Folate Biofortification in Soybean: Challenges and Prospects
Abstract
:1. Introduction
2. Soybean as a Vital Source to Address Malnutrition
3. Structure, Distribution, Content and Composition of Folate in Soybean
3.1. Structure and Distribution of Folate Vitamers in Soybean
3.2. The Folate Content and Composition of Soybean and Soy-Based Products
Sample | THF | 5MTHF | 5,10-MTHF | 10FFA | 5FTHF | DHF | FA | Total Folate | References |
---|---|---|---|---|---|---|---|---|---|
Soybean seed | 16.90 | 53.80 | 121.00 | 199.00–464.00 | [53,54,59,64,65] | ||||
Soybean seed | 20.00–75.00 * | 28.00–205.74 * | 5.00–28.60 | 11.00–71.06 | 160.00–590.56 | 2.90–29.44 | 28.50–34.40 * | 64.51–691.24 * | [34,51,52,60] |
Soybean seed (cooked) | 44.70–77.90 * | [60] | |||||||
Vegetable soybean | 12.55 * | 356.18 * | 10.17 * | 4.33 * | 75.07 * | 2.98 * | 1.00 * | 344.06–685.81 | [25] |
Soymilk | 34.00–276.00 | [8,64] | |||||||
Tofu | 15.00–127.30 | [8,58,64] | |||||||
Tempeh | 231.80 | 149.30–416.40 | [58,64] | ||||||
Soybean sprouts | 759.50–815.20 * | [51] |
4. Analytical Challenges in Folate Quantification
5. Folate Biosynthesis
In Silico Analysis of Major Folate Biosynthesis Enzymes in Soybean
6. Prospects for Biofortification of Folates in Legumes
7. Conclusions and Future Prospect
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delchier, N.; Reich, M.; Renard, C.M. Impact of cooking methods on folates, ascorbic acid and lutein in green beans (Phaseolus vulgaris) and spinach (Spinacea oleracea). LWT-Food Sci. Technol. 2012, 49, 197–201. [Google Scholar] [CrossRef]
- Stover, P.J. Physiology of folate and vitamin B 12 in health and disease. Nutr. Rev. 2004, 62, S3–S12. [Google Scholar] [CrossRef] [PubMed]
- Blancquaert, D.; De Steur, H.; Gellynck, X.; Van Der Straeten, D. Present and future of folate biofortification of crop plants. J. Exp. Bot. 2014, 65, 895–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisel, J. Folic acid and neural tube defects in pregnancy: A review. J. Perinat. Neonatal Nurs. 2003, 17, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Gorelova, V.; Ambach, L.; Rébeillé, F.; Stove, C.; Van Der Straeten, D. Folates in plants: Research advances and progress in crop biofortification. Front. Chem. 2017, 5, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Vitamin and Mineral Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Shahid, M.; Lian, T.; Wan, X.; Jiang, L.; Han, L.; Zhang, C.; Liang, Q. Folate monoglumate in cereal grains: Evaluation of extraction techniques and determination by LC-MS/MS. J. Food Compos. Anal. 2020, 91, 103510. [Google Scholar] [CrossRef]
- Yon, M.; Hyun, T.H. Folate content of foods commonly consumed in Korea measured after trienzyme extraction. Nutr. Res. 2003, 23, 735–746. [Google Scholar] [CrossRef]
- Hefni, M.; Öhrvik, V.; Tabekha, M.; Witthöft, C. Folate content in foods commonly consumed in Egypt. Food Chem. 2010, 121, 540–545. [Google Scholar] [CrossRef]
- Riaz, B.; Liang, Q.; Wan, X.; Wang, K.; Zhang, C.; Ye, X. Folate content analysis of wheat cultivars developed in the North China Plain. Food Chem. 2019, 289, 377–383. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, K.; Shariful, I.; Ye, X.; Zhang, C. Folate content and retention in wheat grains and wheat-based foods: Effects of storage, processing, and cooking methods. Food Chem. 2020, 333, 127459. [Google Scholar] [CrossRef]
- Dong, W.; Cheng, Z.; Wang, X.; Wang, B.; Zhang, H.; Su, N.; Yamamaro, C.; Lei, C.; Wang, J.; Wang, J. Determination of folate content in rice germplasm (Oryza sativa L.) using tri-enzyme extraction and microbiological assays. Int. J. Food Sci. Nutr. 2011, 62, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, K.; Sivakumar, P.; Saradhadevi, M. Identification and determination of naturally occurring folates in grains of rice (Oryza sativa L.) by UPLC-MS/MS analysis. Nat. Prod. Res. 2018, 32, 1733–1737. [Google Scholar] [CrossRef] [PubMed]
