Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = fluxomics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1196 KiB  
Review
Integrating NMR and MS for Improved Metabolomic Analysis: From Methodologies to Applications
by Patricia Homobono Brito de Moura, Guillaume Leleu, Grégory Da Costa, Guillaume Marti, Pierre Pétriacq, Josep Valls Fonayet and Tristan Richard
Molecules 2025, 30(12), 2624; https://doi.org/10.3390/molecules30122624 - 17 Jun 2025
Viewed by 435
Abstract
Metabolomics, the comprehensive analysis of low-molecular-weight metabolites (typically below 1500 DA) in biological systems, relies heavily on mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Each technique has inherent strengths and weaknesses. MS offers high sensitivity and is commonly coupled with chromatography [...] Read more.
Metabolomics, the comprehensive analysis of low-molecular-weight metabolites (typically below 1500 DA) in biological systems, relies heavily on mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Each technique has inherent strengths and weaknesses. MS offers high sensitivity and is commonly coupled with chromatography to analyze complex matrices, yet it is destructive, has limited reproducibility, and provides limited structural information. NMR, while less sensitive, is non-destructive and enables structural elucidation and precise quantification. Recent studies increasingly employ data fusion (DF) strategies to combine the complementary information from NMR and MS, aiming to enhance metabolomic analyses. This review summarizes DF methodologies using NMR and MS data in metabolomics studies over the past decade. A comprehensive search of SciFinder, Scopus, and Clarivate Web of Science databases was conducted to analyze fusion techniques, methods, and statistical models. The review emphasizes the growing importance of DF in metabolomics, showing its capacity to provide a more comprehensive view of biochemical processes across diverse biological systems, including clinical, plant, and food matrices. Full article
(This article belongs to the Special Issue Feature Papers in Food Chemistry—3rd Edition)
Show Figures

Figure 1

21 pages, 531 KiB  
Review
Plant Sample Preparation for Metabolomics, Lipidomics, Ionomics, Fluxomics, and Peptidomics
by Walace Breno da Silva, Gabriel Felipe Hispagnol, Emanuel Victor dos Santos Nunes, Ian Castro-Gamboa and Alan Cesar Pilon
Separations 2025, 12(2), 21; https://doi.org/10.3390/separations12020021 - 24 Jan 2025
Cited by 1 | Viewed by 2142
Abstract
Plant metabolomics, lipidomics, ionomics, fluxomics, and peptidomics are essential approaches for exploring how plants respond to epigenetic, pathological, and environmental stimuli through comprehensive chemical profiling. Over the past decades, significant progress has been made in protocols and methodologies to address the challenges in [...] Read more.
Plant metabolomics, lipidomics, ionomics, fluxomics, and peptidomics are essential approaches for exploring how plants respond to epigenetic, pathological, and environmental stimuli through comprehensive chemical profiling. Over the past decades, significant progress has been made in protocols and methodologies to address the challenges in sample collection and extraction. Despite these advancements, sample preparation remains intricate, with ongoing debates about the most effective strategies. This review emphasizes the importance of clear research questions and well-designed experiments to minimize complexity, save time, and enhance reproducibility. It provides an overview of the key steps in these fields, including harvesting, drying, extraction, and data pre-acquisition for major analytical platforms. By discussing best practices and common challenges, this review aims to streamline methods and promote more consistent and reliable research outcomes. Full article
Show Figures

