef]
- Zain, N.M.; Fauzi, N.; Subki, N.S.; Ghazali, Z.Z. Occurrence of microplastics in immature aquatic insects of Gua Musang tributaries in Kelantan. IOP Conf. Ser. Earth Environ. Sci. 2022, 1102, 012047. [Google Scholar] [CrossRef]
- Deylami, S.; Cárdenas-Escudero, J.; Ochoa, M.L.; Ayuso-Haro, J.; Galán-Madruga, D.; Ruiz, J.L.U.; Cáceres, J.O. Microplastics in Antarctic air: Revealing current findings. Antarct. Sci. 2025, 37, 104–116. [Google Scholar] [CrossRef]
- Hernández-Mesa, M.; Le Bizec, B.; Dervilly, G. Metabolomics in chemical risk analysis–A review. Anal. Chim. Acta 2021, 1154, 338298. [Google Scholar] [CrossRef]
- Bhaumik, S.; Chakraborty, P. Interactions between microplastics (MPs) and trace/toxic metals in marine environments: Implications and insights—A comprehensive review. Environ. Sci. Pollut. Res. 2024, 31, 59681–59699. [Google Scholar] [CrossRef]
- Trevisan, R.; Ranasinghe, P.; Jayasundara, N.; Di Giulio, R.T. Nanoplastics in Aquatic Environments: Impacts on Aquatic Species and Interactions with Environmental Factors and Pollutants. Toxics 2022, 10, 326. [Google Scholar] [CrossRef]
- Vujić, M.; Vasiljević, S.; Nikić, J.; Kordić, B.; Agbaba, J.; Tubić, A. Sorption Behavior of Organic Pollutants on Biodegradable and Nondegradable Microplastics: pH Effects. Appl. Sci. 2023, 13, 12835. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.; Wang, G.; Luan, Y.; Dai, W. Adsorption behavior of organic pollutants on microplastics. Ecotoxicol. Environ. Saf. 2021, 217, 112207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, L.; Han, X.; Shi, Y.; Huang, J.; Ding, B.; Zhang, Y.; Zhang, Z.; Shi, Y.; Li, F. Effects of ionic strength, cation type and pH on the cotransport of microplastics with PFOA in saturated porous media. Chemosphere 2025, 370, 143942. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Kim, W.R.; Park, E.G.; Lee, D.H.; Kim, J.-m.; Jeong, H.-s.; Roh, H.-Y.; Choi, Y.H.; Srivastava, V.; Mishra, A.; et al. Phenotypic and Gene Expression Alterations in Aquatic Organisms Exposed to Microplastics. Int. J. Mol. Sci. 2025, 26, 1080. [Google Scholar] [CrossRef]
- Eliso, M.C.; Billè, B.; Cappello, T.; Maisano, M. Polystyrene Micro- and Nanoplastics (PS MNPs): A Review of Recent Advances in the Use of -Omics in PS MNP Toxicity Studies on Aquatic Organisms. Fishes 2024, 9, 98. [Google Scholar] [CrossRef]
- Verma, A.; Chand, N.; Upadhyay, P.; Sharma, S.; Prajapati, S.K. Systematic review on microplastics as a threat to terrestrial and aquatic eco-environment. Sustain. Chem. One World 2024, 3, 100013. [Google Scholar] [CrossRef]
- Rakib, M.R.J.; Sarker, A.; Ram, K.; Uddin, M.G.; Walker, T.R.; Chowdhury, T.; Uddin, J.; Khandaker, M.U.; Rahman, M.M.; Idris, A.M. Microplastic Toxicity in Aquatic Organisms and Aquatic Ecosystems: A Review. Water Air Soil Pollut. 2023, 234, 52. [Google Scholar] [CrossRef]
- Jahanzaib, M.; Sharma, S.; Park, D. Microplastics comparison of indoor and outdoor air and ventilation rate effect in outskirts of the Seoul metropolitan city. Emerg. Contam. 2025, 11, 100408. [Google Scholar] [CrossRef]
- Belioka, M.-P.; Achilias, D.S. The Effect of Weathering Conditions in Combination with Natural Phenomena/Disasters on Microplastics’ Transport from Aquatic Environments to Agricultural Soils. Microplastics 2024, 3, 518–538. [Google Scholar] [CrossRef]
- Edo, C.; Fernández-Alba, A.R.; Vejsnæs, F.; van der Steen, J.J.M.; Fernández-Piñas, F.; Rosal, R. Honeybees as Active Samplers for Microplastics. Sci. Total Environ. 2021, 767, 144481. [Google Scholar] [CrossRef]
- Gaylarde, C.C.; de Almeida, M.P.; Neves, C.V.; Neto, J.A.B.; da Fonseca, E.M. The Importance of Biofilms on Microplastic Particles in Their Sinking Behavior and the Transfer of Invasive Organisms between Ecosystems. Micro 2023, 3, 320–337. [Google Scholar] [CrossRef]
- Qin, Y.; Tu, Y.; Chen, C.; Wang, F.; Yang, Y.; Hu, Y. Biofilms on microplastic surfaces and their effect on pollutant adsorption in the aquatic environment. J. Mater. Cycles Waste Manag. 2024, 26, 3303–3323. [Google Scholar] [CrossRef]
- Hou, T.; Sankar Sana, S.; Li, H.; Wang, X.; Wang, Q.; Boya, V.K.N.; Vadde, R.; Kumar, R.; Kumbhakar, D.V.; Zhang, Z.; et al. Development of Plant Protein Derived Tri Angular Shaped Nano Zinc Oxide Particles with Inherent Antibacterial and Neurotoxicity Properties. Pharmaceutics 2022, 14, 2155. [Google Scholar] [CrossRef] [PubMed]
- Kirstein, I.V.; Wichels, A.; Gullans, E.; Krohne, G.; Gerdts, G. The Plastisphere—Uncovering tightly attached plastic “specific” microorganisms. PLoS ONE 2019, 14, e0215859. [Google Scholar] [CrossRef] [PubMed]
- MacLean, J.; Mayanna, S.; Benning, L.G.; Horn, F.; Bartholomäus, A.; Wiesner, Y.; Wagner, D.; Liebner, S. The Terrestrial Plastisphere: Diversity and Polymer-Colonizing Potential of Plastic-Associated Microbial Communities in Soil. Microorganisms 2021, 9, 1876. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D. Terrestrial and Aquatic Plastisphere: Formation, Characteristics, and Influencing Factors. Sustainability 2024, 16, 2163. [Google Scholar] [CrossRef]
