Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = fly ash and slag-based geopolymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3056 KiB  
Article
Recycled Glass and Plastic Waste in Sustainable Geopolymer Systems for Affordable Housing Solutions
by Zhao Qing Tang, Yat Choy Wong, Yali Li and Eryadi Kordi Masli
Recycling 2025, 10(4), 147; https://doi.org/10.3390/recycling10040147 - 27 Jul 2025
Viewed by 286
Abstract
The increasing demand for sustainable construction materials has driven research into low-carbon geopolymers that mitigate both cement-related emissions and plastic and glass waste accumulation. This study explores the development of geopolymer concrete incorporating fly ash (FA), slag (S), and FA + S blends, [...] Read more.
The increasing demand for sustainable construction materials has driven research into low-carbon geopolymers that mitigate both cement-related emissions and plastic and glass waste accumulation. This study explores the development of geopolymer concrete incorporating fly ash (FA), slag (S), and FA + S blends, with 10% recycled crushed glass (RCG) and recycled plastic waste (RPW) as partial coarse aggregate replacements. Compressive strength testing revealed that FA + S-based geopolymers (25FA + S) with 100% ordinary Portland cement (OPC) replacement achieved a 7-day strength of 24.6 MPa, representing a 98% improvement over control specimens. Slag-based geopolymers demonstrated water absorption properties comparable to OPC, indicating enhanced durability. Microstructural analyses using SEM, XRD, and EDS confirmed the formation of a dense aluminosilicate matrix, with slag promoting FA reactivity and reinforcing interfacial transition zone (ITZ). These effects contributed to superior mechanical performance and water resistance. Despite minor shrinkage-induced cracking, full OPC replacement with S or FA + S geopolymers outperformed control specimens, consistently exceeding the target strength of 15 MPa required for low-impact, single-story housing applications within seven days. These findings underscore the potential of geopolymer systems for rapid and sustainable construction, offering an effective solution for reducing carbon footprints and repurposing industrial waste. Full article
Show Figures

Figure 1

21 pages, 10911 KiB  
Article
Investigation into the Static Mechanical Properties of Ultra-High-Performance Geopolymer Concrete Incorporating Steel Slag, Ground Granulated Blast-Furnace Slag, and Fly Ash
by Yan-Hua Cai, Tao Huang, Bo-Yuan Huang, Chuan-Bin Hua, Qiang Huang, Jing-Wen Chen, Heng-Liang Liu, Zi-Jie He, Nai-Bi Rouzi, Zhi-Hong Xie and Gai Chen
Buildings 2025, 15(14), 2535; https://doi.org/10.3390/buildings15142535 - 18 Jul 2025
Viewed by 205
Abstract
The utilization of steel slag (SS) in construction materials represents an effective approach to improving its overall recycling efficiency. This study incorporates SS into a conventional ground granulated blast-furnace slag (GGBS)–fly ash (FA)-based binder system to develop a ternary system comprising SS, GGBS, [...] Read more.
The utilization of steel slag (SS) in construction materials represents an effective approach to improving its overall recycling efficiency. This study incorporates SS into a conventional ground granulated blast-furnace slag (GGBS)–fly ash (FA)-based binder system to develop a ternary system comprising SS, GGBS, and FA, and investigates how this system influences the static mechanical properties of ultra-high-performance geopolymer concrete (UHPGC). An axial point augmented simplex centroid design method was employed to systematically explore the influence and underlying mechanisms of different binder ratios on the workability, axial compressive strength, and flexural performance of UHPGC, and to determine the optimal compositional range. The results indicate that steel slag has a certain negative effect on the flowability of UHPGC paste; however, with an appropriate proportion of composite binder materials, the mixture can still exhibit satisfactory flowability. The compressive performance of UHPGC is primarily governed by the proportion of GGBS in the ternary binder system; an appropriate GGBS content can provide enhanced compressive strength and elastic modulus. UHPGC exhibits ductile behavior under flexural loading; however, replacing GGBS with SS significantly reduces its flexural strength and energy absorption capacity. The optimal static mechanical performance is achieved when the mass proportions of SS, GGBS, and FA are within the ranges of 9.3–13.8%, 66.2–70.7%, and 20.0–22.9%, respectively. This study provides a scientific approach for the valorization of SS through construction material applications and offers a theoretical and data-driven basis for the mix design of ultra-high-performance building materials derived from industrial solid wastes. Full article
(This article belongs to the Special Issue Next-Gen Cementitious Composites for Sustainable Construction)
Show Figures

