Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,280)

Search Parameters:
Keywords = focus score

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4331 KiB  
Article
Research on Lightweight Tracking of Small-Sized UAVs Based on the Improved YOLOv8N-Drone Architecture
by Yongjuan Zhao, Qiang Ma, Guannan Lei, Lijin Wang and Chaozhe Guo
Drones 2025, 9(8), 551; https://doi.org/10.3390/drones9080551 - 5 Aug 2025
Abstract
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To [...] Read more.
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To tackle these issues, this paper presents an enhanced YOLOv8N-Drone-based algorithm for improved target tracking of small UAVs. Firstly, a novel module named C2f-DSFEM (Depthwise-Separable and Sobel Feature Enhancement Module) is designed, integrating Sobel convolution with depthwise separable convolution across layers. Edge detail extraction and multi-scale feature representation are synchronized through a bidirectional feature enhancement mechanism, and the discriminability of target features in complex backgrounds is thus significantly enhanced. For the feature confusion problem, the improved lightweight Context Anchored Attention (CAA) mechanism is integrated into the Neck network, which effectively improves the system’s adaptability to complex scenes. By employing a position-aware weight allocation strategy, this approach enables adaptive suppression of background interference and precise focus on the target region, thereby improving localization accuracy. At the level of loss function optimization, the traditional classification loss is replaced by the focal loss (Focal Loss). This mechanism effectively suppresses the contribution of easy-to-classify samples through a dynamic weight adjustment strategy, while significantly increasing the priority of difficult samples in the training process. The class imbalance that exists between the positive and negative samples is then significantly mitigated. Experimental results show the enhanced YOLOv8 boosts mean average precision (Map@0.5) by 12.3%, hitting 99.2%. In terms of tracking performance, the proposed YOLOv8 N-Drone algorithm achieves a 19.2% improvement in Multiple Object Tracking Accuracy (MOTA) under complex multi-scenario conditions. Additionally, the IDF1 score increases by 6.8%, and the number of ID switches is reduced by 85.2%, indicating significant improvements in both accuracy and stability of UAV tracking. Compared to other mainstream algorithms, the proposed improved method demonstrates significant advantages in tracking performance, offering a more effective and reliable solution for small-target tracking tasks in UAV applications. Full article
Show Figures

Figure 1

29 pages, 1483 KiB  
Article
Empowering Independence for Visually Impaired Museum Visitors Through Enhanced Accessibility
by Theresa Zaher Nasser, Tsvi Kuflik and Alexandra Danial-Saad
Sensors 2025, 25(15), 4811; https://doi.org/10.3390/s25154811 - 5 Aug 2025
Abstract
Museums serve as essential cultural centers, yet their mostly visual exhibits restrict access for blind and partially sighted (BPS) individuals. While recent technological advances have started to bridge this gap, many accessibility solutions focus mainly on basic inclusion rather than promoting independent exploration. [...] Read more.
Museums serve as essential cultural centers, yet their mostly visual exhibits restrict access for blind and partially sighted (BPS) individuals. While recent technological advances have started to bridge this gap, many accessibility solutions focus mainly on basic inclusion rather than promoting independent exploration. This research addresses this limitation by creating features that enable visitors’ independence through customizable interaction patterns and self-paced exploration. It improved upon existing interactive tangible user interfaces (ITUIs) by enhancing their audio content and adding more flexible user control options. A mixed-methods approach evaluated the ITUI’s usability, ability to be used independently, and user satisfaction. Quantitative data were gathered using ITUI-specific satisfaction, usability, comparison, and general preference scales, while insights were obtained through notes taken during a think-aloud protocol as participants interacted with the ITUIs, direct observation, and analysis of video recordings of the experiment. The results showed a strong preference for a Pushbutton-based ITUI, which scored highest in usability (M = 87.5), perceived independence (72%), and user control (76%). Participants stressed the importance of tactile interaction, clear feedback, and customizable audio features like volume and playback speed. These findings underscore the vital role of user control and precise feedback in designing accessible museum experiences. Full article
Show Figures