- Pfeiffer, T.Ž.; Maronić, D.Š.; Stević, F.; Balkić, A.G.; Bek, N.; Martinović, A.; Mandir, T.; Nikolašević, R.; Janjić, D. Plastisphere development in relation to the surrounding biotic communities. Environ. Pollut. 2022, 306, 119380. [Google Scholar] [CrossRef]
- Roncero-Ramos, B.; Muñoz-Martín, M.; Cantón, Y.; Chamizo, S.; Rodríguez-Caballero, E.; Mateo, P. Land degradation effects on composition of pioneering soil communities: An alternative successional sequence for dryland cyanobacterial biocrusts. Soil Biol. Biochem. 2020, 146, 107824. [Google Scholar] [CrossRef]
- Miralles, I.; Lázaro, R.; Sánchez-Marañón, M.; Soriano, M.; Ortega, R. Biocrust cover and successional stages influence soil bacterial composition and diversity in semiarid ecosystems. Sci. Total Environ. 2020, 709, 134654. [Google Scholar] [CrossRef]
- Brachner, A.; Fragouli, D.; Duarte, I.F.; Farias, P.M.A.; Dembski, S.; Ghosh, M.; Barisic, I.; Zdzieblo, D.; Vanoirbeek, J.; Schwabl, P.; et al. Assessment of human health risks posed by nano-and microplastics is currently not feasible. Int. J. Environ. Res. Public Health 2020, 17, 8832. [Google Scholar] [CrossRef]
- Santonicola, S.; Volgare, M.; Cocca, M.; Dorigato, G.; Giaccone, V.; Colavita, G. Impact of Fibrous Microplastic Pollution on Commercial Seafood and Consumer Health: A Review. Animals 2023, 13, 1736. [Google Scholar] [CrossRef]
- Miller, M.E.; Hamann, M.; Kroon, F.J. Bioaccumulation and Biomagnification of Microplastics in Marine Organisms: A Review and Meta-Analysis of Current Data. PLoS ONE 2020, 15, e0240792. [Google Scholar] [CrossRef] [PubMed]
- Parvin, F.; Nath, J.; Hannan, T.; Tareq, S.M. Proliferation of microplastics in commercial sea salts from the world longest sea beach of Bangladesh. Environ. Adv. 2022, 7, 100173. [Google Scholar] [CrossRef]
- Nirmala, K.; Rangasamy, G.; Ramya, M.; Shankar, V.U.; Rajesh, G. A critical review on recent research progress on microplastic pollutants in drinking water. Environ. Res. 2023, 222, 115312. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.; Laneri, S.; Di Lorenzo, R.; Neri, I.; Dini, I.; Ciampaglia, R.; Grumetto, L. Monitoring of Pollutants Content in Bottled and Tap Drinking Water in Italy. Molecules 2022, 27, 3990. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Hu, Z.; Li, H.; Zheng, H.; Yang, S.; Yu, W.; Tang, B.; Yang, H.; He, R.; Guo, W.; et al. Recent advances in microplastic removal from drinking water by coagulation: Removal mechanisms and influencing factors. Environ. Pollut. 2024, 349, 123863. [Google Scholar] [CrossRef]
- Prata, J.C.; Dias-Pereira, P. Microplastics in Terrestrial Domestic Animals and Human Health: Implications for Food Security and Food Safety and Their Role as Sentinels. Animals 2023, 13, 661. [Google Scholar] [CrossRef]
- Adjama, I.; Dave, H.; Balarabe, B.Y.; Masiyambiri, V.; Marycleopha, M. Microplastics in dairy products and human breast milk: Contamination status and greenness analysis of available analytical methods. J. Hazard. Mater. Lett. 2024, 5, 100120. [Google Scholar] [CrossRef]
- Alma, A.M.; de Groot, G.S.; Buteler, M. Microplastics Incorporated by Honeybees from Food Are Transferred to Honey, Wax and Larvae. Environ. Pollut. 2023, 320, 121078. [Google Scholar] [CrossRef]
- Schiano, M.E.; D’Auria, L.J.; D’Auria, R.; Seccia, S.; Rofrano, G.; Signorelli, D.; Sansone, D.; Caprio, E.; Albrizio, S.; Cocca, M. Microplastic contamination in the agri-food chain: The case of honeybees and beehive products. Sci. Total Environ. 2024, 948, 174698. [Google Scholar] [CrossRef]
- Zuccarello, P.; Ferrante, M.; Cristaldi, A.; Copat, C.; Grasso, A.; Sangregorio, D.; Fiore, M.; Oliveri Conti, G. Exposure to microplastics (<10 μm) associated to plastics bottles mineral water consumption: The first quantitative study. Water Res. 2019, 157, 365–371. [Google Scholar]
- Samandra, S.; Mescall, O.J.; Plaisted, K.; Symons, B.; Xie, S.; Ellis, A.V.; Clarke, B.O. Assessing exposure of the Australian population to microplastics through bottled water consumption. Sci. Total Environ. 2022, 837, 155329. [Google Scholar] [CrossRef]
- Weisser, J.; Beer, I.; Hufnagl, B.; Hofmann, T.; Lohninger, H.; Ivleva, N.P.; Glas, K. From the Well to the Bottle: Identifying Sources of Microplastics in Mineral Water. Water 2023, 12, 841. [Google Scholar] [CrossRef]
- Di Fiore, C.; Carriera, F.; Russo, M.V.; Avino, P. Are Microplastics a Macro Issue? A Review on the Sources of Contamination, Analytical Challenges and Impact on Human Health of Microplastics in Food. Foods 2023, 12, 3915. [Google Scholar] [CrossRef]
- Kannan, K.; Vimalkumar, K. A Review of Human Exposure to Microplastics and Insights into Microplastics as Obesogens. Front. Endocrinol. 2021, 12, 724989. [Google Scholar] [CrossRef] [PubMed]
- Katsara, K.; Viskadourakis, Z.; Alissandrakis, E.; Kountourakis, N.; Kenanakis, G.; Papadakis, V.M. Microplastics’ Detection in Honey: Development of Protocols in a Simulation. Appl. Sci. 2024, 14, 4720. [Google Scholar] [CrossRef]
- WHO. Issues New Guidance on Dietary Salt and Potassium. Available online: https://www.who.int/news/item/31-01-2013-who-issues-new-guidance-on-dietary-salt-and-potassium (accessed on 31 August 2021).