Figure 1

28 pages, 13878 KiB  
Review
The Structural Performance of Fiber-Reinforced Geopolymers: A Review
by Salvatore Benfratello, Luigi Palizzolo, Carmelo Sanfilippo, Antonino Valenza and Sana Ullah
Eng 2025, 6(7), 159; https://doi.org/10.3390/eng6070159 - 14 Jul 2025
Viewed by 473
Abstract
Geopolymers (GPs), as promising alternatives to ordinary Portland cement (OPC)-based concrete, have gained interest in the last 20 years due to their enhanced mechanical properties, durability, and lower environmental impact. Synthesized from industrial by-products such as slag and fly ash, geopolymers offer a [...] Read more.
Geopolymers (GPs), as promising alternatives to ordinary Portland cement (OPC)-based concrete, have gained interest in the last 20 years due to their enhanced mechanical properties, durability, and lower environmental impact. Synthesized from industrial by-products such as slag and fly ash, geopolymers offer a sustainable solution to waste management, resource utilization, and carbon dioxide reduction. However, similarly to OPC, geopolymers exhibit brittle behavior, and this characteristic defines a limit for structural applications. To tackle this issue, researchers have focused on the characterization, development, and implementation of fiber-reinforced geopolymers (FRGs), which incorporate various fibers to enhance toughness, ductility, and crack resistance, allowing their use in a wide range of structural applications. Following a general overview of sustainability considerations, this review critically analyzes the structural performance and capability of geopolymers in structural repair applications. Geopolymers demonstrate notable potential in new construction and repair applications. However, challenges such as complex mix designs, the availability of alkaline activators, curing temperatures, fiber matrix compatibility issues, and limited standards are restricting its large-scale adoption. The analysis and consolidation of an extensive dataset would support the viability of geopolymer as a durable and sustainable alternative to what is currently used in the construction industry, especially when fiber reinforcement is effectively integrated. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

19 pages, 3568 KiB  
Article
Research on the Pavement Performance of Slag/Fly Ash-Based Geopolymer-Stabilized Soil
by Chenyang Yang, Yan Jiang, Zhiyun Li, Yibin Huang and Jinchao Yue
Materials 2025, 18(13), 3173; https://doi.org/10.3390/ma18133173 - 4 Jul 2025
Viewed by 392
Abstract
The road construction sector urgently requires environmentally friendly, low-carbon, and high-performance base materials. Traditional materials exhibit issues of high energy consumption and carbon emissions, making it difficult for them to align with sustainable development requirements. While slag- and fly ash-based geopolymers demonstrate promising [...] Read more.
The road construction sector urgently requires environmentally friendly, low-carbon, and high-performance base materials. Traditional materials exhibit issues of high energy consumption and carbon emissions, making it difficult for them to align with sustainable development requirements. While slag- and fly ash-based geopolymers demonstrate promising application potential in civil engineering, research on their application in road-stabilized soils remains insufficient. To address the high energy consumption and carbon emissions associated with conventional road base materials and to fill this research gap, this study investigated the utilization of industrial solid wastes through slag-based geopolymer and fly ash as stabilizers, systematically evaluating the pavement performance of two distinct soil types. Unconfined compressive strength tests and freeze–thaw cycling tests were conducted to elucidate the effects of stabilizer dosage, fly ash co-stabilization, and compaction degree on mechanical properties. The results demonstrated that the compressive strength of both stabilized soils increased significantly with higher slag-based geopolymer content, achieving peak values of 5.2 MPa (soil sample 1) and 4.5 MPa (soil sample 2), representing a 30% improvement over cement-stabilized soils with identical mix proportions. Fly ash co-stabilization exhibited more pronounced reinforcement effects on soil sample 2. At a 98% compaction degree, soil sample 1 maintained a stable 50% strength enhancement, whereas soil sample 2 displayed a dose-dependent exponential strength increase. Freeze–thaw resistance tests revealed the superior performance of soil sample 1, showing a loss of compressive strength (BDR) of 78% with 8% geopolymer stabilization alone, which improved to 90% after fly ash co-stabilization. For soil sample 2, the BDR increased from 64% to 80% through composite stabilization. This study confirms that slag/fly ash-based geopolymer-stabilized soils not only meet the strength requirements for heavy-traffic subbases and light-traffic base courses, but also demonstrates its great potential as a low-carbon and environmentally friendly material to replace traditional road base materials. Full article
Show Figures