- Strobbe, S.; Van Der Straeten, D. Toward eradication of B-vitamin deficiencies: Considerations for crop biofortification. Front. Plant Sci. 2018, 9, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanzo, J.; Hawkes, C.; Udomkesmalee, E.; Afshin, A.; Allemandi, L.; Assery, O.; Baker, P.; Battersby, J.; Bhutta, Z.; Chen, K. 2018 Global Nutrition Report; Global Nutrition Report: London, UK, 2019. [Google Scholar]
- Zhu, Y.; Thakur, K.; Feng, J.; Cai, J.; Zhang, J.; Hu, F.; Wei, Z. B-vitamin enriched fermented soymilk: A novel strategy for soy-based functional foods development. Trends Food Sci. Technol. 2020, 105, 43–55. [Google Scholar] [CrossRef]
- Van Der Straeten, D.; Bhullar, N.K.; De Steur, H.; Gruissem, W.; MacKenzie, D.; Pfeiffer, W.; Qaim, M.; Slamet-Loedin, I.; Strobbe, S.; Tohme, J. Multiplying the efficiency and impact of biofortification through metabolic engineering. Nat. Commun. 2020, 11, 5203. [Google Scholar] [CrossRef] [PubMed]
- Tidke, S.A.; Ramakrishna, D.; Kiran, S.; Kosturkova, G.; Ravishankar, G. Nutraceutical potential of soybean: Review. Asian J. Clin. Nutr. 2015, 7, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, B.; Han, F.; Yan, S.; Wang, L.; Sun, J. Evaluation of the chemical quality traits of soybean seeds, as related to sensory attributes of soymilk. Food Chem. 2015, 173, 694–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Pandey, G. Biofortification of pulses and legumes to enhance nutrition. Heliyon 2020, 6, e03682. [Google Scholar] [CrossRef]
- Wang, J.; Mao, L.; Zeng, Z.; Yu, X.; Lian, J.; Feng, J.; Yang, W.; An, J.; Wu, H.; Zhang, M. Genetic mapping high protein content QTL from soybean ‘Nanxiadou 25′and candidate gene analysis. BMC Plant Biol. 2021, 21, 388. [Google Scholar] [CrossRef]
- O’Keefe, S.F.; Bianchi, L.; Sharman, J. Soybean nutrition. SM J. Nutr. Metab. 2015, 1, 1006–1014. [Google Scholar]
- Abdelghany, A.M.; Zhang, S.; Azam, M.; Shaibu, A.S.; Feng, Y.; Li, Y.; Tian, Y.; Hong, H.; Li, B.; Sun, J. Profiling of seed fatty acid composition in 1025 Chinese soybean accessions from diverse ecoregions. Crop J. 2020, 8, 635–644. [Google Scholar] [CrossRef]
- Rizzo, G.; Baroni, L. Soy, soy foods and their role in vegetarian diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agyenim-Boateng, K.G.; Zhang, S.; Zhang, S.; Aimal, N.; Shaibu, A.S.; Abdelghany, A.M.; Jie, Q.; Azam, M.; Ma, C.; Feng, Y.; et al. The nutritional composition of the vegetable soybean (Maodou) and its potential in combatting malnutrition. Front. Nutr. 2023, 9, 1034115. [Google Scholar] [CrossRef]
- Yao, Y.; You, Q.; Duan, G.; Ren, J.; Chu, S.; Zhao, J.; Li, X.; Zhou, X.; Jiao, Y. Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean. BMC Plant Biol. 2020, 20, 51. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zhang, S.; Azam, M.; Shaibu, A.S.; Abdelghany, A.M.; Feng, Y.; Huai, Y.; Feng, H.; Liu, Y.; Ma, C.; et al. Profiling seed soluble sugar compositions in 1164 Chinese soybean accessions from major growing ecoregions. Crop J. 2022, 10, 1825–1831. [Google Scholar] [CrossRef]
- Vedrina-Dragojević, I.; Šebčić, B.; Balint, L. Variability of thiamine, riboflavin and niacin content in soybean seed. Food/Nahrung 1989, 33, 1017–1019. [Google Scholar] [CrossRef]
- Kim, G.; Lee, J.; Ahn, K.; Hwang, Y.; Choi, Y.; Chun, J.; Chang, W.; Choung, M. Differential responses of B vitamins in black soybean seeds. Food Chem. 2014, 153, 101–108. [Google Scholar] [CrossRef]
- Feng, X.; Yang, S.; Tang, K.; Zhang, Y.; Leng, J.; Ma, J.; Wang, Q.; Feng, X. GmPGL1, a thiamine thiazole synthase, is required for the biosynthesis of thiamine in soybean. Front. Plant Sci. 2019, 10, 1546. [Google Scholar] [CrossRef]
- (USDA), U.S Department of Agriculture. Food Composition Databases. Available online: https://ndb.nal.usda.gov/ndb/search/list (accessed on 14 January 2022).