- Lee, P.S.; Jung, S.M. Quantitative Analysis of Microplastics Coagulation-Removal Process for Clean Sea Salt Production. Int. J. Environ. Sci. Technol. 2021, 19, 5205–5216. [Google Scholar] [CrossRef]
- Rainieri, S.; Barranco, A. Microplastics, a food safety issue? Trends Food Sci. Technol. 2019, 84, 55–57. [Google Scholar] [CrossRef]
- Ciaralli, L.; Valente, T.; Monfardini, E.; Libralato, G.; Manfra, L.; Berto, D.; Rampazzo, F.; Gioacchini, G.; Chemello, G.; Piermarini, R.; et al. Rose or Red, but Still under Threat: Comparing Microplastics Ingestion between Two Sympatric Marine Crustacean Species (Aristaeomorpha foliacea and Parapenaeus longirostris). Animals 2024, 14, 2212. [Google Scholar] [CrossRef]
- Jeong, E.; Lee, J.-Y.; Redwan, M. Animal Exposure to Microplastics and Health Effects: A Review. Emerg. Contam. 2024, 10, 100369. [Google Scholar] [CrossRef]
- Pironti, C.; Ricciardi, M.; Motta, O.; Miele, Y.; Proto, A.; Montano, L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. Toxics 2021, 9, 224. [Google Scholar] [CrossRef]
- Habib, R.Z.; Kindi, R.A.; Salem, F.A.; Kittaneh, W.F.; Poulose, V.; Iftikhar, S.H.; Mourad, A.-H.I.; Thiemann, T. Microplastic Contamination of Chicken Meat and Fish through Plastic Cutting Boards. Int. J. Environ. Res. Public Health 2022, 19, 13442. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type. Environ. Sci. Tech. 2017, 51, 4368–4376. [Google Scholar] [CrossRef] [PubMed]
- Enfrin, M.; Lee, J.; Gibert, Y.; Basheer, F.; Kong, L.; Dum’ee, L.F. Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces. J. Hazard. Mater. 2020, 384, 121393. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Qi, F.; Gibson, C.T.; Lei, Y.; Fang, C. Investigating kitchen sponge-derived microplastics and nanoplastics with Raman imaging and multivariate analysis. Sci. Total Environ. 2022, 824, 153963. [Google Scholar] [CrossRef]
- Yadav, H.; Khan, M.R.H.; Quadir, M.; Rusch, K.A.; Mondal, P.P.; Orr, M.; Xu, E.G.; Iskander, S.M. Cutting Boards: An Overlooked Source of Microplastics in Human Food? Environ. Sci. Tech. 2023, 57, 8225–8235. [Google Scholar] [CrossRef]
- Shi, Y.; Li, D.; Xiao, L.; Sheerin, E.D.; Mullarkey, D.; Yang, L.; Bai, X.; Shvets, I.V.; Boland, J.J.; Wang, J.J. The influence of drinking water constituents on the level of microplastic release from plastic kettles. J. Hazard. Mater. 2022, 425, 127997. [Google Scholar] [CrossRef]
- Muhib, M.I.; Rahman, M.M. Microplastics contamination in fish feeds: Characterization and potential exposure risk assessment for cultivated fish of Bangladesh. Heliyon 2023, 9, e19789. [Google Scholar] [CrossRef]
- Luo, Y.; Awoyemi, O.S.; Naidu, R.; Fang, C. Detection of microplastics and nanoplastics released from a kitchen blender using Raman imaging. J. Hazard. Mater. 2023, 453, 131403. [Google Scholar] [CrossRef]
- Blanco-Zubiaguirre, L.; Zabaleta, I.; Prieto, A.; Olivares, M.; Zuloaga, O.; Elizalde, M.P. Migration of photoinitiators, phthalates and plasticizers from paper and cardboard materials into different simulants and foodstuffs. Food Chem. 2021, 344, 128597. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, Q.; Chen, J.; Yan, J.; Li, X.; Guo, L. Quantification analysis of microplastics released from disposable polystyrene tableware with fluorescent polymer staining. Sci. Total Environ. 2023, 864, 161155. [Google Scholar] [CrossRef]
- Schiano, M.E.; Sodano, F.; Magli, E.; Corvino, A.; Fiorino, F.; Rimoli, M.G.; Seccia, S.; Albrizio, S. Quantitative Determination of BPA, BPB, BPF and BPS Levels in Canned Legumes from Italian Market. Food Chem. 2023, 416, 135642. [Google Scholar] [CrossRef] [PubMed]
- Thornton Hampton, L.M.; Bouwmeester, H.; Brander, S.M.; Coffin, S.; Cole, M.; Hermabessiere, L.; Mehinto, A.C.; Miller, E.; Rochman, C.M.; Weisberg, S.B. Research recommendations to better understand the potential health impacts of microplastics to humans and aquatic ecosystems. Microplastics Nanoplastics 2022, 2, 18. [Google Scholar] [CrossRef]
- Schiano, M.E.; Sodano, F.; Cassiano, C.; Fiorino, F.; Seccia, S.; Rimoli, M.G.; Albrizio, S. Quantitative Determination of Bisphenol A and Its Congeners in Plant-Based Beverages by Liquid Chromatography Coupled to Tandem Mass Spectrometry. Foods 2022, 11, 3853. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef]
- Dini, I. The Potential of Algae in the Nutricosmetic Sector. Molecules 2023, 28, 4032. [Google Scholar] [CrossRef]
- Dini, I. “Edible Beauty”: The Evolution of Environmentally Friendly Cosmetics and Packaging. Antioxidants 2024, 13, 742. [Google Scholar] [CrossRef]
- Oliveri Conti, G.; Rapisarda, P.; Ferrante, M. Relationship between climate change and environmental microplastics: A one health vision for the platysphere health. One Health Adv. 2024, 2, 17. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Ren, J. Analysis of Microplastics in Takeaway Food Containers in China Using FPA-FTIR Whole Filter Analysis. Molecules 2022, 27, 2646. [Google Scholar] [CrossRef]
- Hernandez, L.M.; Xu, E.G.; Larsson, H.C.E.; Tahara, R.; Maisuria, V.B.; Tufenkji, N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 2019, 53, 12300–12310. [Google Scholar] [CrossRef]
- Sonego, E.; Di Filippo, P.; Riccardi, C.; Pomata, D.; Bannò, A.; Simonetti, G.; Buiarelli, F. Occurrence and migration study of chemicals from baking paper and aluminium foil. Food Chem. 2023, 409, 135260. [Google Scholar] [CrossRef]
- Wang, X.; Xu, M.; Yang, A.; Wang, Y.; Hou, S.; Zheng, N.; Liang, D.; Hua, X.; Dong, D. Health risks of population exposure to phthalic acid esters through the use of plastic containers for takeaway food in China. Sci. Total Environ. 2021, 785, 147347. [Google Scholar] [CrossRef]
- Kedzierski, M.; Lechat, B.; Sire, O.; Le Maguer, G.; Le Tilly, V.; Bruzaud, S. Microplastic contamination of packaged meat: Occurrence and associated risks. Food Packag. Shelf Life 2020, 24, 100489. [Google Scholar] [CrossRef]
- Alak, G.; Köktürk, M.; Atamanalp, M. Evaluation of phthalate migration potential in vacuum-packed. Sci. Rep. 2024, 14, 7944. [Google Scholar] [CrossRef]