Figure 1

16 pages, 1674 KiB  
Article
Feasibility of the Maturity Concept for Strength Prediction in Geopolymer Based Materials
by Rafah R. Abdulmajid, Dillshad K. Bzeni, Farid H. Abed and Hussein M. Hamada
J. Compos. Sci. 2025, 9(7), 329; https://doi.org/10.3390/jcs9070329 - 26 Jun 2025
Cited by 1 | Viewed by 372 | Correction
Abstract
The aim of this work is to investigate the effect of curing temperature and time on the development of compressive strength in geopolymer mortars produced using ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Considering curing circumstances, both the activation energy and [...] Read more.
The aim of this work is to investigate the effect of curing temperature and time on the development of compressive strength in geopolymer mortars produced using ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Considering curing circumstances, both the activation energy and the reference temperature could be used properly to build a reliable anticipated model for predicting the compressive strength of geopolymer-based products (mortar and concrete) using maturity-based techniques. In this study, the compressive strength development of geopolymer mortar made from (FA) and (GGBFS) under varying curing conditions. The mortar was prepared using an alkali solution of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) in a 1:1 ratio, with NaOH molarity of 12. Specimens were cast following ASTM C109 standards, with a binder/sand ratio of 1:2.75, and compacted for full densification. FA-based mortar was cured at 40 °C, 80 °C, and 120 °C, while GGBFS-based mortar was cured at 5 °C, 15 °C, and 40 °C for durations of 0.5 to 32 days. Compressive strength was evaluated at each curing period, and data were analyzed using ASTM C1074 procedures alongside a computational model to determine the best-fit datum temperature and activation energy. The Nurse-Saul maturity method and Arrhenius equation were applied to estimate the equivalent age and maturity index of each mix. A predictive model was developed for geopolymer concrete prepared at an alkali-to-binder ratio of 0.45 and NaOH molarity of 12. The final equation demonstrated high accuracy, offering a reliable tool for predicting geopolymer strength under diverse curing conditions and providing valuable insights for optimizing geopolymer concrete formulations. Full article
Show Figures

Figure 1

40 pages, 4122 KiB  
Article
Stress–Strain Relationship of Rubberized Geopolymer Concrete with Slag and Fly Ash
by Sunday U. Azunna, Farah N. A. A. Aziz, Raizal S. M. Rashid and Ernaleza B. Mahsum
Constr. Mater. 2025, 5(3), 42; https://doi.org/10.3390/constrmater5030042 - 25 Jun 2025
Cited by 1 | Viewed by 314
Abstract
Rubberized concrete is a more environmentally friendly material than natural concrete as it helps to reduce rubber disposal issues and has superior impact resistance. Geopolymer concrete, on the other hand, is an economical concrete with higher mechanical properties than nominal concrete that uses [...] Read more.
Rubberized concrete is a more environmentally friendly material than natural concrete as it helps to reduce rubber disposal issues and has superior impact resistance. Geopolymer concrete, on the other hand, is an economical concrete with higher mechanical properties than nominal concrete that uses fly ash and slag, among other industrial solid wastes, to lower carbon footprints. Rubberized geopolymer concrete (RuGPC) combines the advantages of both concrete types, and a thorough grasp of its dynamic compressive characteristics is necessary for its use in components linked to impact resistance. Despite the advantages of RuGPC, predicting its mechanical characteristics is sometimes difficult because of variations in binder type and combination. This research investigated the combined effect of ground granulated blast furnace slag (GGBFS) and fly ash (FA) on the workability, compressive strength, and stress–strain characteristics of RuGPC with rubber at 0%, 10%, and 20% fine aggregate replacement. Thereafter, energy absorption and ductile characteristics were evaluated through the concrete toughness and ductility index. Numerical models were proposed for the cube compressive strength, modulus of elasticity, and peak strain of RuGPC at different percentages of crumb rubber. It was found that RuGPC made with GGBFS/FA had similar stress–strain characteristics to FA- and MK-based RuGPC. At 20% of crumb rubber aggregate replacement, the workability, compressive strength, modulus of elasticity, and peak stress of RuGPC reduced by 8.33%, 34.67%, 43.42%, and 44.97%, while Poisson’s ratio, peak, and ultimate strain increased by 30.34%, 8.56%, and 55.84%, respectively. The concrete toughness and ductility index increased by 22.4% and 156.67%. The proposed model’s calculated results, with R2 values of 0.9508, 0.9935, and 0.9762, show high consistency with the experimental data. RuGPC demonstrates high energy absorption capacity, making it a suitable construction material for structures requiring high-impact resistance. Full article
Show Figures