Figure 1

20 pages, 2243 KiB  
Article
Increasing Access and Availability of Nutrient-Dense Foods at United States Marine Corps Food Venues Is Feasible and Profitable
by Katie M. Kirkpatrick, Zina N. Abourjeily, Melissa A. Rittenhouse, Maureen W. Purcell, Rory G. McCarthy and Jonathan M. Scott
Nutrients 2025, 17(15), 2556; https://doi.org/10.3390/nu17152556 - 5 Aug 2025
Abstract
Background/Objectives: Military Service Members (SMs) require optimal nutrition to support health, readiness, and job performance. However, they often fall short of meeting nutrition guidelines. This study aimed to determine the impact and feasibility of implementing the U.S. Marine Corps (USMC) “Fueled to [...] Read more.
Background/Objectives: Military Service Members (SMs) require optimal nutrition to support health, readiness, and job performance. However, they often fall short of meeting nutrition guidelines. This study aimed to determine the impact and feasibility of implementing the U.S. Marine Corps (USMC) “Fueled to Fight®” (F2F) nutrition program in non-appropriated fund (NAF) food venues. Objectives included evaluating changes in Military Nutrition Environment Assessment Tool (mNEAT) scores, feasibility of implementing and maintaining F2F strategies, and influence on customer purchasing patterns. Methods: Researchers conducted a pre-post interventional study from January to December 2024 at three NAF food venues across two USMC bases. F2F strategies, including identifying items using a stoplight color coding system (Green = healthy, Yellow = less healthy, Red = least healthy), menu revisions, food placement, promotion, and marketing, were implemented. Data included mNEAT assessments, sales reports, and stakeholder focus groups. Generalized Estimating Equations models were used to analyze sales data. Results: mNEAT scores increased across all venues post-intervention. Availability and sales of Green items increased, while sales of Red items decreased in some venues. Profit increased at all three food venues. Focus groups revealed feasibility and provided insights for future interventions. Conclusions: F2F interventions in NAF food venues are feasible and can positively impact the food environment and customer purchasing patterns without negatively affecting profit. This study highlights the importance of integrating nutrition programs into all military food venues, not just government-funded dining facilities, to support the nutritional fitness and readiness of SMs. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

20 pages, 4576 KiB  
Article
Enhanced HoVerNet Optimization for Precise Nuclei Segmentation in Diffuse Large B-Cell Lymphoma
by Gei Ki Tang, Chee Chin Lim, Faezahtul Arbaeyah Hussain, Qi Wei Oung, Aidy Irman Yajid, Sumayyah Mohammad Azmi and Yen Fook Chong
Diagnostics 2025, 15(15), 1958; https://doi.org/10.3390/diagnostics15151958 - 4 Aug 2025
Abstract
Background/Objectives: Diffuse Large B-Cell Lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and demands precise segmentation and classification of nuclei for effective diagnosis and disease severity assessment. This study aims to evaluate the performance of HoVerNet, a deep learning model, [...] Read more.
Background/Objectives: Diffuse Large B-Cell Lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and demands precise segmentation and classification of nuclei for effective diagnosis and disease severity assessment. This study aims to evaluate the performance of HoVerNet, a deep learning model, for nuclei segmentation and classification in CMYC-stained whole slide images and to assess its integration into a user-friendly diagnostic tool. Methods: A dataset of 122 CMYC-stained whole slide images (WSIs) was used. Pre-processing steps, including stain normalization and patch extraction, were applied to improve input consistency. HoVerNet, a multi-branch neural network, was used for both nuclei segmentation and classification, particularly focusing on its ability to manage overlapping nuclei and complex morphological variations. Model performance was validated using metrics such as accuracy, precision, recall, and F1 score. Additionally, a graphic user interface (GUI) was developed to incorporate automated segmentation, cell counting, and severity assessment functionalities. Results: HoVerNet achieved a validation accuracy of 82.5%, with a precision of 85.3%, recall of 82.6%, and an F1 score of 83.9%. The model showed powerful performance in differentiating overlapping and morphologically complex nuclei. The developed GUI enabled real-time visualization and diagnostic support, enhancing the efficiency and usability of DLBCL histopathological analysis. Conclusions: HoVerNet, combined with an integrated GUI, presents a promising approach for streamlining DLBCL diagnostics through accurate segmentation and real-time visualization. Future work will focus on incorporating Vision Transformers and additional staining protocols to improve generalizability and clinical utility. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Radiomics in Medical Diagnosis)
Show Figures