- Carwile, J.L.; Seshasayee, S.M.; Ahrens, K.A.; Hauser, R.; Chavarro, J.E.; Fleisch, A.F. Dietary correlates of urinary phthalate metabolite concentrations in 6–19 Year old children and adolescents. Environ. Res. 2022, 204, 112083. [Google Scholar] [CrossRef] [PubMed]
- Alimba, C.G.; Faggio, C.; Sivanesan, S.; Ogunkanmi, A.L.; Krishnamurthi, K. Micro (nano)-plastics in the environment and risk of carcinogenesis: Insight into possible mechanisms. J. Hazard. Mater. 2021, 416, 126143. [Google Scholar] [CrossRef]
- Lin, Z.; Jin, T.; Zou, T.; Xu, L.; Xi, B.; Xu, D.; He, J.; Xiong, L.; Tang, C.; Peng, J.; et al. Current Progress on Plastic/Microplastic Degradation: Fact Influences and Mechanism. Environ. Pollut. 2022, 304, 119159. [Google Scholar] [CrossRef]
- Wang, J.; Weng, X.; Liu, S.; Zhang, H.; Zhu, Q.; Fu, Q.; Wang, T.; Liao, C.; Jiang, G. Occurrence, Fate, and Reduction Measures of Phthalates in the Cooking Process: A Review. Environ. Health 2023, 1, 300–314. [Google Scholar] [CrossRef]
- Barcelo, D.; Pico, Y.; Alfarhan, A.H. Microplastics: Detection in human samples, cell line studies, and health impacts. Environ. Tox. Pharm. 2023, 101, 104204. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, M.; Feng, Z.; Wang, Z.; Lv, M.; Chang, J.; Chen, L.; Wang, C. Human Microplastics Exposure and Potential Health Risks to Target Organs by Different Routes: A Review. Curr. Pollut. Rep. 2023, 9, 468–485. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, Y.; Zhong, Q.; Ma, F.; Zhang, Y. The Impact of Microplastic Particles on Population Dynamics of Predator and Prey: Implication of the Lotka-Volterra Model. Sci. Rep. 2020, 10, 4500. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Ahmad, S.; Guo, X.L.; Ullah, S.; Nabi, G.; Wanghe, K. A review of the endocrine disrupting effects of micro and nano plastic and their associated chemicals in mammals. Front. Endocrinol. 2023, 13, 1084236. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Li, X.; Wang, S.; Tu, C.; Qiu, L.; Zhang, H.; Zhong, C.; Li, S.; Liu, Y.; Liu, J.; et al. New Evidence of Microplastics in the Lower Respiratory Tract: Inhalation through Smoking. Environ. Sci. Technol. 2023, 57, 8496–8505. [Google Scholar] [CrossRef]
- Vattanasit, U.; Kongpran, J.; Ikeda, A. Airborne microplastics: A narrative review of potential effects on the human respiratory system. Sci. Total Environ. 2023, 904, 166745. [Google Scholar] [CrossRef]
- Yarahmadi, A.; Heidari, S.; Sepahvand, P.; Afkhami, H.; Kheradjoo, H. Microplastics and environmental effects: Investigating the effects of microplastics on aquatic habitats and their impact on human health. Front. Public Health 2024, 12, 1411389. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, B.; Gu, C.; Shen, C.; Yin, S.; Aamir, M.; Li, F. Are we underestimating the sources of microplastic pollution in terrestrial environment? J. Hazard. Mater. 2020, 400, 123228. [Google Scholar] [CrossRef]
- Borriello, L.; Scivicco, M.; Cacciola, N.A.; Esposito, F.; Severino, L.; Cirillo, T. Microplastics, a Global Issue: Human Exposure through Environmental and Dietary Sources. Foods 2023, 12, 3396. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, W.; Chan, H.; Peng, J.; Zhu, P.; Li, J.; Jiang, X.; Zhang, Z.; Wang, Y.; Tan, Z.; et al. Polystyrene Microplastics Induce Size-Dependent Multi-Organ Damage in Mice: Insights into Gut Microbiota and Fecal Metabolites. J. Hazard. Mater. 2024, 461, 132503. [Google Scholar] [CrossRef]
- Yong, C.Q.Y.; Valiyaveettil, S.; Tang, B.L. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. Int. J. Environ. Res. Public Health 2020, 17, 1509. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Ośko, J.; Knez, E.; Grembecka, M. Microplastics and Oxidative Stress—Current Problems and Prospects. Antioxidants 2024, 13, 579. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Palić, D. Micro- and Nano-Plastics Activation of Oxidative and Inflammatory Adverse Outcome Pathways. Redox Biol. 2020, 37, 101620. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Liu, M.; Xiong, F.; Xu, K.; Huang, J.; Liu, J.; Wang, D.; Pu, Y. Polystyrene micro-and nanoplastics induce gastric toxicity through ROS mediated oxidative stress and P62/Keap1/Nrf2 pathway. Sci. Total Environ. 2024, 912, 169228. [Google Scholar] [CrossRef]
- Zhou, N.; Wang, Z.; Yang, L.; Zhou, W.; Qin, Z.; Zhang, H. Size-Dependent Toxicological Effects of Polystyrene Microplastics in the Shrimp Litopenaeus Vannamei Using a Histomorphology, Microbiome, and Metabolic Approach. Environ. Pollut. 2023, 316, 120635. [Google Scholar] [CrossRef]
- Das, A. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). Sci. Total Environ. 2023, 895, 165076. [Google Scholar] [CrossRef]
- Zhong, G.; Rao, G.; Tang, L.; Wu, S.; Tang, Z.; Huang, R.; Ruan, Z.; Hu, L. Combined effect of arsenic and polystyrene-nanoplastics at environmentally relevant concentrations in mice liver: Activation of apoptosis, pyroptosis and excessive autophagy. Chemosphere 2022, 300, 134566. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Fan, X.; Xu, T.; He, Y.; Chi, Q.; Li, Z.; Li, S. Polystyrene Nanoplastics Exacerbated Lipopolysaccharide-Induced Necroptosis and Inflammation via the ROS/MAPK Pathway in Mice Spleen. Environ. Toxicol. 2022, 37, 2552–2565. [Google Scholar] [CrossRef]
- Hayden, M.R. Overview and New Insights into the Metabolic Syndrome: Risk Factors and Emerging Variables in the Development of Type 2 Diabetes and Cerebrocardiovascular Disease. Medicina 2023, 59, 561. [Google Scholar] [CrossRef]
- Wang, S.; Han, Q.; Wei, Z.; Wang, Y.; Xie, J.; Chen, M. Polystyrene Microplastics Affect Learning and Memory in Mice by Inducing Oxidative Stress and Decreasing the Level of Acetylcholine. Food Chem. Toxicol. 2022, 162, 278–6915. [Google Scholar] [CrossRef]
