Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = folate vitamers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2942 KiB  
Review
Folate Biofortification in Soybean: Challenges and Prospects
by Kwadwo Gyapong Agyenim-Boateng, Shengrui Zhang, Md. Jahidul Islam Shohag, Abdulwahab S. Shaibu, Jing Li, Bin Li and Junming Sun
Agronomy 2023, 13(1), 241; https://doi.org/10.3390/agronomy13010241 - 13 Jan 2023
Cited by 11 | Viewed by 4883
Abstract
Folate deficiency is a significant global health issue that affects millions of people and causes severe adverse effects. Major staple crops, which provide significant amounts of calories, often contain inadequate folate levels. Synthetic fortification has contributed to a reduction in low-folate populations, but [...] Read more.
Folate deficiency is a significant global health issue that affects millions of people and causes severe adverse effects. Major staple crops, which provide significant amounts of calories, often contain inadequate folate levels. Synthetic fortification has contributed to a reduction in low-folate populations, but a more sustainable solution is needed. Biofortification, or the breeding of crops to naturally increase their nutrient content, is a promising alternative. Soybean is a highly nutritious crop and a good candidate for folate biofortification. However, studies on folate have been limited due to the challenges in folate analysis. The development of sensitive and selective tools, reference materials, and studies on the stability of folate vitamers in crops has facilitated the development of improved folate determination methods. Additionally, the soybean folate biofortification program can be improved by leveraging previous studies in major cereals, common bean and pea, as well as combining conventional breeding with new genomics approaches. In this review, we discuss the folate content, composition, and analytical challenges in soybean and suggest possible frameworks and strategies for folate biofortification in soybean. We also conducted an in silico analysis of key folate biosynthesis enzymes in soybean. Full article
(This article belongs to the Special Issue Soybean Molecular Breeding for Yield, Quality and Resistance Traits)
Show Figures

Figure 1

14 pages, 1956 KiB  
Article
Folate Content and Yolk Color of Hen Eggs from Different Farming Systems
by Marta Czarnowska-Kujawska, Anna Draszanowska, Elżbieta Gujska, Joanna Klepacka and Marta Kasińska
Molecules 2021, 26(4), 1034; https://doi.org/10.3390/molecules26041034 - 16 Feb 2021
Cited by 11 | Viewed by 4648
Abstract
This study aimed to compare folate contents in hen eggs from four different farming systems, namely organic, free range, barn, and cage one. Folate retention during egg boiling was studied as well. The contents of individual folate vitamers were determined using the high-performance [...] Read more.
This study aimed to compare folate contents in hen eggs from four different farming systems, namely organic, free range, barn, and cage one. Folate retention during egg boiling was studied as well. The contents of individual folate vitamers were determined using the high-performance liquid chromatography method (HPLC), following trienzyme treatment. Folate content in eggs differed significantly (p < 0.05) due to the rearing system, with the highest mean content determined in the eggs from organic farming (113.8 µg/100 g). According to this study, one egg (60 g) may provide 40–86 µg of folates, which corresponds to 10–22% of the recommended daily intake for adults, 400 µg according to the Nutrition Standards for the Polish Population. The predominant folate form found in egg was 5-methyltetrahydrofolate, which showed considerably greater stability under boiling compared to 10-formylfolic acid present in a lower amount. In most eggs tested, the losses in total folate content did not exceed 15%. The color of yolk of the most folate-abundant organic eggs, had the highest value of lightness (L*) and the lowest value of redness (a*). This, however, does not correspond to consumer preferences of intense golden yolk color. Full article
(This article belongs to the Special Issue Physicochemical Properties of Food)
Show Figures