Figure 1

22 pages, 6305 KiB  
Article
TOPSIS and AHP-Based Multi-Criteria Decision-Making Approach for Evaluating Redevelopment in Old Residential Projects
by Cheolheung Park, Minwook Son, Jongmyeong Kim, Byeol Kim, Yonghan Ahn and Nahyun Kwon
Sustainability 2025, 17(15), 7072; https://doi.org/10.3390/su17157072 (registering DOI) - 4 Aug 2025
Abstract
This research aims to identify and prioritize key planning elements for the redevelopment of such housing complexes by incorporating perspectives from both experts (supply-side) and residents (demand-side). To achieve this, a hybrid multi-criteria decision-making framework was developed by integrating the Analytic Hierarchy Process [...] Read more.
This research aims to identify and prioritize key planning elements for the redevelopment of such housing complexes by incorporating perspectives from both experts (supply-side) and residents (demand-side). To achieve this, a hybrid multi-criteria decision-making framework was developed by integrating the Analytic Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). A total of 25 planning elements were identified through Focus Group Interviews and organized into five domains: legal and institutional reforms, project feasibility, residential conditions, social integration, and complex design. The AHP was used to assess the relative importance of each element based on responses from 30 experts and 130 residents. The analysis revealed a clear divergence in priorities: experts emphasized feasibility and regulatory considerations, while residents prioritized livability and spatial quality. Subsequently, the TOPSIS method was applied to evaluate four real-world redevelopment cases. From the supply-side perspective, Seoul A District received the highest score (0.58), whereas from the demand-side perspective, Gyeonggi D District ranked highest (0.69), illustrating the differing priorities of stakeholders. Overall, Gyeonggi D District emerged as the most favorable option in the combined evaluation. This research contributes a structured and inclusive decision-making framework for the regeneration of public housing. By explicitly comparing and quantifying the contrasting preferences of key stakeholders, it underscores the critical need to balance technical feasibility with resident-centered values in future redevelopment initiatives. Full article
Show Figures

Figure 1

22 pages, 1247 KiB  
Article
Evaluating and Predicting Urban Greenness for Sustainable Environmental Development
by Chun-Che Huang, Wen-Yau Liang, Tzu-Liang (Bill) Tseng and Chia-Ying Chan
Processes 2025, 13(8), 2465; https://doi.org/10.3390/pr13082465 - 4 Aug 2025
Abstract
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental [...] Read more.
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental preservation while maintaining residents’ quality of life has become a central focus of urban governance. In this context, evaluating green indicators and predicting urban greenness is both necessary and urgent. This study incorporates international frameworks such as the EU Green City Index, the European Green Capital Award, and the United Nations Sustainable Development Goals to assess urban sustainability. The Extreme Gradient Boosting (XGBoost) algorithm is employed to predict the green level of cities and to develop multiple optimized models. Comparative analysis with traditional models demonstrates that XGBoost achieves superior performance, with an accuracy of 0.84 and an F1-score of 0.81. Case study findings identify “Greenhouse Gas Emissions per Person” and “Per Capita Emissions from Transport” as the most critical indicators. These results provide practical guidance for policymakers, suggesting that targeted regulations based on these key factors can effectively support emission reduction and urban sustainability goals. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