- Yin, K.; Wang, D.; Zhao, H.; Wang, Y.; Zhang, Y.; Liu, Y.; Li, B.; Xing, M. Polystyrene Microplastics Up-Regulates Liver Glutamine and Glutamate Synthesis and Promotes Autophagy-Dependent Ferroptosis and Apoptosis in the Cerebellum through the Liver-Brain Axis. Environ. Pollut. 2022, 307, 119449. [Google Scholar] [CrossRef]
- Abad López, A.P.; Trilleras, J.; Arana, V.A.; García-Alzate, L.S.; Grande-Tovar, C.D. Atmospheric microplastics: Exposure, toxicity, and detrimental health effects. RSC Adv. 2023, 13, 7468–7489. [Google Scholar] [CrossRef] [PubMed]
- Olesiejuk, K.; Chałubiński, M. How does particulate air pollution affect barrier functions and inflammatory activity of lung vascular endothelium? Allergy 2023, 78, 629–638. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Y.; Bi, L.; Jin, L.; Peng, R. Understanding the Mechanistic Roles of Microplastics Combined with Heavy Metals in Regulating Ferroptosis: Adding New Paradigms Regarding the Links with Diseases. Environ. Res. 2024, 242, 117732. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Yang, K.; Cheng, X.; Guo, C.; Xing, X.; Sun, H.; Liu, D.; Liu, X.; Wang, D. Accumulation of Polystyrene Microplastics Induces Liver Fibrosis by Activating CGAS/STING Pathway. Environ. Pollut. 2022, 300, 118986. [Google Scholar] [CrossRef]
- Zhao, Y.; Bao, Z.; Wan, Z.; Fu, Z.; Jin, Y. Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish. Sci. Total Environ. 2020, 710, 136279. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.R.; Wright, S.J.; Gant, T.W. A critical review of microplastics toxicity and potential adverse outcome pathway in human gastrointestinal tract following oral exposure. Toxicol. Lett. 2023, 385, 51–60. [Google Scholar] [CrossRef]
- Chen, X.; Zhuang, J.; Chen, Q.; Xu, L.; Yue, X.; Qiao, D. Chronic exposure to polyvinyl chloride microplastics induces liver injury and gut microbiota dysbiosis based on the integration of liver transcriptome profiles and full-length 16S rRNA sequencing data. Sci. Total Environ. 2022, 839, 155984. [Google Scholar] [CrossRef]
- Ma, S.; Xiao, Y.; Zhang, X.; Xu, Y.; Zhu, K.; Zhang, K.; Li, X.; Zhou, H.; Chen, G.; Guo, X. Dietary exposure to polystyrene microplastics exacerbates liver damage in fulminant hepatic failure via ROS production and neutrophil extracellular trap formation. Sci. Total Environ. 2024, 907, 167403. [Google Scholar] [CrossRef]
- Zou, H.; Chen, Y.; Qu, H.; Sun, J.; Wang, T.; Ma, Y.; Yuan, Y.; Bian, J.; Liu, Z. Microplastics Exacerbate Cadmium-Induced Kidney Injury by Enhancing Oxidative Stress, Autophagy, Apoptosis, and Fibrosis. Int. J. Mol. Sci. 2022, 23, 14411. [Google Scholar] [CrossRef]
- Marcelino, R.C.; Cardoso, R.M.; Domingues, E.L.B.C.; Gonçalves, R.V.; Lima, G.D.A.; Novaes, R.D. The emerging risk of microplastics and nanoplastics on the microstructure and function of reproductive organs in mammals: A systematic review of preclinical evidence. Life Sci. 2022, 295, 120404. [Google Scholar] [CrossRef]
- Rubio-Armendáriz, C.; Alejandro-Vega, S.; Paz-Montelongo, S.; Gutiérrez-Fernández, Á.J.; Carrascosa-Iruzubieta, C.J.; Hardisson-de la Torre, A. Microplastics as Emerging Food Contaminants: A Challenge for Food Safety. Int. J. Environ. Res. Public Health 2022, 19, 1174. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D.; Li, R.; Li, Z.; Wang, D. Health Risk of Human Exposure to Microplastics: A Review. Environ. Chem. Lett. 2024, 22, 1155–1183. [Google Scholar] [CrossRef]
- Duncan, T.V.; Khan, S.A.; Patri, A.K.; Wiggins, S. Regulatory Science Perspective on the Analysis of Microplastics and Nanoplastics in Human Food. Anal. Chem. 2024, 96, 4343–4358. [Google Scholar] [CrossRef]
- Lao, W.; Dial, S.; Salmon, M.; Wong, C.S. Development and validation of an acid/alkaline digestion method for efficient microplastic extraction from wastewater treatment plant effluents: Sulfuric acid concentration and contact time do matter. Sci. Total Environ. 2024, 917, 170528. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Fischer, E.K. Various Digestion Protocols Within Microplastic Sample Processing—Evaluating the Resistance of Different Synthetic Polymers and the Efficiency of Biogenic Organic Matter Destruction. Front. Environ. Sci. 2020, 8, 572424. [Google Scholar] [CrossRef]
- Rani, M.; Ducoli, S.; Depero, L.E.; Prica, M.; Tubić, A.; Ademovic, Z.; Morrison, L.; Federici, S. A Complete Guide to Extraction Methods of Microplastics from Complex Environmental Matrices. Molecules 2023, 28, 5710. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Han, J.; Zhou, H.; Lau, Y.L.; An, W.; Wei, P.; Cheung, S.G.; Yang, Y.; Tam, N.F. Development of a Digestion Method for Determining Microplastic Pollution in Vegetal-Rich Clayey Mangrove Sediments. Sci. Total Environ. 2020, 707, 136030. [Google Scholar] [CrossRef]
- Schrank, I.; Möller, J.N.; Imhof, H.K.; Hauenstein, O.; Zielke, F.; Agarwal, S.; Löder, M.G.J.; Greiner, A.; Laforsch, C. Microplastic Sample Purification Methods-Assessing Detrimental Effects of Purification Procedures on Specific Plastic Types. Sci. Total Environ. 2022, 833, 154824. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.; Garrido-Amador, P.; Martínez, I.; Samper, M.D.; López-Martínez, J.; Gómez, M.; Packard, T.T. Novel methodology to isolate microplastics from vegetal-rich samples. Mar. Pollut. Bull. 2018, 129, 61–69. [Google Scholar] [CrossRef]
- Möller, J.N.; Löder, M.G.J.; Laforsch, C. Finding Microplastics in Soils: A Review of Analytical Methods. Environ. Sci. Technol. 2020, 54, 2078–2090. [Google Scholar] [CrossRef]
- Gulizia, A.M.; Brodie, E.; Daumuller, R.; Bloom, S.B.; Corbett, T.; Santana, M.M.F.; Motti, C.A.; Vamvounis, G.; Gulizia, A.M.; Brodie, E.; et al. Evaluating the Effect of Chemical Digestion Treatments on Polystyrene Microplastics: Recommended Updates to Chemical Digestion Protocols. Macromol. Chem. Phys. 2022, 223, 2100485. [Google Scholar] [CrossRef]