Figure 1

20 pages, 1633 KiB  
Article
Rheological and Mechanical Properties of Self-Compacting Geopolymer Concrete Reinforced with Short Basalt Fibres
by Saima Ali, Pulkit Khanna, James Stewart, Bidur Kafle and Riyadh Al-Ameri
J. Compos. Sci. 2025, 9(6), 264; https://doi.org/10.3390/jcs9060264 - 26 May 2025
Viewed by 384
Abstract
Due to their low environmental impact, various mineral or cellulose-based natural fibres have recently attracted attention in the construction industry. Hence, the current study focused on basalt fibres and explored the changes in the physical, mechanical, and micro-structural properties of geopolymer concrete reinforced [...] Read more.
Due to their low environmental impact, various mineral or cellulose-based natural fibres have recently attracted attention in the construction industry. Hence, the current study focused on basalt fibres and explored the changes in the physical, mechanical, and micro-structural properties of geopolymer concrete reinforced with such fibres. The current study used self-compacting geopolymer concrete, an eco-friendly concrete composed of fly ash, ground granulated blast furnace slag, and an alkali activator, in addition to the regular components of normal concrete. The self-compacting geopolymer concrete compacts under its own weight, so extra compaction is not required. The present study investigated the effect of the fibre content and length. Two different fibre lengths were considered: 12 mm and 30 mm. Three different percentages (1%, 2%, and 3% of the weight of the total mix) of the basalt fibres were considered to determine the optimum fibre content. The mix design was carried out for all the mixes with different fibre contents and fibre lengths, and the workability properties in the slump flow, T-500, and J-ring tests are presented. The effects of the fibre length and content were evaluated in terms of compressive strength (28 and 56 days) and split tensile strength. The results indicated that a higher fibre content effectively increased the compressive strength of 12 mm long fibres. In contrast, a lower fibre content was ideal for the 30 mm long fibres. In addition, the short fibres were more effective in enhancing the geopolymer concrete’s tensile strength than the long fibres. Furthermore, a detailed microscopic analysis was carried out, which revealed that fibre clustering, voids, etc., changed the strength of the selected fibre-reinforced self-compacting geopolymer concrete. Moreover, the analytical method’s predicted tensile strength agreed with the experimental results. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