31 pages, 4141 KiB  
Article
Automated Quality Control of Candle Jars via Anomaly Detection Using OCSVM and CNN-Based Feature Extraction
by Azeddine Mjahad and Alfredo Rosado-Muñoz
Mathematics 2025, 13(15), 2507; https://doi.org/10.3390/math13152507 - 4 Aug 2025
Abstract
Automated quality control plays a critical role in modern industries, particularly in environments that handle large volumes of packaged products requiring fast, accurate, and consistent inspections. This work presents an anomaly detection system for candle jars commonly used in industrial and commercial applications, [...] Read more.
Automated quality control plays a critical role in modern industries, particularly in environments that handle large volumes of packaged products requiring fast, accurate, and consistent inspections. This work presents an anomaly detection system for candle jars commonly used in industrial and commercial applications, where obtaining labeled defective samples is challenging. Two anomaly detection strategies are explored: (1) a baseline model using convolutional neural networks (CNNs) as an end-to-end classifier and (2) a hybrid approach where features extracted by CNNs are fed into One-Class classification (OCC) algorithms, including One-Class SVM (OCSVM), One-Class Isolation Forest (OCIF), One-Class Local Outlier Factor (OCLOF), One-Class Elliptic Envelope (OCEE), One-Class Autoencoder (OCAutoencoder), and Support Vector Data Description (SVDD). Both strategies are trained primarily on non-defective samples, with only a limited number of anomalous examples used for evaluation. Experimental results show that both the pure CNN model and the hybrid methods achieve excellent classification performance. The end-to-end CNN reached 100% accuracy, precision, recall, F1-score, and AUC. The best-performing hybrid model CNN-based feature extraction followed by OCIF also achieved 100% across all evaluation metrics, confirming the effectiveness and robustness of the proposed approach. Other OCC algorithms consistently delivered strong results, with all metrics above 95%, indicating solid generalization from predominantly normal data. This approach demonstrates strong potential for quality inspection tasks in scenarios with scarce defective data. Its ability to generalize effectively from mostly normal samples makes it a practical and valuable solution for real-world industrial inspection systems. Future work will focus on optimizing real-time inference and exploring advanced feature extraction techniques to further enhance detection performance. Full article
Show Figures

Figure 1

13 pages, 1520 KiB  
Article
Designing a Patient Outcome Clinical Assessment Tool for Modified Rankin Scale: “You Feel the Same Way Too”
by Laura London and Noreen Kamal
Informatics 2025, 12(3), 78; https://doi.org/10.3390/informatics12030078 (registering DOI) - 4 Aug 2025
Abstract
The modified Rankin Scale (mRS) is a widely used outcome measure for assessing disability in stroke care; however, its administration is often affected by subjectivity and variability, leading to poor inter-rater reliability and inconsistent scoring. Originally designed for hospital discharge evaluations, the mRS [...] Read more.
The modified Rankin Scale (mRS) is a widely used outcome measure for assessing disability in stroke care; however, its administration is often affected by subjectivity and variability, leading to poor inter-rater reliability and inconsistent scoring. Originally designed for hospital discharge evaluations, the mRS has evolved into an outcome tool for disability assessment and clinical decision-making. Inconsistencies persist due to a lack of standardization and cognitive biases during its use. This paper presents design principles for creating a standardized clinical assessment tool (CAT) for the mRS, grounded in human–computer interaction (HCI) and cognitive engineering principles. Design principles were informed in part by an anonymous online survey conducted with clinicians across Canada to gain insights into current administration practices, opinions, and challenges of the mRS. The proposed design principles aim to reduce cognitive load, improve inter-rater reliability, and streamline the administration process of the mRS. By focusing on usability and standardization, the design principles seek to enhance scoring consistency and improve the overall reliability of clinical outcomes in stroke care and research. Developing a standardized CAT for the mRS represents a significant step toward improving the accuracy and consistency of stroke disability assessments. Future work will focus on real-world validation with healthcare stakeholders and exploring self-completed mRS assessments to further refine the tool. Full article
Show Figures