Scheme 1

13 pages, 3523 KiB  
Article
Direct Infusion Mass Spectrometry to Rapidly Map Metabolic Flux of Substrates Labeled with Stable Isotopes
by Nils W. F. Meijer, Susan Zwakenberg, Johan Gerrits, Denise Westland, Arif I. Ardisasmita, Sabine A. Fuchs, Nanda M. Verhoeven-Duif, Judith J. M. Jans and Fried J. T. Zwartkruis
Metabolites 2024, 14(5), 246; https://doi.org/10.3390/metabo14050246 - 25 Apr 2024
Cited by 1 | Viewed by 2429
Abstract
Direct infusion–high-resolution mass spectrometry (DI-HRMS) allows for rapid profiling of complex mixtures of metabolites in blood, cerebrospinal fluid, tissue samples and cultured cells. Here, we present a DI-HRMS method suitable for the rapid determination of metabolic fluxes of isotopically labeled substrates in cultured [...] Read more.
Direct infusion–high-resolution mass spectrometry (DI-HRMS) allows for rapid profiling of complex mixtures of metabolites in blood, cerebrospinal fluid, tissue samples and cultured cells. Here, we present a DI-HRMS method suitable for the rapid determination of metabolic fluxes of isotopically labeled substrates in cultured cells and organoids. We adapted an automated annotation pipeline by selecting labeled adducts that best represent the majority of 13C and/or 15N-labeled glycolytic and tricarboxylic acid cycle intermediates as well as a number of their derivatives. Furthermore, valine, leucine and several of their degradation products were included. We show that DI-HRMS can determine anticipated and unanticipated alterations in metabolic fluxes along these pathways that result from the genetic alteration of single metabolic enzymes, including pyruvate dehydrogenase (PDHA1) and glutaminase (GLS). In addition, it can precisely pinpoint metabolic adaptations to the loss of methylmalonyl-CoA mutase in patient-derived liver organoids. Our results highlight the power of DI-HRMS in combination with stable isotopically labeled compounds as an efficient screening method for fluxomics. Full article
(This article belongs to the Special Issue Advances in Metabolic Profiling of Biological Samples 2nd Edition)
Show Figures

Figure 1

14 pages, 1561 KiB  
Article
Selected Ion Monitoring for Orbitrap-Based Metabolomics
by Wenyun Lu, Matthew J. McBride, Won Dong Lee, Xi Xing, Xincheng Xu, Xi Li, Anna M. Oschmann, Yihui Shen, Caroline Bartman and Joshua D. Rabinowitz
Metabolites 2024, 14(4), 184; https://doi.org/10.3390/metabo14040184 - 25 Mar 2024
Cited by 1 | Viewed by 7357
Abstract
Orbitrap mass spectrometry in full scan mode enables the simultaneous detection of hundreds of metabolites and their isotope-labeled forms. Yet, sensitivity remains limiting for many metabolites, including low-concentration species, poor ionizers, and low-fractional-abundance isotope-labeled forms in isotope-tracing studies. Here, we explore selected ion [...] Read more.
Orbitrap mass spectrometry in full scan mode enables the simultaneous detection of hundreds of metabolites and their isotope-labeled forms. Yet, sensitivity remains limiting for many metabolites, including low-concentration species, poor ionizers, and low-fractional-abundance isotope-labeled forms in isotope-tracing studies. Here, we explore selected ion monitoring (SIM) as a means of sensitivity enhancement. The analytes of interest are enriched in the orbitrap analyzer by using the quadrupole as a mass filter to select particular ions. In tissue extracts, SIM significantly enhances the detection of ions of low intensity, as indicated by improved signal-to-noise (S/N) ratios and measurement precision. In addition, SIM improves the accuracy of isotope-ratio measurements. SIM, however, must be deployed with care, as excessive accumulation in the orbitrap of similar m/z ions can lead, via space-charge effects, to decreased performance (signal loss, mass shift, and ion coalescence). Ion accumulation can be controlled by adjusting settings including injection time and target ion quantity. Overall, we suggest using a full scan to ensure broad metabolic coverage, in tandem with SIM, for the accurate quantitation of targeted low-intensity ions, and provide methods deploying this approach to enhance metabolome coverage. Full article
(This article belongs to the Topic Application of Analytical Technology in Metabolomics)
Show Figures

Graphical abstract

19 pages, 7473 KiB  
Article
Evaluation of GC/MS-Based 13C-Positional Approaches for TMS Derivatives of Organic and Amino Acids and Application to Plant 13C-Labeled Experiments
by Younès Dellero, Olivier Filangi and Alain Bouchereau
Metabolites 2023, 13(4), 466; https://doi.org/10.3390/metabo13040466 - 23 Mar 2023
Cited by 5 | Viewed by 2385
Abstract
Analysis of plant metabolite 13C-enrichments with gas-chromatography mass spectrometry (GC/MS) has gained interest recently. By combining multiple fragments of a trimethylsilyl (TMS) derivative, 13C-positional enrichments can be calculated. However, this new approach may suffer from analytical biases depending on the fragments [...] Read more.
Analysis of plant metabolite 13C-enrichments with gas-chromatography mass spectrometry (GC/MS) has gained interest recently. By combining multiple fragments of a trimethylsilyl (TMS) derivative, 13C-positional enrichments can be calculated. However, this new approach may suffer from analytical biases depending on the fragments selected for calculation leading to significant errors in the final results. The goal of this study was to provide a framework for the validation of 13C-positional approaches and their application to plants based on some key metabolites (glycine, serine, glutamate, proline, α-alanine and malate). For this purpose, we used tailor-made 13C-PT standards, harboring known carbon isotopologue distributions and 13C-positional enrichments, to evaluate the reliability of GC-MS measurements and positional calculations. Overall, we showed that some mass fragments of proline_2TMS, glutamate_3TMS, malate_3TMS and α-alanine_2TMS had important biases for 13C measurements resulting in significant errors in the computational estimation of 13C-positional enrichments. Nevertheless, we validated a GC/MS-based 13C-positional approach for the following atomic positions: (i) C1 and C2 of glycine_3TMS, (ii) C1, C2 and C3 of serine_3TMS, and (iii) C1 of malate_3TMS and glutamate_3TMS. We successfully applied this approach to plant 13C-labeled experiments for investigating key metabolic fluxes of plant primary metabolism (photorespiration, tricarboxylic acid cycle and phosphoenolpyruvate carboxylase activity). Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