16 pages, 17291 KiB  
Article
Effect of Waterglass on the Hydration Process of Slag-Fly Ash-Based Geopolymer
by Ran Hai, Qingpu Guan, Xiaorong Zhang, Fei Yang, Li Cui and Junxia Liu
Materials 2025, 18(11), 2450; https://doi.org/10.3390/ma18112450 - 23 May 2025
Viewed by 343
Abstract
Geopolymers possess good mechanical properties and durability, and their partial replacement of traditional Portland cement is noteworthy for promoting the development of low-carbon building materials. To clarify the influence mechanism of the mechanical properties of slag-fly ash-based geopolymer mortar, this paper investigated the [...] Read more.
Geopolymers possess good mechanical properties and durability, and their partial replacement of traditional Portland cement is noteworthy for promoting the development of low-carbon building materials. To clarify the influence mechanism of the mechanical properties of slag-fly ash-based geopolymer mortar, this paper investigated the hydration heat, composition, and morphology of hydration products with various contents and moduli of waterglass. The results showed that the compressive strength of geopolymer mortar increased with increasing waterglass content, and first rose and then fell as the waterglass modulus raised, while its flexural strength increased and then decreased with the growth in both. The compressive and flexural strength of geopolymer mortar with 1.2-modulus waterglass at 20 wt% cured for 28 days were 88.4 MPa and 9.0 MPa, respectively. The hydration temperature and cumulative hydration heat of geopolymer mortar was elevated with the increase in waterglass content, and declined with the rising waterglass modulus. The hydration products of the geopolymer consisted of dense amorphous and flocculent structures wrapped around each other. The microstructure of the geopolymer cured for 3 days was loose when the content of 1.4-modulus waterglass was 5 wt%. The relative areas of the flocculation in the geopolymer cured for 28 days increased while the waterglass modulus was greater than 1.4, forming an interface with the dense amorphous structure generated during the early hydration stage, leading to a decrease in its mechanical properties. Therefore, it is recommended for slag-fly ash geopolymer mortar that the waterglass modulus is between 1.2 and 1.4 and its content is no less than 10 wt% to ensure suitable mechanical properties. This study also provided a referenceable time period for the pouring and operation of the engineering application of slag-fly ash-based geopolymer repair mortar. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 3357 KiB  
Article
Studies on Optimization of Fly Ash, GGBS and Precipitated Silica in Geopolymer Concrete
by Anilkumar, K S Sreekeshava and C Bhargavi
Constr. Mater. 2025, 5(2), 29; https://doi.org/10.3390/constrmater5020029 - 24 Apr 2025
Viewed by 751
Abstract
Considering the urgent need for sustainable construction materials, this study investigates the mechanical and microstructural responses of novel hybrid geopolymer concrete blends incorporating Fly Ash (FA), Ground Granulated Blast Furnace Slag (GGBS), Cement (C) and Precipitated Silica (PS) as partial replacements for traditional [...] Read more.
Considering the urgent need for sustainable construction materials, this study investigates the mechanical and microstructural responses of novel hybrid geopolymer concrete blends incorporating Fly Ash (FA), Ground Granulated Blast Furnace Slag (GGBS), Cement (C) and Precipitated Silica (PS) as partial replacements for traditional cementitious materials. The motive lies in reducing CO2 emissions associated with Ordinary Portland Cement (OPC). The main aim of the study was to optimise the proportions of industrial wastes for enhanced performance and sustainability. The geopolymer mixes were activated using a 10 M sodium hydroxide (NaOH)—Sodium Silicate (Na2SiO3) solution and cast into cubes (100 mm), cylinders (100 mm × 200 mm) and prism specimens for compressive, split tensile and flexural strength testing, respectively. Six combinations of mixes were studied: FA/C (50:50), GGBS/C (50:50), FA/C/PS (50:40:10), FA/GGBS/PS (50:40:10), GGBS/C (50:50) and GGBS/FA/PS (50:40:10). The results indicated that the blend with 50% FA, 40% GGBS and 10% PS exhibited higher strength. Mixes with GGBS and PS presented a l0 lower slump due to rapid setting and higher water demand, while GGBS-FA-cement mixes indicated better workability. GGBS/C exhibited a 24.6% rise in compressive strength for 7 days, whereas FA/C presented a 31.3% rise at 90 days. GGBS/FA mix indicated a 35.5% strength drop from 28 days to 90 days. SEM and EDS analyses showed that FA-rich mixes had porous microstructures, while GGBS-based mixes formed denser matrices with increased calcium content. Full article
Show Figures