Figure 1

24 pages, 5644 KiB  
Article
Design and Optimization of Target Detection and 3D Localization Models for Intelligent Muskmelon Pollination Robots
by Huamin Zhao, Shengpeng Xu, Weiqi Yan, Defang Xu, Yongzhuo Zhang, Linjun Jiang, Yabo Zheng, Erkang Zeng and Rui Ren
Horticulturae 2025, 11(8), 905; https://doi.org/10.3390/horticulturae11080905 (registering DOI) - 4 Aug 2025
Abstract
With the expansion of muskmelon cultivation, manual pollination is increasingly inadequate for sustaining industry development. Therefore, the development of automatic pollination robots holds significant importance in improving pollination efficiency and reducing labor dependency. Accurate flower detection and localization is a key technology for [...] Read more.
With the expansion of muskmelon cultivation, manual pollination is increasingly inadequate for sustaining industry development. Therefore, the development of automatic pollination robots holds significant importance in improving pollination efficiency and reducing labor dependency. Accurate flower detection and localization is a key technology for enabling automated pollination robots. In this study, the YOLO-MDL model was developed as an enhancement of YOLOv7 to achieve real-time detection and localization of muskmelon flowers. This approach adds a Coordinate Attention (CA) module to focus on relevant channel information and a Contextual Transformer (CoT) module to leverage contextual relationships among input tokens, enhancing the model’s visual representation. The pollination robot converts the 2D coordinates into 3D coordinates using a depth camera and conducts experiments on real-time detection and localization of muskmelon flowers in a greenhouse. The YOLO-MDL model was deployed in ROS to control a robotic arm for automatic pollination, verifying the accuracy of flower detection and measurement localization errors. The results indicate that the YOLO-MDL model enhances AP and F1 scores by 3.3% and 1.8%, respectively, compared to the original model. It achieves AP and F1 scores of 91.2% and 85.1%, demonstrating a clear advantage in accuracy over other models. In the localization experiments, smaller errors were revealed in all three directions. The RMSE values were 0.36 mm for the X-axis, 1.26 mm for the Y-axis, and 3.87 mm for the Z-axis. The YOLO-MDL model proposed in this study demonstrates strong performance in detecting and localizing muskmelon flowers. Based on this model, the robot can execute more precise automatic pollination and provide technical support for the future deployment of automatic pollination robots in muskmelon cultivation. Full article
Show Figures

Figure 1

10 pages, 1055 KiB  
Article
Artificial Intelligence and Hysteroscopy: A Multicentric Study on Automated Classification of Pleomorphic Lesions
by Miguel Mascarenhas, Carla Peixoto, Ricardo Freire, Joao Cavaco Gomes, Pedro Cardoso, Inês Castro, Miguel Martins, Francisco Mendes, Joana Mota, Maria João Almeida, Fabiana Silva, Luis Gutierres, Bruno Mendes, João Ferreira, Teresa Mascarenhas and Rosa Zulmira
Cancers 2025, 17(15), 2559; https://doi.org/10.3390/cancers17152559 - 3 Aug 2025
Viewed by 126
Abstract
Background/Objectives: The integration of artificial intelligence (AI) in medical imaging is rapidly advancing, yet its application in gynecologic use remains limited. This proof-of-concept study presents the development and validation of a convolutional neural network (CNN) designed to automatically detect and classify endometrial [...] Read more.
Background/Objectives: The integration of artificial intelligence (AI) in medical imaging is rapidly advancing, yet its application in gynecologic use remains limited. This proof-of-concept study presents the development and validation of a convolutional neural network (CNN) designed to automatically detect and classify endometrial polyps. Methods: A multicenter dataset (n = 3) comprising 65 hysteroscopies was used, yielding 33,239 frames and 37,512 annotated objects. Still frames were extracted from full-length videos and annotated for the presence of histologically confirmed polyps. A YOLOv1-based object detection model was used with a 70–20–10 split for training, validation, and testing. Primary performance metrics included recall, precision, and mean average precision at an intersection over union (IoU) ≥ 0.50 (mAP50). Frame-level classification metrics were also computed to evaluate clinical applicability. Results: The model achieved a recall of 0.96 and precision of 0.95 for polyp detection, with a mAP50 of 0.98. At the frame level, mean recall was 0.75, precision 0.98, and F1 score 0.82, confirming high detection and classification performance. Conclusions: This study presents a CNN trained on multicenter, real-world data that detects and classifies polyps simultaneously with high diagnostic and localization performance, supported by explainable AI features that enhance its clinical integration and technological readiness. Although currently limited to binary classification, this study demonstrates the feasibility and potential of AI to reduce diagnostic subjectivity and inter-observer variability in hysteroscopy. Future work will focus on expanding the model’s capabilities to classify a broader range of endometrial pathologies, enhance generalizability, and validate performance in real-time clinical settings. Full article
Show Figures