- Perez, M.; Parra, S.; Ferrada, C.; Bravo, M.; Perez, P.A.; Quiroz, W. Development of a new methodology for the determination of PET microplastics in sediment, based on microwave-assisted acid digestion. PLoS ONE 2024, 19, e0314520. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pettinato, M.; Campardelli, R.; De Marco, I.; Perego, P. High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. Appl. Sci. 2022, 12, 3642. [Google Scholar] [CrossRef]
- Tan, M.; Sun, Y.; Gui, J.; Wang, J.; Chen, X.; Wu, D. The efficiency of different digestion and separation methods for extracting microplastics in typical organic solid waste. Int. J. Environ. Res. 2022, 16, 16. [Google Scholar] [CrossRef]
- Özkaymak, G.; Aygün, A. Microplastic Detection and Analytical Methods in Wastewater Treatment Plants. In Pollutants and Recent Trends in Wastewater Treatment; Springer Nature: Cham, Switzerland, 2024; pp. 129–144. [Google Scholar]
- Barp, L.; Višnjevec, A.M.; Moret, S. Pressurized Liquid Extraction: A Powerful Tool to Implement Extraction and Purification of Food Contaminants. Foods 2023, 12, 2017. [Google Scholar] [CrossRef]
- Grbic, J.; Nguyen, B.; Guo, E.; You, J.B.; Sinton, D.; Rochman, C.M. Magnetic Extraction of Microplastics from Environmental Samples. Environ. Sci. Technol. Lett. 2019, 6, 68–72. [Google Scholar] [CrossRef]
- Zandieh, M.; Liu, J.W. Removal and Degradation of Microplastics Using the Magnetic and Nanozyme Activities of Bare Iron Oxide Nanoaggregates. Angew. Chem. Int. Ed. 2022, 61, e202212013. [Google Scholar] [CrossRef]
- Solanki, P.; Putatunda, C.; Kumar, A.; Bhatia, R.; Walia, A. Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech 2021, 11, 428. [Google Scholar] [CrossRef]
- Girão, A.V. SEM/EDS and Optical Microscopy Analysis of Microplastics. In Handbook of Microplastics in the Environment; Rocha-Santos, T., Costa, M., Mouneyrac, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–22. [Google Scholar]
- Andoh, C.N.; Attiogbe, F.; Ackerson, N.O.B.; Antwi, M.; Adu-Boahen, K. Fourier Transform Infrared Spectroscopy: An analytical technique for microplastic identification and quantification. Infrared Phys. Technol. 2023, 136, 105070. [Google Scholar] [CrossRef]
- Wu, P.; Wu, X.; Huang, Q.; Yu, Q.; Jin, H.; Zhu, M. Mass spectrometry-based multimodal approaches for the identification and quantification analysis of microplastics in food matrix. Front. Nutr. 2023, 10, 1163823. [Google Scholar] [CrossRef]
- Vitali, C.; Janssen, H.-G.; Ruggeri, F.S.; Nielen, M.W.F. Rapid single particle atmospheric solids analysis probe-mass spectrometry for multimodal analysis of microplastics. Anal. Chem. 2022, 95, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Birch, Q.T.; Potter, P.M.; Pinto, P.X.; Dionysiou, D.D.; Al-Abed, S.R. Isotope Ratio Mass Spectrometry and Spectroscopic Techniques for Microplastics Characterization. Talanta 2021, 224, 121743. [Google Scholar] [CrossRef] [PubMed]
- Laborda, F.; Trujillo, C.; Lobinski, R. Analysis of Microplastics in Consumer Products by Single Particle-Inductively Coupled Plasma Mass Spectrometry Using the Carbon-13 Isotope. Talanta 2021, 221, 121486. [Google Scholar] [CrossRef]
- Meyers, N.; Kopke, K.; Buhhalko, N.; Mattsson, K.; Janssen, C.R.; Everaert, G.; De Witte, B. Value for money: A cost-effectiveness analysis of microplastic analytics in seawater. Microplast. Nanoplast. 2024, 4, 4. [Google Scholar] [CrossRef]
- Matsueda, M.; Mattonai, M.; Iwai, I.; Watanabe, A.; Teramae, N.; Robberson, W.; Ohtani, H.; Kim, Y.M.; Watanabe, C. Preparation and Test of a Reference Mixture of Eleven Polymers with Deactivated Inorganic Diluent for Microplastics Analysis by Pyrolysis-GC–MS. J. Anal. Appl. Pyrolysis 2021, 154, 104993. [Google Scholar] [CrossRef]
- Adelugba, A.; Emenike, C. Comparative Review of Instrumental Techniques and Methods for the Analysis of Microplastics in Agricultural Matrices. Microplastics 2024, 3, 1–21. [Google Scholar] [CrossRef]
- Dong, H.; Wang, X.; Niu, X.; Zeng, J.; Zhou, Y.; Suona, Z.; Yuan, Y.; Chen, X. Overview of analytical methods for the determination of microplastics: Current status and trends. TrAC Trends Anal. Chem. 2023, 167, 117261. [Google Scholar] [CrossRef]
- Murti, Z.; Soedjati, D.; Barkah, A.; Rahardjo, P. Review of the circular economy of plastic waste in various countries and potential applications in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2022, 1098, 012014. [Google Scholar] [CrossRef]
- Bernat, K. Post-Consumer Plastic Waste Management: From Collection and Sortation to Mechanical Recycling. Energies 2023, 16, 3504. [Google Scholar] [CrossRef]
- Pauli, G. UpCycling: Wirtschaften nach dem Vorbild der Natur für Mehr Arbeitsplätze und eine Saubere Umwelt; Carl Bertelsmann: Gütersloh, Germany, 1999. [Google Scholar]
- Jehanno, C.; Alty, J.W.; Roosen, M.; De Meester, S.; Dove, A.P.; Chen, E.Y.-X.; Leibfarth, F.A.; Sardon, H. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022, 603, 803–814. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chu, H.Y.; Wang, C.C. Converting waste PET plastics to high value-added MOFs-based functional materials: A state of the art review. Coord. Chem. Rev. 2024, 518, 216106. [Google Scholar] [CrossRef]
- Hou, Q.; Zhen, M.; Qian, H.; Nie, Y.; Bai, X.; Xia, T.; Rehman, M.L.U.; Li, Q.; Ju, M. Upcycling and catalytic degradation of plastic wastes. Cell Rep. Phys. Sci. 2021, 2, 100514. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kumari, M.; Chauhan, P.; Ram Chaudhary, G. Upcycling of plastic waste into fluorescent carbon dots: An environmentally viable transformation to biocompatible C-dots with potential prospective in analytical applications. Waste Manag. 2021, 120, 675–686. [Google Scholar] [CrossRef]
- Kumari, M.; Chaudhary, G.R.; Chaudhary, S.; Umar, A. Transformation of solid plastic waste to activated carbon fibres for wastewater treatment. Chemosphere 2022, 294, 133692. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, H.; Wen, X.; Hu, G.; Liu, H.; Gong, Z.; Bi, S.; Wei, Q.; Niu, R.; Gong, J. Sustainable upcycling of waste polyethylene terephthalate into hierarchically porous carbon nanosheet for interfacial solar steam and hydroelectricity generation. Sustain. Mater. Technol. 2024, 41, e01022. [Google Scholar] [CrossRef]