Graphical abstract

3 pages, 215 KiB  
Proceeding Paper
Folate in Red Rhapsody Strawberry—Content and Storage Stability
by Julius Rami, Caroline Dumler, Nadine Weber, Michael Rychlik, Gabriele Netzel, Hung Trieu Hong, Olivia Wright, Tim J. O’Hare and Michael E. Netzel
Proceedings 2021, 70(1), 47; https://doi.org/10.3390/foods_2020-07670 - 9 Nov 2020
Cited by 2 | Viewed by 1494
Abstract
Folate (Vitamin B9) is critical for a range of biological functions in adults and children, including DNA, protein and neurotransmitter synthesis. It is also essential for the healthy development of the fetus in early pregnancy and for the prevention of neural tube defects, [...] Read more.
Folate (Vitamin B9) is critical for a range of biological functions in adults and children, including DNA, protein and neurotransmitter synthesis. It is also essential for the healthy development of the fetus in early pregnancy and for the prevention of neural tube defects, such as spina bifida. Strawberries are considered a tasty and healthy fruit consumed all over the world and may potentially be an important dietary source of natural folates. However, the relative importance of strawberry as a dietary source will depend on the total folate concentration, vitamer profile, storage stability and bioavailability to humans. Red Rhapsody, an important commercial strawberry cultivar in Australia, was screened for its folate content and storage stability by stable isotope dilution assay (SIDA). Total folate content ranged from 90–118 μg/100 g fresh weight (fw), which was well above the value in the Australian Food Composition Database (39 μg/100 g fw). 5-Methyltetrahydrofolate, the biologically active form in humans, was the principal vitamer present. Furthermore, folate remained relatively stable during refrigerated (4 °C) storage (loss of only 28% after 14 days of storage). This information is relevant for consumers since the inherent perishability of strawberry fruit makes refrigerated storage common practice in Australian households. Full article
Show Figures

Figure 1

10 pages, 429 KiB  
Article
Effect of Different Cooking Methods on Folate Content in Chicken Liver
by Marta Czarnowska-Kujawska, Anna Draszanowska and Elżbieta Gujska
Foods 2020, 9(10), 1431; https://doi.org/10.3390/foods9101431 - 9 Oct 2020
Cited by 10 | Viewed by 5286
Abstract
Common liver sources in European countries include cow, chicken, duck, lamb and pig. Despite its decreasing popularity, liver is possibly one of the most nutrient-dense foods, being rich in high-quality protein and low in calories. In animals, the liver is the storage organ [...] Read more.
Common liver sources in European countries include cow, chicken, duck, lamb and pig. Despite its decreasing popularity, liver is possibly one of the most nutrient-dense foods, being rich in high-quality protein and low in calories. In animals, the liver is the storage organ for folate. In this study, the effect of different cooking methods on folate vitamers content in chicken liver was investigated. Three folate derivatives, 5-CH3-H4PteGlu, H4PteGlu and 5-HCO-H4PteGlu, were identified in the analyzed samples using high performance liquid chromatography (HPLC). The folate content in liver after sous-vide (60 °C/75 min) and steaming (100 °C/30 min) did not differ significantly (p ≤ 0.05) from raw liver folate content (781 µg/100 g). Even liver cooked in a combi oven or grilled (which resulted in significant folate losses) showed much higher folate content, 455–631 µg/100 g and 612–715 µg/100 g, respectively, than the most folate-abundant plant foods. These findings are important as they demonstrate that processed liver has the potential to improve the supply of folate and meet the recommended daily requirements, particularly when folate deficiency is common worldwide. Full article
(This article belongs to the Special Issue Processing and Preservation Technologies for Meat and Meat Products)
Show Figures