Figure 1

36 pages, 699 KiB  
Article
A Framework of Indicators for Assessing Team Performance of Human–Robot Collaboration in Construction Projects
by Guodong Zhang, Xiaowei Luo, Lei Zhang, Wei Li, Wen Wang and Qiming Li
Buildings 2025, 15(15), 2734; https://doi.org/10.3390/buildings15152734 - 2 Aug 2025
Viewed by 231
Abstract
The construction industry has been troubled by a shortage of skilled labor and safety accidents in recent years. Therefore, more and more robots are introduced to undertake dangerous and repetitive jobs, so that human workers can concentrate on higher-value and creative problem-solving tasks. [...] Read more.
The construction industry has been troubled by a shortage of skilled labor and safety accidents in recent years. Therefore, more and more robots are introduced to undertake dangerous and repetitive jobs, so that human workers can concentrate on higher-value and creative problem-solving tasks. Nevertheless, although human–robot collaboration (HRC) shows great potential, most existing evaluation methods still focus on the single performance of either the human or robot, and systematic indicators for a whole HRC team remain insufficient. To fill this research gap, the present study constructs a comprehensive evaluation framework for HRC team performance in construction projects. Firstly, a detailed literature review is carried out, and three theories are integrated to build 33 indicators preliminarily. Afterwards, an expert questionnaire survey (N = 15) is adopted to revise and verify the model empirically. The survey yielded a Cronbach’s alpha of 0.916, indicating excellent internal consistency. The indicators rated highest in importance were task completion time (µ = 4.53) and dynamic separation distance (µ = 4.47) on a 5-point scale. Eight indicators were excluded due to mean importance ratings falling below the 3.0 threshold. The framework is formed with five main dimensions and 25 concrete indicators. Finally, an AHP-TOPSIS method is used to evaluate the HRC team performance. The AHP analysis reveals that Safety (weight = 0.2708) is prioritized over Productivity (weight = 0.2327) by experts, establishing a safety-first principle for successful HRC deployment. The framework is demonstrated through a case study of a human–robot plastering team, whose team performance scored as fair. This shows that the framework can help practitioners find out the advantages and disadvantages of HRC team performance and provide targeted improvement strategies. Furthermore, the framework offers construction managers a scientific basis for deciding robot deployment and team assignment, thus promoting safer, more efficient, and more creative HRC in construction projects. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