- Ghosh, S.; Zhang, S.; Azam, M.; Qi, J.; Abdelghany, A.M.; Shaibu, A.S.; Gebregziabher, B.S.; Feng, Y.; Huai, Y.; Htway, H.T.P.; et al. Seed tocopherol assessment and geographical distribution of 1151 Chinese soybean accessions from diverse ecoregions. J. Food Compos. Anal. 2021, 100, 103932. [Google Scholar] [CrossRef]
- Tavva, V.S.; Kim, Y.; Kagan, I.A.; Dinkins, R.D.; Kim, K.; Collins, G.B. Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Rep. 2007, 26, 61–70. [Google Scholar] [CrossRef]
- Agyenim-Boateng, K.G.; Zhang, S.; Islam, M.S.; Gu, Y.; Li, B.; Azam, M.; Abdelghany, A.M.; Qi, J.; Ghosh, S.; Shaibu, A.S.; et al. Profiling of naturally occurring folates in a diverse soybean germplasm by HPLC-MS/MS. Food Chem. 2022, 132520. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.; Zhang, S.; Qi, J.; Abdelghany, A.M.; Shaibu, A.S.; Ghosh, S.; Feng, Y.; Huai, Y.; Gebregziabher, B.S.; Li, J. Profiling and associations of seed nutritional characteristics in Chinese and USA soybean cultivars. J. Food Compos. Anal. 2021, 98, 103803. [Google Scholar] [CrossRef]
- Azam, M.; Zhang, S.; Abdelghany, A.M.; Shaibu, A.S.; Feng, Y.; Li, Y.; Tian, Y.; Hong, H.; Li, B.; Sun, J. Seed isoflavone profiling of 1168 soybean accessions from major growing ecoregions in China. Food Res. Int. 2020, 130, 108957. [Google Scholar] [CrossRef] [PubMed]
- Gebregziabher, B.S.; Zhang, S.; Azam, M.; Qi, J.; Agyenim-Boateng, K.G.; Feng, Y.; Liu, Y.; Li, J.; Li, B.; Sun, J. Natural variation and geographical distribution of seed carotenoids and chlorophylls in 1167 Chinese soybean accessions. J. Integr. Agric. 2022, in press. [CrossRef]
- Barakat, H.; Reim, V.; Rohn, S. Stability of saponins from chickpea, soy and faba beans in vegetarian, broccoli-based bars subjected to different cooking techniques. Food Res. Int. 2015, 76, 142–149. [Google Scholar] [CrossRef]
- Serventi, L.; Chitchumroonchokchai, C.; Riedl, K.M.; Kerem, Z.; Berhow, M.A.; Vodovotz, Y.; Schwartz, S.J.; Failla, M.L. Saponins from soy and chickpea: Stability during beadmaking and in vitro bioaccessibility. J. Agric. Food Chem. 2013, 61, 6703–6710. [Google Scholar] [CrossRef] [PubMed]
- Pires, L.N.; Brandão, G.C.; Teixeira, L.S.G. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry. Food Chem. 2017, 225, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.M.; Ruggio, D.M.; Toivo, J.I.; Swank, M.A.; Simpkins, A.H. Free and esterified sterol composition of edible oils and fats. J. Food Compos. Anal. 2002, 15, 123–142. [Google Scholar] [CrossRef]
- Jha, A.B.; Ashokkumar, K.; Diapari, M.; Ambrose, S.J.; Zhang, H.; Tar’an, B.; Bett, K.E.; Vandenberg, A.; Warkentin, T.D.; Purves, R.W. Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. J. Food Compos. Anal. 2015, 42, 134–140. [Google Scholar] [CrossRef]
- Zhang, H.; Jha, A.B.; Warkentin, T.D.; Vandenberg, A.; Purves, R.W. Folate stability and method optimization for folate extraction from seeds of pulse crops using LC-SRM MS. J. Food Compos. Anal. 2018, 71, 44–55. [Google Scholar] [CrossRef]
- Martin, C.J.; Torkamaneh, D.; Arif, M.; Pauls, K.P. Genome-wide association study of seed folate content in common bean. Front. Plant Sci. 2021, 12, 696423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jha, A.B.; De Silva, D.; Purves, R.W.; Warkentin, T.D.; Vandenberg, A. Improved folate monoglutamate extraction and application to folate quantification from wild lentil seeds by ultra-performance liquid chromatography-selective reaction monitoring mass spectrometry. J. Chromatogr. B 2019, 1121, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.B.; Gali, K.K.; Zhang, H.; Purves, R.W.; Tar’an, B.; Vandenberg, A.; Warkentin, T.D. Folate profile diversity and associated SNPs using genome wide association study in pea. Euphytica 2020, 216, 18. [Google Scholar] [CrossRef]
- Kota, L. Total Folate in Peanuts and Peanut Products; University of Georgia: Athens, GA, USA, 2008. [Google Scholar]
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016, 53, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyaya, P.; Tyagi, K.; Sarma, S.; Tamboli, V.; Sreelakshmi, Y.; Sharma, R. Natural variation in folate levels among tomato (Solanum lycopersicum) accessions. Food Chem. 2017, 217, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Rébeillé, F.; Ravanel, S.; Jabrin, S.; Douce, R.; Storozhenko, S.; Van Der Straeten, D. Folates in plants: Biosynthesis, distribution, and enhancement. Physiol. Plant. 2006, 126, 330–342. [Google Scholar] [CrossRef]