Graphical abstract

19 pages, 3635 KiB  
Article
Comprehensive Vitamer Profiling of Folate Mono- and Polyglutamates in Baker’s Yeast (Saccharomyces cerevisiae) as a Function of Different Sample Preparation Procedures
by Lena Gmelch, Daniela Wirtz, Michael Witting, Nadine Weber, Lisa Striegel, Philippe Schmitt-Kopplin and Michael Rychlik
Metabolites 2020, 10(8), 301; https://doi.org/10.3390/metabo10080301 - 23 Jul 2020
Cited by 14 | Viewed by 3316
Abstract
Folates are a group of B9 vitamins playing an important role in many metabolic processes such as methylation reactions, nucleotide synthesis or oxidation and reduction processes. However, humans are not able to synthesize folates de novo and thus rely on external sources [...] Read more.
Folates are a group of B9 vitamins playing an important role in many metabolic processes such as methylation reactions, nucleotide synthesis or oxidation and reduction processes. However, humans are not able to synthesize folates de novo and thus rely on external sources thereof. Baker’s yeast (Saccharomyces cerevisiae) has been shown to produce high amounts of this vitamin but extensive identification of its folate metabolism is still lacking. Therefore, we optimized and compared different sample preparation and purification procedures applying solid phase extraction (SPE). Strong anion exchange (SAX), C18 and hydrophilic–lipophilic-balanced (HLB) materials were tested for their applicability in future metabolomics studies. SAX turned out to be the preferred material for the quantitative purification of folates. Qualification of several folate vitamers was achieved by ultra-high pressure liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-Q-ToF-MS) measurements and quantification was performed by liquid chromatography tandem mass spectrometry (LC-MS/MS) applying stable isotope dilution assays (SIDAs). The oxidation product s-pyrazino-triazine (MeFox) was included into the SIDA method for total folate determination and validation. Applying the best protocol (SAX) in regard to folate recovery, we analyzed 32 different vitamers in different polyglutamate states up to nonaglutamates, of which we could further identify 26 vitamers based on tandem-MS (MS2) spectra. Total folate quantification revealed differences in formyl folate contents depending on the cartridge chemistry used for purification. These are supposedly a result of interconversion reactions occurring during sample preparation due to variation in pH adjustments for the different purification protocols. The occurrence of interconversion and oxidation reactions should be taken into consideration in sample preparation procedures for metabolomics analyses with a focus on folates. Full article
Show Figures

Graphical abstract

22 pages, 6177 KiB  
Article
Investigating the Potential of Conjugated Selenium Redox Folic Acid as a Treatment for Triple Negative Breast Cancer
by Soni Khandelwal, Mallory Boylan, Gilbert Kirsch, Julian E. Spallholz and Lauren S. Gollahon
Antioxidants 2020, 9(2), 138; https://doi.org/10.3390/antiox9020138 - 5 Feb 2020
Cited by 12 | Viewed by 3762
Abstract
Previous studies have demonstrated that redox selenium compounds arrest cancer cell viability in vitro through their pro-oxidative activity by generating superoxide (O2•−). Currently, there are no efficacious treatment options for women with Triple Negative Breast Cancer (TNBC). However, the association [...] Read more.
Previous studies have demonstrated that redox selenium compounds arrest cancer cell viability in vitro through their pro-oxidative activity by generating superoxide (O2•−). Currently, there are no efficacious treatment options for women with Triple Negative Breast Cancer (TNBC). However, the association between the over-expression of the Folate Receptor Alpha (FRA) in TNBC and other cancer cells, has led to the possibility that TNBCs might be treated by targeting the FRA with redox selenium covalent Folic Acid conjugates. The present study reports the synthesis of the redox active vitamer, Selenofolate, generating superoxide. Superoxide (O2•−) catalytic generation by Selenofolate was assessed by an in vitro chemiluminescence (CL) assay and by a Dihydroethidium (DHE) in vivo assay. Cytotoxicity of Selenofolate was assessed against the TNBC cell line MDA-MB-468 and an immortalized, mammary epithelial cell line, HME50-5E. Cytotoxicity of Selenofolate was compared to Folic Acid and sodium selenite, in a time and dose dependent manner. Selenofolate and selenite treatments resulted in greater inhibition of MDA-MB-468 cell proliferation than HME50-5E as evaluated by Trypan Blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) metabolic assay and Annexin V apoptosis assays. Folate receptor alpha (FRA) protein expression was assessed by Western blotting, with the experimental results showing that redox active Selenofolate and selenite, but not Folic Acid, was cytotoxic to MDA-MB-468 cells in vitro, suggesting a possible clinical option for treating TNBC and other cancers over-expressing FRA. Full article
(This article belongs to the Special Issue Redox-Active Selenium Compounds in Cancer)
Show Figures