Figure 1

31 pages, 30962 KiB  
Article
Study on the Effects and Mechanisms of Fly Ash, Silica Fume, and Metakaolin on the Properties of Slag–Yellow River Sediment-Based Geopolymers
by Ge Zhang, Kunpeng Li, Huawei Shi, Chen Chen and Chengfang Yuan
Materials 2025, 18(8), 1845; https://doi.org/10.3390/ma18081845 - 17 Apr 2025
Cited by 1 | Viewed by 476
Abstract
The incorporation of mineral admixtures plays a crucial role in enhancing the performance and sustainability of geopolymer systems. This study evaluates the influence of fly ash (FA), silica fume (SF), and metakaolin (MK) as typical mineral admixtures on slag–Yellow River sediment geopolymer eco-cementitious [...] Read more.
The incorporation of mineral admixtures plays a crucial role in enhancing the performance and sustainability of geopolymer systems. This study evaluates the influence of fly ash (FA), silica fume (SF), and metakaolin (MK) as typical mineral admixtures on slag–Yellow River sediment geopolymer eco-cementitious materials. The impact of varying replacement ratios of these admixtures for slag on setting time, workability, reaction kinetics, and strength development were thoroughly investigated. To understand the underlying mechanisms, microstructural analysis was conducted using thermogravimetric–differential thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS), and mercury intrusion porosimetry (MIP). The results indicate that the incorporation of FA, SF, and metakaolin delayed the initial reaction, prolonged the induction period, and reduced the acceleration rate. These effects hindered early strength development. At 30% FA content, the matrix exhibited excellent flowability and sustained heat release. The 28-day splitting tensile strength increased by 42.40%, while compressive strength decreased by 2.85%. In contrast, 20% SF significantly improved compressive strength, increasing the 28-day compressive and splitting tensile strengths by 11.19% and 6.16%, respectively. At 15% metakaolin, the strength improvement was intermediate, with 28-day compressive and splitting tensile strengths increasing by 3.55% and 10.59%, respectively. However, dosages exceeding 20% for SF and metakaolin significantly reduced workability. The incorporation of FA, SF, and metakaolin did not interfere with the slag’s alkali-activation reaction. The newly formed N-A-S-H and C-S-H gels integrated with the original C-A-S-H gels, optimizing the pore structure and reducing pores larger than 1 µm, enhancing the matrix compactness and microstructural reinforcement. This study provides practical guidance for optimizing the use of sustainable mineral admixtures in geopolymer systems. Full article
Show Figures

Figure 1

16 pages, 7281 KiB  
Article
One-Part Geopolymer for Stabilising Crushed Rock Road Base Material
by Guilherme C. Camarini, Hayder H. Abdullah and Mohamed A. Shahin
Geosciences 2025, 15(4), 122; https://doi.org/10.3390/geosciences15040122 - 1 Apr 2025
Cited by 1 | Viewed by 597
Abstract
Geopolymers have attracted wide attention as effective soil stabilisers, presenting significant potential for several geotechnical engineering applications. These binders offer environmental benefits by utilising abandoned aluminosilicate industrial by-products, such as fly ash and slag, through mixing with an alkaline solution. In addition, they [...] Read more.
Geopolymers have attracted wide attention as effective soil stabilisers, presenting significant potential for several geotechnical engineering applications. These binders offer environmental benefits by utilising abandoned aluminosilicate industrial by-products, such as fly ash and slag, through mixing with an alkaline solution. In addition, they also decrease dependency on conventional Ordinary Portland Cement (OPC), which is identified with substantial artificial greenhouse gas emissions and high energy consumption during manufacture. However, the practical utilisation of geopolymers for the stabilisation of road materials is hindered by the intricate preparation process, which necessitates precise control over the proportions of the ingredients to achieve the required mechanical properties. This complexity becomes more pronounced when compared to the relatively simple method of using conventional cement, which requires fewer safety precautions while mixing with soil. This study investigates the development of a One-Part Geopolymer (OPG) powder, specifically formulated for the stabilisation of a Crushed Rock Base (CRB) material used for road construction. The optimal blend of OPG powder, comprising fly ash, slag and sodium metasilicate, is identified by assessing the monotonic and dynamic mechanical performances of the treated CRB compacted at the optimum moisture content using Unconfined Compressive Strength (UCS) and Repeated Load Triaxial (RLT) tests. The results of the study indicate that enhancing the strength performance of the OPG-treated CRB requires the calibration of the sodium oxide (Na2O) content in the alkaline activator with the total binder. It was also found that increasing the OPG content from 1% to 3% significantly enhances both the uniaxial strength and resilient modulus of the treated CRB, while simultaneously reducing the permanent deformation. Notably, the CRB specimens stabilised with 2% OPG exhibit mechanical properties comparable to those of bound Portland cemented materials. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