- Shohag, M.; Wei, Y.; Yang, X. Changes of folate and other potential health-promoting phytochemicals in legume seeds as affected by germination. J. Agric. Food Chem. 2012, 60, 9137–9143. [Google Scholar] [CrossRef]
- Rychlik, M.; Englert, K.; Kapfer, S.; Kirchhoff, E. Folate contents of legumes determined by optimized enzyme treatment and stable isotope dilution assays. J. Food Compos. Anal. 2007, 20, 411–419. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, E.; Watson, J.; Stokstad, E. Studies of folic acid compounds in nature. IV. Folic acid compounds in soybeans and cow milk. Can. J. Biochem. 1975, 53, 338–343. [Google Scholar] [CrossRef]
- Ginting, E.; Arcot, J. High-performance liquid chromatographic determination of naturally occurring folates during tempe preparation. J. Agric. Food Chem. 2004, 52, 7752–7758. [Google Scholar] [CrossRef]
- Xiang, N.; Hu, J.; Wen, T.; Brennan, M.A.; Brennan, C.S.; Guo, X. Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn (Zea mays L.) seedlings. J. Sci. Food Agric. 2020, 100, 1694–1701. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, S.; Yamashita, T. A manipulation of air temperature and light quality and intensity can maximize growth and folate biosynthesis in leaf lettuce. Environ. Control. Biol. 2019, 57, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Diaz de la Garza, R.; Ramos-Parra, P.A.; Vidal-Limon, H.R. Biofortification of crops with folates: From plant metabolism to able. In Nutritional Quality Improvement in Plants; Springer: Berlin/Heidelberg, Germany, 2019; pp. 137–175. [Google Scholar]
- Mo, H.; Kariluoto, S.; Piironen, V.; Zhu, Y.; Sanders, M.G.; Vincken, J.; Wolkers-Rooijackers, J.; Nout, M.R. Effect of soybean processing on content and bioaccessibility of folate, vitamin B12 and isoflavones in tofu and tempe. Food Chem. 2013, 141, 2418–2425. [Google Scholar] [CrossRef] [PubMed]
- Arcot, J.; Wong, S.; Shrestha, A.K. Comparison of folate losses in soybean during the preparation of tempeh and soymilk. J. Sci. Food Agric. 2002, 82, 1365–1368. [Google Scholar] [CrossRef]
- Hoppner, K.; Lampi, B. Folate retention in dried legumes after different methods of meal preparation. Food Res. Int. 1993, 26, 45–48. [Google Scholar] [CrossRef]
- Guo, S.; Ge, Y.; Jom, K.N. A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chem. Cent. J. 2017, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Hefni, M.; Witthöft, C.M. Folate content in processed legume foods commonly consumed in Egypt. LWT-Food Sci. Technol. 2014, 57, 337–343. [Google Scholar] [CrossRef]
- Sallam, S.M.; Shawky, E.; Sohafy, S. Determination of the effect of germination on the folate content of the seeds of some legumes using HPTLC-mass spectrometry-multivariate image analysis. Food Chem. 2021, 362, 130206. [Google Scholar] [CrossRef]
- Ginting, E.; Arcot, J.; Chox, J.M. Determination of folate retention during tofu preparation using trienzyme treatment and microbiological assay. Indones. J. Agric. Sci. 2013, 4, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Puwastien, P.; Pinprapai, N.; Judprasong, K.; Tamura, T. International inter-laboratory analyses of food folate. J. Food Compos. Anal. 2005, 18, 387–397. [Google Scholar] [CrossRef]
- Mönch, S.; Rychlik, M. Improved folate extraction and tracing deconjugation efficiency by dual label isotope dilution assays in foods. J. Agric. Food Chem. 2012, 60, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Ložnjak, P.; García-Salinas, C.; de la Garza, R.I.D.; Bysted, A.; Jakobsen, J. The use of a plant enzyme for rapid and sensitive analysis of naturally-occurring folates in food by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2019, 1594, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Czarnowska-Kujawska, M.; Gujska, E.; Michalak, J. Testing of different extraction procedures for folate HPLC determination in fresh fruits and vegetables. J. Food Compos. Anal. 2017, 57, 64–72. [Google Scholar] [CrossRef]
- Soongsongkiat, M.; Puwastien, P.; Jittinandana, S.; Dee-Uam, A.; Sungpuag, P. Testing of folate conjugase from chicken pancreas vs. commercial enzyme and studying the effect of cooking on folate retention in Thai foods. J. Food Compos. Anal. 2010, 23, 681–688. [Google Scholar] [CrossRef]
- Ramos-Parra, P.A.; Urrea-López, R.; de la Garza, R.I.D. Folate analysis in complex food matrices: Use of a recombinant Arabidopsis γ-glutamyl hydrolase for folate deglutamylation. Food Res. Int. 2013, 54, 177–185. [Google Scholar] [CrossRef]