- Ko, S.; Kwon, Y.J.; Lee, J.U.; Jeon, Y.-P. Preparation of synthetic graphite from waste PET plastic. J. Ind. Eng. Chem. 2020, 83, 449–458. [Google Scholar] [CrossRef]
- Min, J.; Wen, X.; Tang, T.; Chen, X.; Huo, K.; Gong, J.; Azadmanjiri, J.; He, C.; Mijowska, E. A general approach towards carbonization of plastic waste into a well-designed 3D porous carbon framework for super lithium-ion batteries. Chem. Commun. 2020, 56, 9142–9145. [Google Scholar] [CrossRef]
- Gharpure, A.; Kowalik, M.; Vander Wal, R.L.; van Duin, A.C. Upcycling Plastic Waste into Graphite Using Graphenic Additives for Energy Storage: Yield, Graphitic Quality, and Interaction Mechanisms via Experimentation and Molecular Dynamics. ACS Sustain. Chem. Eng. 2024, 12, 4565–4575. [Google Scholar] [CrossRef]
- Balu, R.; Dutta, N.K.; Roy Choudhury, N. Plastic Waste Upcycling: A Sustainable Solution for Waste Management, Product Development, and Circular Economy. Polymers 2022, 14, 4788. [Google Scholar] [CrossRef]
- Kim, J.G. Chemical recycling of poly(bisphenol A carbonate). Polym. Chem. 2020, 11, 4830–4849. [Google Scholar] [CrossRef]
- Rorrer, N.A.; Nicholson, S.; Carpenter, A.; Biddy, M.J.; Grundl, N.J.; Beckham, G.T. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 2019, 3, 1006–1027. [Google Scholar] [CrossRef]
- Williamson, J.B.; Na, C.G.; Johnson, R.R.; Daniel, W.F.M.; Alexanian, E.J.; Leibfarth, F.A. Chemo- and regioselective functionalization of isotactic polypropylene: A mechanistic and structure–property study. J. Am. Chem. Soc. 2019, 141, 12815–12823. [Google Scholar] [CrossRef] [PubMed]
- Erickson, E.D.; Tominac, P.A.; Ma, J.; Aguirre-Villegas, H.; Zavala, V.M. Evaluating the economic and environmental benefits of deploying a national-scale, thermo-chemical plastic waste upcycling infrastructure in the United States. Comput. Chem. Eng. 2024, 189, 108800. [Google Scholar] [CrossRef]
- Zhaoa, X.; Korey, M.; Li, K.; Copenhaver, K.; Tekinalp, H.; Celik, S.; Kalaitzidou, K.; Ruan, R.; Ragauskas, A.J.; Ozcan, S. Plastic waste upcycling toward a circular economy. Chem. Eng. J. 2021, 428, 131928. [Google Scholar] [CrossRef]
- Ding, Q.; Zhu, H. The Key to Solving Plastic Packaging Wastes: Design for Recycling and Recycling Technology. Polymers 2023, 15, 1485. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kwon, E.E.; Lam, S.S.; Chen, W.H.; Rinklebe, J.; Park, Y.K. Chemical recycling of plastic waste via thermocatalytic routes. J. Clean. Prod. 2021, 321, 128989. [Google Scholar] [CrossRef]
- Liu, X.H.; Xu, S.M.; Zhang, F.; Wang, X.L.; Wang, Y.Z. Chemical upcycling of polymeric materials. Acta Polym. Sin. 2022, 53, 1005–1022. [Google Scholar]
- Awoyera, P.O.; Adesina, A. Plastic wastes to construction products: Status, limitations and future perspective. Case Stud. Constr. Mater. 2020, 12, e00330. [Google Scholar] [CrossRef]
- Dogu, O.; Pelucchi, M.; Van de Vijver, R.; Van Steenberge, P.H.M.; D’hooge, D.R.; Cuoci, A.; Mehl, M.; Frassoldati, A.; Faravelli, T.; Van Geem, K.M. The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions. Prog. Energy Combust. Sci. 2021, 84, 100901. [Google Scholar] [CrossRef]
- Martín-González, D.; de la Fuente Tagarro, C.; De Lucas, A.; Bordel, S.; Santos-Beneit, F. Genetic Modifications in Bacteria for the Degradation of Synthetic Polymers: A Review. Int. J. Mol. Sci. 2024, 25, 5536. [Google Scholar] [CrossRef]
- Plastics Strategy. Available online: https://environment.ec.europa.eu/strategy/plastics-strategy_en#:~:text=The%20plastics%20strategy%20aims%20to,and%20production%20patterns%20for%20plastics (accessed on 10 March 2025).
- Regulation (EU) 2023/2055 of 25 September 2023 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Synthetic Polymer Microparticles. Official Journal of the European Union. 27 September 2023, p. L 238/67. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=oj:JOL_2023_238 (accessed on 27 September 2023).
- Koelmans, A.A.; Redondo-Hasselerharm, P.E.; Nor, N.H.M.; de Ruijter, V.N.; Mintenig, S.M.; Kooi, M. Risk assessment of microplastic particles. Nat. Rev. Mater. 2022, 7, 138–152. [Google Scholar] [CrossRef]
- REACH CE 1907/2006. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/PDF/?uri=CELEX:32006R1907R(01) (accessed on 30 December 2016).
- Consolidated Version of the Treaty on European Union. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:2bf140bf-a3f8-4ab2-b506-fd71826e6da6.0023.02/DOC_1&format=PDF (accessed on 26 October 2012).
- Precautionary Principle. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:12016E191 (accessed on 7 June 2016).
- ECHA. Available online: http://echa.europa.eu/regulations/reach/registration (accessed on 26 February 2016).
- Postle, M.; Holmes, P.; Camboni, M.; Footitt, A.; Tuffnell, N.; Blainey, M.; Stevens, G.; Pye, A. Review of REACH with Regard to the Registration Requirements on Polymers; Final Report. Part A: Polymers. Prepared for the European Commission, DG Environment; Risk & Policy Analysis Limited: Loddon, UK, 2012. [Google Scholar]
- Toni, A.D.; Saïdi, N.; Santos, L.R.; Mudgal, S. Technical Assistance Related to the Review of REACH with Regard to the Registration Requirements on Polymers; Final Report Prepared for the European Commission (DG ENV), in Collaboration with PIEP; European Commission–DG ENV: Brussels, Belgium, 2015. [Google Scholar]
- Ministry of Housing & Urban Affairs (MOHUA). Plastic Waste Management Issues, Solutions & Case Studies. Available online: https://sbmurban.org/storage/app/media/pdf/SBM%20Plastic%20Waste%20Book.pdf (accessed on 15 January 2021).
- Niaounakis, M. 10—Legislation and Regulatory Framework. In Recycling of Flexible Plastic Packaging; Niaounakis, M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2020; pp. 369–393. [Google Scholar]
- National Strategy to Prevent Plastic Pollution. Available online: https://www.epa.gov/circulareconomy/national-strategy-prevent-plastic-pollution (accessed on 1 November 2024).