24 pages, 3079 KiB  
Article
Wild Wheat Rhizosphere-Associated Plant Growth-Promoting Bacteria Exudates: Effect on Root Development in Modern Wheat and Composition
by Houssein Zhour, Fabrice Bray, Israa Dandache, Guillaume Marti, Stéphanie Flament, Amélie Perez, Maëlle Lis, Llorenç Cabrera-Bosquet, Thibaut Perez, Cécile Fizames, Ezekiel Baudoin, Ikram Madani, Loubna El Zein, Anne-Aliénor Véry, Christian Rolando, Hervé Sentenac, Ali Chokr and Jean-Benoît Peltier
Int. J. Mol. Sci. 2022, 23(23), 15248; https://doi.org/10.3390/ijms232315248 - 3 Dec 2022
Cited by 4 | Viewed by 4430
Abstract
Diazotrophic bacteria isolated from the rhizosphere of a wild wheat ancestor, grown from its refuge area in the Fertile Crescent, were found to be efficient Plant Growth-Promoting Rhizobacteria (PGPR), upon interaction with an elite wheat cultivar. In nitrogen-starved plants, they increased the amount [...] Read more.
Diazotrophic bacteria isolated from the rhizosphere of a wild wheat ancestor, grown from its refuge area in the Fertile Crescent, were found to be efficient Plant Growth-Promoting Rhizobacteria (PGPR), upon interaction with an elite wheat cultivar. In nitrogen-starved plants, they increased the amount of nitrogen in the seed crop (per plant) by about twofold. A bacterial growth medium was developed to investigate the effects of bacterial exudates on root development in the elite cultivar, and to analyze the exo-metabolomes and exo-proteomes. Altered root development was observed, with distinct responses depending on the strain, for instance, with respect to root hair development. A first conclusion from these results is that the ability of wheat to establish effective beneficial interactions with PGPRs does not appear to have undergone systematic deep reprogramming during domestication. Exo-metabolome analysis revealed a complex set of secondary metabolites, including nutrient ion chelators, cyclopeptides that could act as phytohormone mimetics, and quorum sensing molecules having inter-kingdom signaling properties. The exo-proteome-comprised strain-specific enzymes, and structural proteins belonging to outer-membrane vesicles, are likely to sequester metabolites in their lumen. Thus, the methodological processes we have developed to collect and analyze bacterial exudates have revealed that PGPRs constitutively exude a highly complex set of metabolites; this is likely to allow numerous mechanisms to simultaneously contribute to plant growth promotion, and thereby to also broaden the spectra of plant genotypes (species and accessions/cultivars) with which beneficial interactions can occur. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 2037 KiB  
Article
Untargeted Metabolomics Combined with Metabolic Flux Analysis Reveals the Mechanism of Sodium Citrate for High S-Adenosyl-Methionine Production by Pichia pastoris
by Wentao Xu, Feng Xu, Weijing Song, Le Dong, Jiangchao Qian and Mingzhi Huang
Fermentation 2022, 8(12), 681; https://doi.org/10.3390/fermentation8120681 - 27 Nov 2022
Cited by 3 | Viewed by 2875
Abstract
S-adenosyl-methionine (SAM) is crucial for organisms to maintain some physiological functions. However, the inconsistency between high L-methionine feeding rate and yield during SAM production at an industrial scale and its metabolic mechanism have not been elucidated. Here, the cellular metabolic mechanism of feeding [...] Read more.
S-adenosyl-methionine (SAM) is crucial for organisms to maintain some physiological functions. However, the inconsistency between high L-methionine feeding rate and yield during SAM production at an industrial scale and its metabolic mechanism have not been elucidated. Here, the cellular metabolic mechanism of feeding sodium citrate to the Pichia pastoris (P. pastoris) G12’/AOX-acs2 strain to enhance SAM production was investigated using untargeted metabolomics and metabolic flux analysis. The results indicated that the addition of sodium citrate has a facilitative effect on SAM production. In addition, 25 metabolites, such as citrate, cis-aconitate, and L-glutamine, were significantly up-regulated, and 16 metabolites, such as glutathione, were significantly down-regulated. Furthermore, these significantly differential metabolites were mainly distributed in 13 metabolic pathways, such as the tricarboxylic acid (TCA) cycle. In addition, the metabolic fluxes of the glycolysis pathway, pentose phosphate pathway, TCA cycle, and glyoxylate pathway were increased by 20.45–29.32%, respectively, under the condition of feeding sodium citrate compared with the control. Finally, it was speculated that the upregulation of dihydroxyacetone level might increase the activity of alcohol oxidase AOX1 to promote methanol metabolism by combining metabolomics and fluxomics. Meanwhile, acetyl coenzyme A might enhance the activity of citrate synthase through allosteric activation to promote the flux of the TCA cycle and increase the level of intracellular oxidative phosphorylation, thus contributing to SAM production. These new insights into the L-methionine utilization for SAM biosynthesis by systematic biology in P. pastoris provides a novel vision for increasing its industrial production. Full article
(This article belongs to the Special Issue Yeast - Fermentation)
Show Figures