- Ložnjak, P.; Striegel, L.; De la Garza, R.I.D.; Rychlik, M.; Jakobsen, J. Quantification of folate in food using deconjugase of plant origin combined with LC-MS/MS: A method comparison of a large and diverse sample set. Food Chem. 2020, 305, 125450. [Google Scholar] [CrossRef]
- Shohag, M.; Yang, Q.; Wei, Y.; Zhang, J.; Khan, F.Z.; Rychlik, M.; He, Z.; Yang, X. A rapid method for sensitive profiling of folates from plant leaf by ultra-performance liquid chromatography coupled to tandem quadrupole mass spectrometer. J. Chromatogr. B 2017, 1040, 169–179. [Google Scholar] [CrossRef]
- Finglas, P.M.; Wigertz, K.; Vahteristo, L.; Witthft, C.; Froidmont-Grtz, I.D. Standardisation of HPLC techniques for the determination of naturally-occurring folates in food. Food Chem. 1999, 64, 245–255. [Google Scholar] [CrossRef]
- Hanson, A.D.; Gregory, J.F., III. Folate biosynthesis, turnover, and transport in plants. Annu. Rev. Plant Biol. 2011, 62, 105–125. [Google Scholar] [CrossRef]
- Bekaert, S.; Storozhenko, S.; Mehrshahi, P.; Bennett, M.J.; Lambert, W.; Gregory, J.F., III; Schubert, K.; Hugenholtz, J.; Van Der Straeten, D.; Hanson, A.D. Folate biofortification in food plants. Trends Plant Sci. 2008, 13, 28–35. [Google Scholar] [CrossRef]
- Klaus, S.M.; Wegkamp, A.; Sybesma, W.; Hugenholtz, J.; Gregory, J.F.; Hanson, A.D. A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants. J. Biol. Chem. 2005, 280, 5274–5280. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2022, 51, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K. Studies on Enhancement of Carotenoids, Folic Acid, Iron and Their Bioavailability in Moringa oleifera and In Vitro Propagation; University of Mysore: Mysuru, India, 2013. [Google Scholar]
- Goyer, A.; Illarionova, V.; Roje, S.; Fischer, M.; Bacher, A.; Hanson, A.D. Folate biosynthesis in higher plants. cDNA cloning, heterologous expression, and characterization of dihydroneopterin aldolases. Plant Physiol. 2004, 135, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bognar, A.L.; Osborne, C.; Shane, B.; Singer, S.C.; Ferone, R. Folylpoly-gamma-glutamate synthetase-dihydrofolate synthetase. Cloning and high expression of the Escherichia coli folC gene and purification and properties of the gene product. J. Biol. Chem. 1985, 260, 5625–5630. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar] [CrossRef]
- Blum, T.; Briesemeister, S.; Kohlbacher, O. MultiLoc2: Integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinform. 2009, 10, 274. [Google Scholar] [CrossRef] [Green Version]
- Gorelova, V.; Bastien, O.; De Clerck, O.; Lespinats, S.; Rébeillé, F.; Van Der Straeten, D. Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Sci. Rep. 2019, 9, 5731. [Google Scholar] [CrossRef] [Green Version]
- Basset, G.; Quinlivan, E.P.; Ziemak, M.J.; Diaz De La Garza, R.; Fischer, M.; Schiffmann, S.; Bacher, A.; Gregory, J.F., 3rd; Hanson, A.D. Folate synthesis in plants: The first step of the pterin branch is mediated by a unique bimodular GTP cyclohydrolase I. Proc. Natl. Acad. Sci. USA 2002, 99, 12489–12494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basset, G.J.; Ravanel, S.; Quinlivan, E.P.; White, R.; Giovannoni, J.J.; Rébeillé, F.; Nichols, B.P.; Shinozaki, K.; Seki, M.; Gregory, J.F., III. Folate synthesis in plants: The last step of the p-aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase. Plant J. 2004, 40, 453–461. [Google Scholar] [CrossRef]
- Gorelova, V.; De Lepeleire, J.; Van Daele, J.; Pluim, D.; Meï, C.; Cuypers, A.; Leroux, O.; Rébeillé, F.; Schellens, J.H.; Blancquaert, D. Dihydrofolate reductase/thymidylate synthase fine-tunes the folate status and controls redox homeostasis in plants. Plant Cell 2017, 29, 2831–2853. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, T.A.; McQuinn, R.P.; Naponelli, V.; Gregory, J.F., III; Giovannoni, J.J.; Hanson, A.D. Tomato γ-glutamylhydrolases: Expression, characterization, and evidence for heterodimer formation. Plant Physiol. 2008, 148, 775–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsomando, G.; de la Garza, R.D.; Green, B.J.; Peng, M.; Rea, P.A.; Ryan, T.J.; Gregory, J.F.; Hanson, A.D. Plant γ-glutamyl hydrolases and folate polyglutamates: Characterization, compartmentation, and co-occurrence in vacuoles. J. Biol. Chem. 2005, 280, 28877–28884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szerement, J.; Szatanik-Kloc, A.; Mokrzycki, J.; Mierzwa-Hersztek, M. Agronomic biofortification with Se, Zn, and Fe: An effective strategy to enhance crop nutritional quality and stress defense—A Review. J. Soil Sci. Plant Nutr. 2022, 22, 1129–1159. [Google Scholar] [CrossRef]