Figure 1

1 pages, 133 KiB  
Abstract
The Inside and out of Folate in Strawberries and Avocados
by Michael E. Netzel, Caroline Dumler, Nadine Weber, Lisa Striegel, Michael Rychlik, Hung T. Hong and Tim O’Hare
Proceedings 2019, 36(1), 86; https://doi.org/10.3390/proceedings2019036086 - 2 Feb 2020
Viewed by 1805
Abstract
Folate, an important B-group vitamin, is considered a critical vitamin in many countries, with folate deficiency being associated with neural tube defects in newborns. Strawberries and avocados are considered a healthy, tasty snack by many consumers, and may potentially be an important dietary [...] Read more.
Folate, an important B-group vitamin, is considered a critical vitamin in many countries, with folate deficiency being associated with neural tube defects in newborns. Strawberries and avocados are considered a healthy, tasty snack by many consumers, and may potentially be an important dietary source of natural folates, depending on variety and growing environment. A selection of Australian-grown strawberry varieties and breeding lines, as well as commercial avocado cultivars, were screened for their folate content and vitamer profile by stable isotope dilution assay. Total folate content ranged from 69–170 μg/100 g fresh weight (fw) for strawberries and 76–196 μg/100 g fw for avocados, which was well above the values in the Australian Food Composition Database (39 μg/100 g fw for strawberries and 90 μg/100 g fw for avocados, respectively). Furthermore, folate concentration in the outer strawberry tissue was found to be 1.7-fold higher than the inner tissue of the fruit, whereas the inner avocado tissue had 1.4-fold higher folate than the outer green edible tissue. 5-Methyltetrahydrofolate, the biologically active form in humans, was the principal vitamer present. With these high folate concentrations, a punnet (250 g) of Australian-grown strawberries or 200 g of Australian-grown avocados would deliver the FSANZ recommended dietary intake (RDI) for folate (400 μg dietary folate equivalents/day/adult). Furthermore, the differences between outer and inner tissue could indicate that flatter, longer strawberries may have greater potential to accumulate folate than fruit with a more spherical shape, whereas more folate could be accumulated in a rounder-shaped avocado. Full article
(This article belongs to the Proceedings of The Third International Tropical Agriculture Conference (TROPAG 2019))
10 pages, 242 KiB  
Article
Promising Tropical Fruits High in Folates
by Lisa Striegel, Nadine Weber, Caroline Dumler, Soraya Chebib, Michael E. Netzel, Yasmina Sultanbawa and Michael Rychlik
Foods 2019, 8(9), 363; https://doi.org/10.3390/foods8090363 - 26 Aug 2019
Cited by 19 | Viewed by 4769
Abstract
As the popularity of tropical fruits has been increasing consistently during the last few decades, nutritional and health-related data about these fruits have been gaining more and more interest. Therefore, we analyzed 35 samples of tropical fruits and vegetables with respect to folate [...] Read more.
As the popularity of tropical fruits has been increasing consistently during the last few decades, nutritional and health-related data about these fruits have been gaining more and more interest. Therefore, we analyzed 35 samples of tropical fruits and vegetables with respect to folate content and vitamer distribution in this study. The fruits and vegetables were selected by their availability in German supermarkets and were grouped according to their plant family. All fruits and vegetables were lyophilized and analyzed by stable isotope dilution assay (SIDA) and liquid chromatography mass spectrometry (LC-MS/MS). The results vary from 7.82 ± 0.17 µg/100 g in the horned melon to 271 ± 3.64 µg/100 g in the yellow passion fruit. The yellow passion fruit is a good source for meeting the recommended requirements, as just 110 g are needed to cover the recommended daily intake of 300 µg folate for adults; however, longan fruits, okras, pete beans, papayas, mangos, jack fruits, and feijoas are also good sources of folates. In conclusion, the study gives a good overview of the total folate content in a broad range of tropical fruits and vegetables and shows that some of these fruits definitely have the potential to improve the supply of this critical vitamin. Full article
(This article belongs to the Special Issue Foods of Plant Origin)
Show Figures