Figure 1

29 pages, 2666 KiB  
Review
Isotope-Assisted Metabolic Flux Analysis: A Powerful Technique to Gain New Insights into the Human Metabolome in Health and Disease
by Bilal Moiz, Andrew Li, Surya Padmanabhan, Ganesh Sriram and Alisa Morss Clyne
Metabolites 2022, 12(11), 1066; https://doi.org/10.3390/metabo12111066 - 4 Nov 2022
Cited by 11 | Viewed by 3666
Abstract
Cell metabolism represents the coordinated changes in genes, proteins, and metabolites that occur in health and disease. The metabolic fluxome, which includes both intracellular and extracellular metabolic reaction rates (fluxes), therefore provides a powerful, integrated description of cellular phenotype. However, intracellular fluxes cannot [...] Read more.
Cell metabolism represents the coordinated changes in genes, proteins, and metabolites that occur in health and disease. The metabolic fluxome, which includes both intracellular and extracellular metabolic reaction rates (fluxes), therefore provides a powerful, integrated description of cellular phenotype. However, intracellular fluxes cannot be directly measured. Instead, flux quantification requires sophisticated mathematical and computational analysis of data from isotope labeling experiments. In this review, we describe isotope-assisted metabolic flux analysis (iMFA), a rigorous computational approach to fluxome quantification that integrates metabolic network models and experimental data to generate quantitative metabolic flux maps. We highlight practical considerations for implementing iMFA in mammalian models, as well as iMFA applications in in vitro and in vivo studies of physiology and disease. Finally, we identify promising new frontiers in iMFA which may enable us to fully unlock the potential of iMFA in biomedical research. Full article
(This article belongs to the Special Issue Frontiers in Metabolic Flux Analysis on Human Disease)
Show Figures