- Adu, M.O.; Asare, P.A.; Yawson, D.O.; Nyarko, M.A.; Osei-Agyeman, K. Agronomic biofortification of selected underutilised solanaceae vegetables for improved dietary intake of potassium (K) in Ghana. Heliyon 2018, 4, e00750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, A.K.; Chejara, S.; Malik, K.; Kumar, R.; Kumar, A.; Yadav, R.K. Agronomic biofortification of food crops: An emerging opportunity for global food and nutritional security. Front. Plant Sci. 2022, 13, 1055278. [Google Scholar] [CrossRef]
- Marra, R.; Lombardi, N.; Piccolo, A.; Bazghaleh, N.; Prashar, P.; Vandenberg, A.; Woo, S. Mineral biofortification and growth stimulation of lentil plants inoculated with Trichoderma strains and metabolites. Microorganisms 2022, 10, 87. [Google Scholar] [CrossRef]
- Kołton, A.; Długosz-Grochowska, O.; Wojciechowska, R.; Czaja, M. Biosynthesis regulation of folates and phenols in plants. Sci. Hortic. 2022, 291, 110561. [Google Scholar] [CrossRef]
- Lal, M.K.; Kumar, A.; Kardile, H.B.; Raigond, P.; Singh, B. Biofortification of Vegetables. In Advances in Agri-Food Biotechnology; Springer: Singapore, 2020. [Google Scholar]
- Mozafar, A. Plant Vitamins: Agronomic, Physiological, and Nutritional Aspects; CRC press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Dong, W.; Cheng, Z.; Xu, J.; Zheng, T.; Wang, X.; Zhang, H.; Jie, W.; Wan, J. Identification of QTLs underlying folate content in milled rice. J. Integr. Agric. 2014, 13, 1827–1834. [Google Scholar] [CrossRef]
- Robinson, B.R.; Sathuvalli, V.; Bamberg, J.; Goyer, A. Exploring folate diversity in wild and primitive potatoes for modern crop improvement. Genes 2015, 6, 1300–1314. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, R.; Jamil, S.; Ahmad, S.; Nisar, A.; Khan, S.; Amina, Z.; Kanwal, S.; Aslam, H.M.U.; Gill, R.A.; Zhou, W. Biofortification of cereals and pulses using new breeding techniques: Current and future perspectives. Front. Nutr. 2021, 8, 721728. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, H.; Zhu, Y.; Huang, X.; Li, S.; Wu, X.; Zhao, Y.; Bao, Z.; Qin, L.; Jin, Y.; et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature 2022, 612, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, K.; Govindaraj, M.; Karthikeyan, A.; Shobhana, V.G.; Warkentin, T.D. Genomics-integrated breeding for carotenoids and folates in staple cereal grains to reduce malnutrition. Front. Genet. 2020, 11, 414. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qin, C.; Wang, L.; Jiao, C.; Hong, H.; Tian, Y.; Li, Y.; Xing, G.; Wang, J.; Gu, Y.; et al. Genome-wide signatures of the geographic expansion and breeding of soybean. Sci. China Life Sci. 2022. [Google Scholar] [CrossRef] [PubMed]
- Karikari, B.; Wang, Z.; Zhou, Y.; Yan, W.; Feng, J.; Zhao, T. Identification of quantitative trait nucleotides and candidate genes for soybean seed weight by multiple models of genome-wide association study. BMC Plant Biol. 2020, 20, 404. [Google Scholar] [CrossRef]
- Ghosh, S.; Zhang, S.; Azam, M.; Agyenim-Boateng, K.G.; Qi, J.; Feng, Y.; Li, Y.; Li, J.; Li, B.; Sun, J. Identification of genomic loci and candidate genes related to seed tocopherol content in soybean. Plants 2022, 11, 1703. [Google Scholar] [CrossRef]
- Zhong, Y.; Wen, K.; Li, X.; Wang, S.; Li, S.; Zeng, Y.; Cheng, Y.; Ma, Q.; Nian, H. Identification and mapping of QTLs for sulfur-containing amino acids in soybean (Glycine max L.). J. Agric. Food Chem. 2023, 71, 398–410. [Google Scholar] [CrossRef]
- Kim, J.M.; Lyu, J.I.; Kim, D.; Hung, N.N.; Seo, J.S.; Ahn, J.; Lim, Y.J.; Eom, S.H.; Ha, B.; Kwon, S. Genome wide association study to detect genetic regions related to isoflavone content in a mutant soybean population derived from radiation breeding. Front. Plant Sci. 2022, 13, 968466. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Sun, A.; Wang, L.; Ren, C.; Liu, J.; Gao, X. Transcriptome analysis reveals key drought-stress-responsive genes in soybean. Front. Genet. 2022, 13, 1060529. [Google Scholar] [CrossRef]
- Khanal, S.; Xue, J.; Khanal, R.; Xie, W.; Shi, J.; Pauls, K.; Navabi, A. Quantitative trait loci analysis of folate content in dry beans, Phaseolus vulgaris L. Int. J. Agron. 2013, 2013, 983641. [Google Scholar] [CrossRef]