16 pages, 6602 KiB  
Article
Experimental Study of Alkali-Activated Cementitious Materials Using Thermally Activated Red Mud: Effect of the Si/Al Ratio on Fresh and Mechanical Properties
by Kai Guo, Haifeng Dong, Junyi Zhang, Liqing Zhang and Zhiping Li
Buildings 2025, 15(4), 565; https://doi.org/10.3390/buildings15040565 - 12 Feb 2025
Cited by 5 | Viewed by 1085
Abstract
Bayer red mud (RM)-based geopolymers are economical and ecofriendly alternatives to cement because of their superior performance. This study investigated alkali-activated cementitious materials by combining RM, fly ash (FA) and slag, and the mixtures were used to produce ecofriendly composites. The influence of [...] Read more.
Bayer red mud (RM)-based geopolymers are economical and ecofriendly alternatives to cement because of their superior performance. This study investigated alkali-activated cementitious materials by combining RM, fly ash (FA) and slag, and the mixtures were used to produce ecofriendly composites. The influence of the Si/Al molar ratio (3.30–3.79) on the initial properties (setting time and flowability) and hardened properties (compressive strength, drying shrinkage and water permeability) of the composite materials was studied. The Na2O content was fixed at 4 wt%, and the thermal activation temperature was 800 °C. The phase evolution and geopolymerization mechanism of the effect of the initial Si/Al molar ratio on the material properties was investigated by FTIR, XRD, TG–DTG and SEM–EDS. The results of M1.2Si333 indicated that the compressive strength of the blends can reach 33.5 MPa at 28 days, with a drying shrinkage rate of 1.20%. Compressive strength decreases, while drying shrinkage increases with a higher initial Si/Al ratio. Microstructural analyses revealed that a low Si/Al ratio and alkali activator modulus enhance the dissolution of precursors to form C–(A)–S–H gels, which increase the compressive strength. The results promoted the application of RM-based geopolymer-engineered cementitious composite and enhanced the resource efficiency of the bauxite residue. Full article
(This article belongs to the Special Issue Advanced Studies in Structure Materials—2nd Edition)
Show Figures

Figure 1

15 pages, 5050 KiB  
Article
A Comparison of the Resistance- and Capacitance-Based Sensing of Geopolymer and Cement Composites with Graphite Filler Under Compression
by Pavel Rovnaník, Ivo Kusák, Pavel Schmid and Patrik Bayer
Materials 2025, 18(4), 750; https://doi.org/10.3390/ma18040750 - 8 Feb 2025
Cited by 1 | Viewed by 711
Abstract
Aluminosilicate binders, such as Portland cement or geopolymers, are generally considered electrical insulators. In order to decrease their electrical resistance, electrically conductive fillers are added. This brings new application possibilities, such as the self-sensing and self-monitoring of smart structures. In this study, three [...] Read more.
Aluminosilicate binders, such as Portland cement or geopolymers, are generally considered electrical insulators. In order to decrease their electrical resistance, electrically conductive fillers are added. This brings new application possibilities, such as the self-sensing and self-monitoring of smart structures. In this study, three different aluminosilicate composites with the same amount of fine graphite filler (6% with respect to the basic aluminosilicate raw material) were tested for resistance- and capacitance-based self-sensing properties. Portland cement and two geopolymer binders were used as the basic matrices for the conductive composites. The composites were tested for self-sensing properties in repeated compression in the elastic area, static mechanical properties, and microstructure using scanning electron microscopy and mercury intrusion porosimetry. The results showed that alkali-activated materials are less stiff than Portland cement composite; however, they provide better self-sensing properties, regardless of the measured electrical parameters. The highest capacitance-based gauge factor 74.5 was achieved with the blended slag/fly ash geopolymer composite, whereas the cement composite showed very poor sensitivity, with a gauge factor of 10.2. The study showed a new possibility of self-sensing based on the measurement of capacitance, which is suitable for geopolymers and alkali-activated composites; however, in the case of cement composites, it is very limited. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials)
Show Figures