Figure 1

14 pages, 12242 KiB  
Article
Fate of Sulfonamides and Tetracyclines in Meat during Pan Cooking: Focus on the Thermodegradation of Sulfamethoxazole
by Christelle Planche, Sylvie Chevolleau, Maria-Hélèna Noguer-Meireles, Isabelle Jouanin, Sophie Mompelat, Jérémy Ratel, Eric Verdon, Erwan Engel and Laurent Debrauwer
Molecules 2022, 27(19), 6233; https://doi.org/10.3390/molecules27196233 - 22 Sep 2022
Cited by 5 | Viewed by 2378
Abstract
Although antimicrobials are generally found in trace amounts in meat, the human health risk they bear cannot be ignored. With the ultimate aim of making a better assessment of consumer exposure, this study explored the effects of pan cooking on sulfonamides and tetracyclines [...] Read more.
Although antimicrobials are generally found in trace amounts in meat, the human health risk they bear cannot be ignored. With the ultimate aim of making a better assessment of consumer exposure, this study explored the effects of pan cooking on sulfonamides and tetracyclines in meat. Screening of these antimicrobials in cooked meat was first performed by the European Union Reference Laboratory on the basis of HPLC-MS/MS analyses. A proof of concept approach using radiolabeling was then carried out on the most cooking-sensitive antimicrobial—sulfamethoxazole—to assess if a thermal degradation could explain the observed cooking losses. Degradation products were detected thanks to separation by HPLC and monitoring by online radioactivity detection. HPLC-Orbitrap HRMS analyses completed by 1D and 2D NMR experiments allowed the structural characterization of these degradation compounds. This study revealed that cooking could induce significant antimicrobial losses of up to 45% for sulfamethoxazole. Six potential degradation products of 14C-sulfamethoxazole were detected in cooked meat, and a thermal degradation pattern was proposed. This study highlights the importance of considering the cooking step in chemical risk assessment procedures and its impact on the level of chemical contaminants in meat and on the formation of potentially toxic breakdown compounds. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

13 pages, 2334 KiB  
Article
Platelet Lipidome Fingerprint: New Assistance to Characterize Platelet Dysfunction in Obesity
by Gaëtan Chicanne, Maria N. Barrachina, Anaelle Durbec, Justine Bertrand-Michel, Sara Troitiño, Lidia Hermida-Nogueira, Aurelio M. Sueiro, María Pardo, Bernard Payrastre and Ángel García
Int. J. Mol. Sci. 2022, 23(15), 8326; https://doi.org/10.3390/ijms23158326 - 28 Jul 2022
Cited by 11 | Viewed by 4406
Abstract
Obesity is associated with a pro-inflammatory and pro-thrombotic state that supports atherosclerosis progression and platelet hyper-reactivity. During the last decade, the platelet lipidome has been considered a treasure trove, as it is a source of biomarkers for preventing and treating different pathologies. The [...] Read more.
Obesity is associated with a pro-inflammatory and pro-thrombotic state that supports atherosclerosis progression and platelet hyper-reactivity. During the last decade, the platelet lipidome has been considered a treasure trove, as it is a source of biomarkers for preventing and treating different pathologies. The goal of the present study was to determine the lipid profile of platelets from non-diabetic, severely obese patients compared with their age- and sex-matched lean controls. Lipids from washed platelets were isolated and major phospholipids, sphingolipids and neutral lipids were analyzed either by gas chromatography or by liquid chromatography coupled to mass spectrometry. Despite a significant increase in obese patient’s plasma triglycerides, there were no significant differences in the levels of triglycerides in platelets among the two groups. In contrast, total platelet cholesterol was significantly decreased in the obese group. The profiling of phospholipids showed that phosphatidylcholine and phosphatidylethanolamine contents were significantly reduced in platelets from obese patients. On the other hand, no significant differences were found in the sphingomyelin and ceramide levels, although there was also a tendency for reduced levels in the obese group. The outline of the glycerophospholipid and sphingolipid molecular species (fatty-acyl profiles) was similar in the two groups. In summary, these lipidomics data indicate that platelets from obese patients have a unique lipid fingerprint that may guide further studies and provide mechanistic-driven perspectives related to the hyperactivate state of platelets in obesity. Full article
(This article belongs to the Special Issue The Role of Platelets in Human Health and Disease)
Show Figures