- Guo, W.; Lian, T.; Wang, B.; Guan, J.; Yuan, D.; Wang, H.; Safiul Azam, F.M.; Wan, X.; Wang, W.; Liang, Q. Genetic mapping of folate QTLs using a segregated population in maize. J. Integr. Plant Biol. 2019, 61, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Bali, S.; Robinson, B.R.; Sathuvalli, V.; Bamberg, J.; Goyer, A. Single Nucleotide Polymorphism (SNP) markers associated with high folate content in wild potato species. PLoS ONE 2018, 13, e0193415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Yu, Y.; Xie, L.; Li, K.; Guo, X.; Li, G.; Liu, J.; Li, G.; Hu, J. A genome-wide association study of folates in sweet corn kernels. Front. Plant Sci. 2022, 13, 1004455. [Google Scholar] [CrossRef] [PubMed]
- Hossain, T.; Rosenberg, I.; Selhub, J.; Kishore, G.; Beachy, R.; Schubert, K. Enhancement of folates in plants through metabolic engineering. Proc. Natl. Acad. Sci. USA 2004, 101, 5158–5163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez Rivera, N.G.; García-Salinas, C.; Aragao, F.J.; Díaz de la Garza, R.I. Metabolic engineering of folate and its precursors in Mexican common bean (Phaseolus vulgaris L.). Plant Biotechnol. J. 2016, 14, 2021–2032. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, K.; Liu, X.; Riaz, B.; Jiang, L.; Wan, X.; Ye, X.; Zhang, C. Improved folate accumulation in genetically modified maize and wheat. J. Exp. Bot. 2019, 70, 1539–1551. [Google Scholar] [CrossRef] [Green Version]
- Sybesma, W.; Starrenburg, M.; Kleerebezem, M.; Mierau, I.; de Vos, W.M.; Hugenholtz, J. Increased production of folate by metabolic engineering of Lactococcus lactis. Appl. Environ. Microbiol. 2003, 69, 3069–3076. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Cheng, Z.; Lei, C.; Wang, J.; Wang, J.; Wu, F.; Zhang, X.; Guo, X.; Zhai, H.; Wan, J. Overexpression of folate biosynthesis genes in rice (Oryza sativa L.) and evaluation of their impact on seed folate content. Plant Foods Hum. Nutr. 2014, 69, 379–385. [Google Scholar] [CrossRef]
- Nunes, A.C.; Kalkmann, D.C.; Aragao, F.J. Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene. Transgenic Res. 2009, 18, 661. [Google Scholar] [CrossRef]
- Naqvi, S.; Zhu, C.; Farre, G.; Ramessar, K.; Bassie, L.; Breitenbach, J.; Conesa, D.P.; Ros, G.; Sandmann, G.; Capell, T. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci. USA 2009, 106, 7762–7767. [Google Scholar] [CrossRef] [Green Version]
- Diaz de la Garza, R.; Quinlivan, E.P.; Klaus, S.M.; Basset, G.J.; Gregory, J.F., III; Hanson, A.D. Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc. Natl. Acad. Sci. USA 2004, 101, 13720–13725. [Google Scholar] [CrossRef] [PubMed]
- Schubert, K. Metabolic engineering of folate biosynthesis in plants: Expression of bacterial GTP cyclohydrolase 1 in Arabidopsis thaliana results in increased pterin and folate levels in leaves and seeds. Pteridines 2005, 16, 79. [Google Scholar]
- Diaz de la Garza, R.; Gregory, J.F.; Hanson, A.D. Folate biofortification of tomato fruit. Proc. Natl. Acad. Sci. USA 2007, 104, 4218–4222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storozhenko, S.; De Brouwer, V.; Volckaert, M.; Navarrete, O.; Blancquaert, D.; Zhang, G.; Lambert, W.; Van Der Straeten, D. Folate fortification of rice by metabolic engineering. Nat. Biotechnol. 2007, 25, 1277–1279. [Google Scholar] [CrossRef] [PubMed]
- Blancquaert, D.; Storozhenko, S.; Van Daele, J.; Stove, C.; Visser, R.G.; Lambert, W.; Van Der Straeten, D. Enhancing pterin and para-aminobenzoate content is not sufficient to successfully biofortify potato tubers and Arabidopsis thaliana plants with folate. J. Exp. Bot. 2013, 64, 3899–3909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillies, S.A.; McIntosh, S.R.; Henry, R. A transgenic cereal crop with enhanced folate: Rice expressing wheat HPPK/DHPS. In Proceedings of the 11th International Wheat Genetics Symposium, Brisbane, Australia, 24–29 August 2008. [Google Scholar]
- Akhtar, T.A.; Orsomando, G.; Mehrshahi, P.; Lara-Núñez, A.; Bennett, M.J.; Gregory, J.F., III; Hanson, A.D. A central role for gamma-glutamyl hydrolases in plant folate homeostasis. Plant J. 2010, 64, 256–266. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Man, X.; Men, Y.; Ren, X.; Li, X.; Han, L.; Sun, Z.; Yang, Y.; Hou, S.; et al. Functional characterization of the SiFPGS2 gene of foxtail millet in folate accumulation and root development. Plant Growth Regul. 2022. [Google Scholar] [CrossRef]