Graphical abstract

18 pages, 2195 KiB  
Article
Spent Yeast from Brewing Processes: A Biodiverse Starting Material for Yeast Extract Production
by Friedrich Felix Jacob, Lisa Striegel, Michael Rychlik, Mathias Hutzler and Frank-Jürgen Methner
Fermentation 2019, 5(2), 51; https://doi.org/10.3390/fermentation5020051 - 24 Jun 2019
Cited by 51 | Viewed by 15771
Abstract
Spent yeast from beer manufacturing is a cost-effective and nutrient-rich starting material for the production of yeast extracts. In this study, it is shown how physiologically important ingredients in a yeast extract are influenced by the composition of the spent yeast from the [...] Read more.
Spent yeast from beer manufacturing is a cost-effective and nutrient-rich starting material for the production of yeast extracts. In this study, it is shown how physiologically important ingredients in a yeast extract are influenced by the composition of the spent yeast from the brewing process. In pilot fermentations, the time of cropping (primary fermentation, lagering) of the spent yeast and the original gravity (12 ˚P, 16 ˚P, 20 ˚P) of the fermentation medium was varied, and four alternative non-Saccharomyces yeast strains were compared with two commercial Saccharomyces yeast strains. In addition, spent yeast was contaminated with the beer spoiler Lactobacillus brevis. The general nutrient composition (total protein, fat, ash) was investigated as well as the proteinogenic amino acid spectrum, the various folate vitamers (5-CH3-H4folate, 5-CHO-H4folate, 10-CHO-PteGlu, H4folate, PteGlu) and the biological activity (reduction, antioxidative potential) of a mechanically (ultrasonic sonotrode) and an autolytically produced yeast extract. All the investigated ingredients from the yeast extract were influenced by the composition of the spent yeast from the brewing process. The biodiversity of the spent yeast from the brewing process therefore directly affects the content of physiologically valuable ingredients of a yeast extract and should be taken into consideration in industrial manufacturing processes. Full article
(This article belongs to the Special Issue Food Wastes: Feedstock for Value-Added Products)
Show Figures

Figure 1

15 pages, 2630 KiB  
Article
Characterization and Interrelations of One-Carbon Metabolites in Tissues, Erythrocytes, and Plasma in Mice with Dietary Induced Folate Deficiency
by Markus Kopp, Rosalie Morisset and Michael Rychlik
Nutrients 2017, 9(5), 462; https://doi.org/10.3390/nu9050462 - 5 May 2017
Cited by 14 | Viewed by 5974
Abstract
Studies on one-carbon metabolism for the assessment of folate deficiency have focused on either metabolites of folate metabolism or methionine cycle. To bridge the gap between deficiency markers in these pathways we designed a dietary induced folate deficiency study using male C57BL/6N mice. [...] Read more.
Studies on one-carbon metabolism for the assessment of folate deficiency have focused on either metabolites of folate metabolism or methionine cycle. To bridge the gap between deficiency markers in these pathways we designed a dietary induced folate deficiency study using male C57BL/6N mice. After weaning (3 weeks) mice were fed a defined control diet (1 week) before being fed a folate deficient diet (n = 6 mice) and the control diet (n = 6 mice) for 12 additional weeks. Thereafter, we determined total homocysteine in plasma and folate in erythrocytes as well as S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers in tissues including 5-methyltetrahydrofolate, 5-formyltetrahydrofolate, 5,10-methenyltetrahydrofolate, tetrahydrofolate, 10-formylfolic acid, and folic acid by means of stable isotope dilution assays coupled with liquid chromatography tandem mass spectrometry. In all organs, except heart (mainly 5-mehtyltetrahydrofolate), tetrahydrofolate constitutes the main vitamer. Moreover, in liver tetrahydrofolate was most abundant followed by 5-methyltetrahydrofolate (heart: tetrahydrofolate), 5-formyltetrahydrofolate, and 5,10-methenyltetrahydrofolate. Because of the significant decrease (p < 0.05) of folate status and S-adenosylmethionine/S-adenosylhomocysteine ratio accompanied with increasing S-adenosylhomocysteine (p < 0.05), hepatocytes are most susceptible to folate deficiency. To the best of our knowledge, we herein present the first method for simultaneous quantitation of eight metabolites for both folate and methionine cycle in one tissue sample, tHcy in plasma, and erythrocyte folate to shed light on physiological interrelations of one-carbon metabolism. Full article
Show Figures

Figure 1

Back to TopTop