Figure 1

21 pages, 932 KiB  
Article
Profiling of Essential Oils from the Leaves of Pistacia lentiscus Collected in the Algerian Region of Tizi-Ouzou: Evidence of Chemical Variations Associated with Climatic Contrasts between Littoral and Mountain Samples
by Chabha Sehaki, Nathalie Jullian, Elodie Choque, Rebecca Dauwe, Jean Xavier Fontaine, Roland Molinie, Fadila Ayati, Farida Fernane and Eric Gontier
Molecules 2022, 27(13), 4148; https://doi.org/10.3390/molecules27134148 - 28 Jun 2022
Cited by 19 | Viewed by 2776
Abstract
Leaves of Pistacia lentiscus were collected from two Algerian sites in the mountains and the littoral of the Tizi-Ouzou region. The harvest was conducted in four consecutive seasons on the same selected set of trees. Essential oils (EOs) were extracted by hydrodistillation; then, [...] Read more.
Leaves of Pistacia lentiscus were collected from two Algerian sites in the mountains and the littoral of the Tizi-Ouzou region. The harvest was conducted in four consecutive seasons on the same selected set of trees. Essential oils (EOs) were extracted by hydrodistillation; then, they were analyzed by gas chromatography coupled mass spectrometry (GC-MS). Forty-seven constituents could be detected and quantified, including α-pinene (2–13%), β-caryophyllene (8–25%), β-myrcene (0.3–19%), bornyl acetate (0.8–7%), δ-cadinene (3–8%), bisabolol (1–9%), β-pinene (0.9–7%), caryophyllene oxide (4–9%), and α-cadinol (3–11%). Antioxidant (AOx) activities of the EOs were assessed by ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2′-azino-bis (3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) assays. Significant differences in EO composition and AOx activities appeared dependent on the season and the site. Variations of AOx activities were significant for the FRAP and ABTS tests but not for DPPH. Characterization of the leaf fatty acyl (FA) profiles was performed by GC-MS. Variability appeared according to season and altitude. Polyunsaturated fatty acids levels were high (27–55%) at the coldest date and place. The levels of linolenic acyl in the leaves were significantly correlated with bisabolol levels in the EOs (Spearman’s correlation coefficient: 0.818). Such results will be useful for the sustainable local valorization of wild P. lentiscus. These data also open new routes for further studies on terpenoid biosynthesis using correlation networks and fluxomic approaches. Full article
Show Figures

Graphical abstract

14 pages, 2253 KiB  
Article
Combined HP 13C Pyruvate and 13C-Glucose Fluxomic as a Potential Marker of Response to Targeted Therapies in YUMM1.7 Melanoma Xenografts
by Chantale Farah, Marie-Aline Neveu, Caner Yelek, Caroline Bouzin, Bernard Gallez, Jean-François Baurain, Lionel Mignion and Bénédicte F. Jordan
Biomedicines 2022, 10(3), 717; https://doi.org/10.3390/biomedicines10030717 - 19 Mar 2022
Cited by 8 | Viewed by 3511
Abstract
A vast majority of BRAF V600E mutated melanoma patients will develop resistance to combined BRAF/MEK inhibition after initial clinical response. Resistance to targeted therapy is described to be accompanied by specific metabolic changes in melanoma. The aim of this work was to evaluate [...] Read more.
A vast majority of BRAF V600E mutated melanoma patients will develop resistance to combined BRAF/MEK inhibition after initial clinical response. Resistance to targeted therapy is described to be accompanied by specific metabolic changes in melanoma. The aim of this work was to evaluate metabolic imaging using 13C-MRS (Magnetic Resonance Spectroscopy) as a marker of response to BRAF/MEK inhibition in a syngeneic melanoma model. Tumor growth was significantly delayed in mice bearing YUMM1.7 melanoma xenografts treated with the BRAF inhibitor vemurafenib, and/or with the MEK inhibitor trametinib, in comparison with the control group. 13C-MRS was performed in vivo after injection of hyperpolarized (HP) 13C-pyruvate, at baseline and 24 h after treatment, to evaluate dynamic changes in pyruvate-lactate exchange. Furthermore, ex vivo 13C-MRS steady state metabolic tracing experiments were performed after U-13C-glucose or 5-13C-glutamine injection, 24 h after treatment. The HP 13C-lactate-to-pyruvate ratio was not modified in response to BRAF/MEK inhibition, whereas the production of 13C-lactate from 13C-glucose was significantly reduced 24 h after treatment with vemurafenib, trametinib, or with the combined inhibitors. Conversely, 13C-glutamine metabolism was not modified in response to BRAF/MEK inhibition. In conclusion, we identified 13C-glucose fluxomic as a potential marker of response to BRAF/MEK inhibition in YUMM1.7 melanoma xenografts. Full article
(This article belongs to the Special Issue Advanced Research in Molecular Imaging of Immunity and Inflammation)
Show Figures