- De Lepeleire, J.; Strobbe, S.; Verstraete, J.; Blancquaert, D.; Ambach, L.; Visser, R.G.; Stove, C.; Van Der Straeten, D. Folate biofortification of potato by tuber-specific expression of four folate biosynthesis genes. Mol. Plant 2018, 11, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, S.; Wang, Z.; Yuan, Y.; Zhang, Z.; Liang, Q.; Yang, X.; Duan, Z.; Liu, Y.; Kong, F.; et al. Progress in soybean functional genomics over the past decade. Plant Biotechnol. J. 2021, 20, 256–282. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, S.; Li, J.; Pei, R.; Tian, L.; Qi, J.; Azam, M.; Agyenim-Boateng, K.G.; Shaibu, A.S.; Liu, Y.; et al. The dual-function C2H2-type zinc-finger transcription factor GmZFP7 contributes to isoflavone accumulation in soybean. New Phytol. 2022. [Google Scholar] [CrossRef]
- Jang, C.H.; Oh, J.; Lim, J.S.; Kim, H.J.; Kim, J.S. Fermented soy products: Beneficial potential in neurodegenerative diseases. Foods 2021, 10, 636. [Google Scholar] [CrossRef] [PubMed]
- Rekha, C.; Vijayalakshmi, G. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J. Appl. Microbiol. 2010, 109, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, M.A.C.; Bedani, R.; LeBlanc, J.G.; Saad, S.M.I. Passion fruit by-product and fructooligosaccharides stimulate the growth and folate production by starter and probiotic cultures in fermented soymilk. Int. J. Food Microbiol. 2017, 261, 35–41. [Google Scholar] [CrossRef] [PubMed]
Nutrient (Unit) | Concentration | Reference |
---|---|---|
Major nutrients | ||
Protein (%) | 31.70–57.90 | USDA-ARS; [21,25] |
Oil (%) | 6.50–25.60 | USDA-ARS; [26] |
Oleic acid (%) | 4.64–36.31 | [23,25] |
Linoleic acid (%) | 7.38–63.90 | [23,25] |
Linolenic acid (%) | 1.38–12.80 | [23,25] |
Stearic acid (%) | 0.70–7.50 | [23,25] |
Palmitic acid (%) | 2.02–15.20 | [23,25] |
Carbohydrate (%) | 30.16–35 | USDA |
Soluble sugar (%) | 7.42–14.42 | [25,27] |
Micronutrients | ||
Vitamin B1-Thiamin (mg/100 g) | 0.90–8.00 | [28,29,30,31] |
Vitamin B2-Riboflavin (mg/100 g) | 0.20–0.33 | [28,29,31] |
Vitamin B3-Niacin (mg/100 g) | 1.60–4.00 | [28,29,31] |
Vitamin B5-Panthothenic acid (mg/100 g) | 0.34–1.14 | [28,29,31] |
Vitamin B6-Pyridoxine (mg/100 g) | 0.22 –1.09 | [28,29,31] |
Vitamin E-Tocopherol (mg/100 g) | 10.00–36.00 | [25,32,33] |
Vitamin B9-Folate (mg/100 g) | 0.06–0.69 | [25,34] |
Minerals | ||
Potassium (mg/100 g) | 1800–2301 | [31] |
Phosphorus (mg/100 g) | 630–704 | [31] |
Magnesium (mg/100 g) | 257–296 | [25,31] |
Sodium (mg/100 g) | 2.00–3.70 | [31] |
Calcium (mg/100 g) | 201–317 | [25,31] |
Zinc (mg/100 g) | 2.32–4.89 | [25,31] |
Iron (mg/100 g) | 7.30–15.7 | [25,31] |
Manganese (mg/100 g) | 2.40–3.60 | [25,31] |
Bioactive compounds | ||
Isoflavone (mg/100 g) | 74.50–525.39 | [25,35,36] |
Carotenoid (mg/100 g) | 0.32–2.92 | [25,37] |
Saponin (mg/100 g) | 444.60–464.00 | [38,39] |
Phospholipid (mg/100 g) | 38,100–45,000 | [40] |
Sterol (mg/100 g) | 205.00–287.00 | [41] |
Crop | Folate Content (μg/100 g) | Reference |
---|---|---|
Chickpea | 351.00–589.00 | [42,43] |
Common bean | 113.00–296.00 | [42,43,44] |
Lentils | 136.00–361.00 | [42,43,45] |
Maize | 33.40.00–129.00 | [7,8] |
Pea | 19.50–55.00 | [42,43,46] |
Peanut | 81.00–240.00 | [47,48] |
Rice | 11.00–111.00 | [7,8,12,13] |
Soybean | 64.51–691.24 | [25,34] |
Tomato | 14.00–46.00 | [49] |
Wheat | 10.00–91.00 | [8,9,10,11] |
Crop | Population Type | Population Size | Total Number of QTL Identified | PVE (%) | Model of Analysis | Reference |
---|---|---|---|---|---|---|
Pea | Natural population | 85 | 9 | - | MLM | [46] |
Common bean | Bi-parental | 6 | 4 | 8–19 | SMA | [108] |
Common bean | Natural population | 96 | 6 | - | Fast-LMM/EMMA | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agyenim-Boateng, K.G.; Zhang, S.; Shohag, M.J.I.; Shaibu, A.S.; Li, J.; Li, B.; Sun, J. Folate Biofortification in Soybean: Challenges and Prospects. Agronomy 2023, 13, 241. https://doi.org/10.3390/agronomy13010241
Agyenim-Boateng KG, Zhang S, Shohag MJI, Shaibu AS, Li J, Li B, Sun J. Folate Biofortification in Soybean: Challenges and Prospects. Agronomy. 2023; 13(1):241. https://doi.org/10.3390/agronomy13010241
Chicago/Turabian StyleAgyenim-Boateng, Kwadwo Gyapong, Shengrui Zhang, Md. Jahidul Islam Shohag, Abdulwahab S. Shaibu, Jing Li, Bin Li, and Junming Sun. 2023. "Folate Biofortification in Soybean: Challenges and Prospects" Agronomy 13, no. 1: 241. https://doi.org/10.3390/agronomy13010241
APA StyleAgyenim-Boateng, K. G., Zhang, S., Shohag, M. J. I., Shaibu, A. S., Li, J., Li, B., & Sun, J. (2023). Folate Biofortification in Soybean: Challenges and Prospects. Agronomy, 13(1), 241. https://doi.org/10.3390/agronomy13010241