16 pages, 1690 KiB  
Article
Effect of Photobiomodulation on Post-Endodontic Pain Following Single-Visit Treatment: A Randomized Double-Blind Clinical Trial
by Glaucia Gonçales Abud Machado, Giovanna Fontgalland Ferreira, Erika da Silva Mello, Ellen Sayuri Ando-Suguimoto, Vinicius Leão Roncolato, Marcia Regina Cabral Oliveira, Janainy Altrão Tognini, Adriana Fernandes Paisano, Cleber Pinto Camacho, Sandra Kalil Bussadori, Lara Jansiski Motta, Cinthya Cosme Gutierrez Duran, Raquel Agnelli Mesquita-Ferrari, Kristianne Porta Santos Fernandes and Anna Carolina Ratto Tempestini Horliana
J. Pers. Med. 2025, 15(8), 347; https://doi.org/10.3390/jpm15080347 - 2 Aug 2025
Viewed by 120
Abstract
The evidence for photobiomodulation in reducing postoperative pain after endodontic instrumentation is classified as low or very low certainty, indicating a need for further research. Longitudinal pain assessments over 24 h are crucial, and studies should explore these pain periods. Background/Objectives: This [...] Read more.
The evidence for photobiomodulation in reducing postoperative pain after endodontic instrumentation is classified as low or very low certainty, indicating a need for further research. Longitudinal pain assessments over 24 h are crucial, and studies should explore these pain periods. Background/Objectives: This double-blind, randomized controlled clinical trial evaluated the effect of PBM on pain following single-visit endodontic treatment of maxillary molars at 4, 8, 12, and 24 h. Primary outcomes included pain at 24 h; secondary outcomes included pain at 4, 8, and 12 h, pain during palpation/percussion, OHIP-14 analysis, and frequencies of pain. Methods: Approved by the Research Ethics Committee (5.598.290) and registered in Clinical Trials (NCT06253767), the study recruited adults (21–70 years) requiring endodontic treatment in maxillary molars. Fifty-eight molars were randomly assigned to two groups: the PBM Group (n = 29), receiving conventional endodontic treatment with PBM (100 mW, 333 mW/cm2, 9 J distributed at 3 points near root apices), and the control group (n = 29), receiving conventional treatment with PBM simulation. Pain was assessed using the Visual Analog Scale. Results: Statistical analyses used chi-square and Mann–Whitney tests, with explained variance (η2). Ten participants were excluded, leaving 48 patients for analysis. No significant differences were observed in postoperative pain at 24, 4, 8, or 12 h, or in palpation/percussion or OHIP-14 scores. Pain frequencies ranged from 12.5% to 25%. Conclusions: PBM does not influence post-treatment pain in maxillary molars under these conditions. These results emphasize the importance of relying on well-designed clinical trials to guide treatment decisions, and future research should focus on personalized dosimetry adapted to the anatomical characteristics of the treated dental region to enhance the accuracy and efficacy of therapeutic protocols. Full article
(This article belongs to the Special Issue Towards Precision Anesthesia and Pain Management)
Show Figures

Figure 1

23 pages, 1205 KiB  
Article
Uncovering Emotional and Identity-Driven Dimensions of Entertainment Consumption in a Transitional Digital Culture
by Ștefan Bulboacă, Gabriel Brătucu, Eliza Ciobanu, Ioana Bianca Chițu, Cristinel Petrișor Constantin and Radu Constantin Lixăndroiu
Behav. Sci. 2025, 15(8), 1049; https://doi.org/10.3390/bs15081049 - 1 Aug 2025
Viewed by 218
Abstract
This study explores entertainment consumption patterns in Romania, a transitional digital culture characterized by high digital connectivity but underdeveloped physical infrastructure. Employing a dual qualitative coding methodology, this research combines inductive analysis of consumer focus groups with deductive analysis of expert interviews, enabling [...] Read more.
This study explores entertainment consumption patterns in Romania, a transitional digital culture characterized by high digital connectivity but underdeveloped physical infrastructure. Employing a dual qualitative coding methodology, this research combines inductive analysis of consumer focus groups with deductive analysis of expert interviews, enabling a multi-layered interpretation of both overt behaviors and latent emotional drivers. Seven key thematic dimensions, motivational depth, perceived barriers, emotional needs, clarity of preferences, future behavioral intentions, social connection, and identity construction, were analyzed and compared using a Likert-based scoring framework, supported by a radar chart and comparison matrix. Findings reveal both convergence and divergence between consumer and expert perspectives. While consumers emphasize immediate experiences and logistical constraints, experts uncover deeper emotional motivators such as validation, mentorship, and identity formation. This behavioral–emotional gap suggests that, although digital entertainment dominates due to accessibility, it often lacks the emotional richness associated with physical formats, which are preferred but less accessible. This study underscores the importance of triangulated qualitative inquiry in revealing not only stated preferences but also unconscious psychological needs. It offers actionable insights for designing emotionally intelligent and culturally responsive entertainment strategies in digitally saturated yet infrastructure-limited environments. Full article
Show Figures