Figure 1

14 pages, 4161 KiB  
Article
Internal Curing Effects of Slag on Properties and Microstructure of Ambient-Cured Fly Ash-Based Geopolymer Mortar
by Li Xiao, Chao Zhang, Hongen Zhang and Zhengwu Jiang
Buildings 2024, 14(12), 3846; https://doi.org/10.3390/buildings14123846 - 30 Nov 2024
Cited by 2 | Viewed by 910
Abstract
The preparation of ambient-cured fly ash-based geopolymer mortar (FAGM) with high strength by utilizing the high chemical reactivity of slag is key to realizing the sustainable and efficient application of solid waste resources. This paper investigates the influence of different type S95 slag [...] Read more.
The preparation of ambient-cured fly ash-based geopolymer mortar (FAGM) with high strength by utilizing the high chemical reactivity of slag is key to realizing the sustainable and efficient application of solid waste resources. This paper investigates the influence of different type S95 slag contents (0%, 5%, 10%, 15%, 20%, 25%, and 30%) on the fluidity, setting time, and mechanical properties of FAGM at ambient temperature. The direct method is first adapted to monitor the influence of slag on geopolymerization. The results indicate that slag has a minimal effect on the fluidity of the mortar, while the setting time decreases and compressive strength increases with higher slag content. For FAGM with 30% slag content, the setting time is reduced from 3160 min to 140 min, with a decrease of 95.6%, and a 3-day and 28-day compressive strength increase from 1.5 MPa and 34.7 MPa to 33.5 MPa and 73.4 MPa, with enhancements of 2170.2% and 110.3%, respectively. Slag also exerts an internal curing effect, raising the internal curing temperature and accelerating the geopolymerization process of fly ash, thereby improving the compactness of FAGM and reducing its porosity. This approach successfully enables the production of high-strength, ambient-cured FAGM. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

23 pages, 3095 KiB  
Article
High-Performance Geopolymers with Municipal Solid Waste Incineration Fly Ash: Influence on the Mechanical and Environmental Properties
by Xiaochen Lin, Dapeng Zhang, Zehua Zhao, Cheng Zhang, Bing Ma, Hao Zhou, Yi Wang, Dingming Xue, Jing Tang, Chen Chen, Jing Li, Zengqing Sun, Houhu Zhang and Weixin Li
Buildings 2024, 14(11), 3518; https://doi.org/10.3390/buildings14113518 - 4 Nov 2024
Cited by 2 | Viewed by 1930
Abstract
Geopolymer is a sustainable low-carbon cementitious material that is able to incorporate large amounts of solid waste as precursors or activators. As the proportion of municipal solid waste incineration continues to rise in China, the large-scale generation of municipal solid waste incineration fly [...] Read more.
Geopolymer is a sustainable low-carbon cementitious material that is able to incorporate large amounts of solid waste as precursors or activators. As the proportion of municipal solid waste incineration continues to rise in China, the large-scale generation of municipal solid waste incineration fly ash (MSWI FA) has emerged as a significant challenge. The production of geopolymers represents a potential pathway for the comprehensive utilization of MSWI FA. However, most studies have reported that geopolymers containing MSWI FA exhibit low strength, which diminishes their economic value. Furthermore, the unclear environmental risks associated with MSWI FA-based geopolymers have impeded their broader application. This study explores the use of MSWI FA as a substitute for ground granulated blast furnace slag (GGBS) or coal fly ash (CFA) in the production of high-performance geopolymers, achieving compressive strengths exceeding 60 MPa, even when the MSWI FA content reaches 50%. A synergistic effect is observed between MSWI FA and CFA, which enhances the reactivity of CFA. With reasonable formulation, the environmental risks of geopolymers containing MSWI FA are manageable in normal rainfall scenarios. However, there remains a potential risk of soil and groundwater contamination under extreme conditions, such as acid rain. Full article
Show Figures

Figure 1

Back to TopTop