- New Strategy for Current and Future USGS Microplastics Research. Available online: https://www.usgs.gov/news/featured-story/small-particles-big-problems-a-strategy-addressing-microplastics-science-gaps (accessed on 18 June 2024).
- ASEAN Regional Action Plan for Combating Marine Debris in the ASEAN Member States (2021–2025). Available online: https://asean.org/book/asean-regional-action-plan-for-combating-marine-debris-in-the-asean-member-states-2021-2025-2/ (accessed on 18 June 2024).
- ASEAN-Norway Sectoral Dialogue Partnership: Practical Cooperation Areas (2021–2025). Available online: https://policycommons.net/artifacts/1550631/asean-norway-sectoral-dialogue-partnership/2240456/ (accessed on 24 March 2021).
- ASEAN Plus Three Statement on Active Ageing. 2016. Available online: https://asean.Org/asean-plus-three-statement-on-active-ageing/ (accessed on 11 May 2020).
- Ng, C.H.; Mistoh, M.A.; Teo, S.H.; Galassi, A.; Ibrahim, A.; Sipaut, C.S.; Foo, J.; Seay, J.; Taufiq-Yap, Y.H.; Janaun, J. Plastic waste and microplastic issues in Southeast Asia. Front. Environ. Sci. 2023, 11, 1–15. [Google Scholar] [CrossRef]
- Omeyer, L.; Duncan, E.; Aisembom, K. Priorities to inform research on marine plastic pollution in Southeast Asia. Sci. Total Environ. 2022, 841, A1656704. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, J.P.; Mouneyrac, C.; Costa, M.; Duarte, A.C.; Rocha-Santos, T. The Role of Legislation, Regulatory Initiatives and Guidelines on the Control of Plastic Pollution. Front. Environ. Sci. 2020, 8, 104. [Google Scholar] [CrossRef]
- Liu, C.; Liu, C. Exploring Plastic-Management Policy in China: Status, Challenges and Policy Insights. Sustainability 2023, 15, 9087. [Google Scholar] [CrossRef]
- Kuan, S.H.; Low, F.S.; Chieng, S. Towards regional cooperation on sustainable plastic recycling: Comparative analysis of plastic waste recycling policies and legislations in Japan and Malaysia. Clean Technol. Environ. Policy 2022, 24, 761–777. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
Plastics | Short | Applications | Reference |
---|---|---|---|
Synthetic Plastics | |||
Polyethylene | PE | Food packaging, milk and water bottles, plastic bags, toys | [14] |
Polypropylene | PP | Fibers, sheets, strapping, films, injection molding | [15] |
Polyvinyl chloride | PVC | Packaging, healthcare applications, building construction, transportation, electrical application | [16] |
Polystyrene | PS | Packaging, kitchen appliances, toys, computers | [17] |
Polyethylene terephthalate | PET | Textiles, bottles, fibers, films | [18] |
Polyurethane | PU | Automotive industry (paint or polyurethane-based coatings), catheters, surgical drapes, hospital beddings, wound dressing, textiles | [19] |
Bioplastics | |||
Polyhydroxyalkanoates | PHA | Packaging, bioremediation, 3D printing, biomedical use | [20] |
Poly(lactic acid) | PLA | Packaging, agriculture 3D printing, biomedical use | [21] |
Poly(butylene adipate-co-terephthalate) | PBAT | Packaging, single-use catering items, textile industry, horti- and agriculture | [22] |
Poly(butylene succinate) | PBS | Packaging, disposable tableware, biomedical use, agriculture (release of fertilizers and pesticides), fishery | [23] |
Starch, thermoplastic starch | TPS | Injection-molded thermoformable flat films | [24] |
Bio-poly(ethene terephthalate) | Bio-PET | Textile fibers, fisheries, parachutes, horticulture, musical instrument strings, tennis rackets | [25] |
Bio-poly(propene) | Bio-PP | Electrical devices, concrete additives, packaging materials, textile fibers, automotive parts | [25] |
Poly(ε-caprolactone) | PCL | Biomedical use, packaging | [26] |
Cellulose acetate | CA | Eyeglasses frames, artificial silk, cigarette filters | [27] |
Process Type | Condition | MP Type | Performance % | Degradation Time | Reference |
---|---|---|---|---|---|
Photodegradation | UV light +TiO2 | polystyrene | 4.65 | 50 h | [43] |
Visible light + ZnO nanorods | polypropylene | 65 | 456 h | [43] | |
Au@Ni@TiO2 | polystyrene | 67 | 40 s | [43] | |
Thermal degradation | Gasification in supercritical water (800 °C) | polycarbonate | 50.8 | 60 min | [43] |
Biodegradation | Bacillus sp. YP1 in liquid carbon-free medium with 1 g of polymer | polyethylene terephthalate | 10.7 | 2 months | [43] |
Trichoderma harzianum in mineral salt medium | polyethylene | 40 | 3 months | [43] | |
Aspergillus tubingensis in mineral salt medium | polyester polyurethane | 90 | 0.75 months | [43] |
Method | Advantages | Disadvantages | References |
---|---|---|---|
Mechanical recycling | Rapid and cost-effective. | Requires initial sorting and reduces mechanical efficiency. It releases volatile organic compounds into the environment. It does not process heavily contaminated or multi-material plastics. | [201,216] |
Biodegradation of polymers | Eco-friendly. It operates under mild conditions. Product yield is low. | The yield of the product is low. | [201,217,218,219] |
Pyrolysis It was carried out in the absence of oxygen atmospheric pressure and 400–800 °C. | It can process mixed or contaminated plastics. Common polymers break down when exposed to elevated temperatures. | The resulting products are complex. | [201] |
Gasification It employs elevated temperatures compared to pyrolysis in an oxygen-rich environment. | It generates valuable gas mixtures, commonly known as syngas, which can be used to create fuel or incinerated directly for energy production. | It is quite sensitive to impurities. | [201] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dini, I.; Mancusi, A.; Seccia, S. From Harm to Hope: Tackling Microplastics’ Perils with Recycling Innovation. Molecules 2025, 30, 2535. https://doi.org/10.3390/molecules30122535
Dini I, Mancusi A, Seccia S. From Harm to Hope: Tackling Microplastics’ Perils with Recycling Innovation. Molecules. 2025; 30(12):2535. https://doi.org/10.3390/molecules30122535
Chicago/Turabian StyleDini, Irene, Andrea Mancusi, and Serenella Seccia. 2025. "From Harm to Hope: Tackling Microplastics’ Perils with Recycling Innovation" Molecules 30, no. 12: 2535. https://doi.org/10.3390/molecules30122535
APA StyleDini, I., Mancusi, A., & Seccia, S. (2025). From Harm to Hope: Tackling Microplastics’ Perils with Recycling Innovation. Molecules, 30(12), 2535. https://doi.org/10.3390/molecules30122535