Figure 1

9 pages, 299 KiB  
Article
Assessing the Accuracy and Readability of Large Language Model Guidance for Patients on Breast Cancer Surgery Preparation and Recovery
by Elena Palmarin, Stefania Lando, Alberto Marchet, Tania Saibene, Silvia Michieletto, Matteo Cagol, Francesco Milardi, Dario Gregori and Giulia Lorenzoni
J. Clin. Med. 2025, 14(15), 5411; https://doi.org/10.3390/jcm14155411 - 1 Aug 2025
Viewed by 191
Abstract
Background/Objectives: Accurate and accessible perioperative health information empowers patients and enhances recovery outcomes. Artificial intelligence tools, such as ChatGPT, have garnered attention for their potential in health communication. This study evaluates the accuracy and readability of responses generated by ChatGPT to questions commonly [...] Read more.
Background/Objectives: Accurate and accessible perioperative health information empowers patients and enhances recovery outcomes. Artificial intelligence tools, such as ChatGPT, have garnered attention for their potential in health communication. This study evaluates the accuracy and readability of responses generated by ChatGPT to questions commonly asked about breast cancer. Methods: Fifteen simulated patient queries about breast cancer surgery preparation and recovery were prepared. Responses generated by ChatGPT (4o version) were evaluated for accuracy by a pool of breast surgeons using a 4-point Likert scale. Readability was assessed with the Flesch–Kincaid Grade Level (FKGL). Descriptive statistics were used to summarize the findings. Results: Of the 15 responses evaluated, 11 were rated as “accurate and comprehensive”, while 4 out of 15 were deemed “correct but incomplete”. No responses were classified as “partially incorrect” or “completely incorrect”. The median FKGL score was 11.2, indicating a high school reading level. While most responses were technically accurate, the complexity of language exceeded the recommended readability levels for patient-directed materials. Conclusions: The model shows potential as a complementary resource for patient education in breast cancer surgery, but should not replace direct interaction with healthcare providers. Future research should focus on enhancing language models’ ability to generate accessible and patient-friendly content. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

28 pages, 368 KiB  
Article
Financial Constraints and the ESG–Firm Performance Nexus in the Automotive Industry: Evidence from a Global Panel Study
by Burcu Dinçergök and Burak Pirgaip
Sustainability 2025, 17(15), 6985; https://doi.org/10.3390/su17156985 - 31 Jul 2025
Viewed by 292
Abstract
This study examines the complex relationship between environmental, social, and governance (ESG) and financial performance in the automotive industry, with a particular focus on how financial constraints shape this relationship. Using a global data set for the period 2008 to 2023 and employing [...] Read more.
This study examines the complex relationship between environmental, social, and governance (ESG) and financial performance in the automotive industry, with a particular focus on how financial constraints shape this relationship. Using a global data set for the period 2008 to 2023 and employing a range of panel data techniques, including those addressing endogeneity concerns, we find that higher ESG scores positively affect financial performance. Specifically, a one-point rise in ESG score corresponds to an estimated 1–1.7% increase in the market-to-book ratio, with the effect reaching approximately 1.6% for firms facing financial constraints. These findings highlight the economic significance of ESG engagement, particularly for resource-constrained companies. The novelty of this study is that it focuses on the automotive sector, an industry with limited ESG-specific research, and that it makes a theoretical contribution by linking ESG performance outcomes to financial constraints, an angle largely overlooked in prior research. The findings offer critical policy insights, emphasizing the strategic importance of ESG initiatives for value creation under varying financial conditions. Full article
Back to TopTop