Figure 1

22 pages, 4266 KiB  
Article
In Silico Exploration of Mycobacterium tuberculosis Metabolic Networks Shows Host-Associated Convergent Fluxomic Phenotypes
by Guillem Santamaria, Paula Ruiz-Rodriguez, Chantal Renau-Mínguez, Francisco R. Pinto and Mireia Coscollá
Biomolecules 2022, 12(3), 376; https://doi.org/10.3390/biom12030376 - 28 Feb 2022
Cited by 2 | Viewed by 3327
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is composed of several lineages characterized by a genome identity higher than 99%. Although the majority of the lineages are associated with humans, at least four lineages are adapted to other mammals, including different M. [...] Read more.
Mycobacterium tuberculosis, the causative agent of tuberculosis, is composed of several lineages characterized by a genome identity higher than 99%. Although the majority of the lineages are associated with humans, at least four lineages are adapted to other mammals, including different M. tuberculosis ecotypes. Host specificity is associated with higher virulence in its preferred host in ecotypes such as M. bovis. Deciphering what determines the preference of the host can reveal host-specific virulence patterns. However, it is not clear which genomic determinants might be influencing host specificity. In this study, we apply a combination of unsupervised and supervised classification methods on genomic data of ~27,000 M. tuberculosis clinical isolates to decipher host-specific genomic determinants. Host-specific genomic signatures are scarce beyond known lineage-specific mutations. Therefore, we integrated lineage-specific mutations into the iEK1011 2.0 genome-scale metabolic model to obtain lineage-specific versions of it. Flux distributions sampled from the solution spaces of these models can be accurately separated according to host association. This separation correlated with differences in cell wall processes, lipid, amino acid and carbon metabolic subsystems. These differences were observable when more than 95% of the samples had a specific growth rate significantly lower than the maximum achievable by the models. This suggests that these differences might manifest at low growth rate settings, such as the restrictive conditions M. tuberculosis suffers during macrophage infection. Full article
(This article belongs to the Special Issue Computational Approaches for the Study of Biomolecular Networks)
Show Figures

Figure 1

39 pages, 1074 KiB  
Review
Investigating the Postprandial Metabolome after Challenge Tests to Assess Metabolic Flexibility and Dysregulations Associated with Cardiometabolic Diseases
by Gaïa Lépine, Marie Tremblay-Franco, Sabrine Bouder, Laurianne Dimina, Hélène Fouillet, François Mariotti and Sergio Polakof
Nutrients 2022, 14(3), 472; https://doi.org/10.3390/nu14030472 - 21 Jan 2022
Cited by 30 | Viewed by 5139
Abstract
This review focuses on the added value provided by a research strategy applying metabolomics analyses to assess phenotypic flexibility in response to different nutritional challenge tests in the framework of metabolic clinical studies. We discuss findings related to the Oral Glucose Tolerance Test [...] Read more.
This review focuses on the added value provided by a research strategy applying metabolomics analyses to assess phenotypic flexibility in response to different nutritional challenge tests in the framework of metabolic clinical studies. We discuss findings related to the Oral Glucose Tolerance Test (OGTT) and to mixed meals with varying fat contents and food matrix complexities. Overall, the use of challenge tests combined with metabolomics revealed subtle metabolic dysregulations exacerbated during the postprandial period when comparing healthy and at cardiometabolic risk subjects. In healthy subjects, consistent postprandial metabolic shifts driven by insulin action were reported (e.g., a switch from lipid to glucose oxidation for energy fueling) with similarities between OGTT and mixed meals, especially during the first hours following meal ingestion while differences appeared in a wider timeframe. In populations with expected reduced phenotypic flexibility, often associated with increased cardiometabolic risk, a blunted response on most key postprandial pathways was reported. We also discuss the most suitable statistical tools to analyze the dynamic alterations of the postprandial metabolome while accounting for complexity in study designs and data structure. Overall, the in-depth characterization of the postprandial metabolism and associated phenotypic flexibility appears highly promising for a better understanding of the onset of cardiometabolic diseases. Full article
(This article belongs to the Special Issue Nutrition, Metabolites, and Human Health)
Show Figures

Graphical abstract

23 pages, 5429 KiB  
Article
The Solvent Dimethyl Sulfoxide Affects Physiology, Transcriptome and Secondary Metabolism of Aspergillus flavus
by Laura H. Costes, Yannick Lippi, Claire Naylies, Emilien L. Jamin, Clémence Genthon, Sylviane Bailly, Isabelle P. Oswald, Jean-Denis Bailly and Olivier Puel
J. Fungi 2021, 7(12), 1055; https://doi.org/10.3390/jof7121055 - 9 Dec 2021
Cited by 8 | Viewed by 4602
Abstract
Dimethyl sulfoxide (DSMO) is a simple molecule widely used because of its great solvating ability, but this solvent also has little-known biological effects, especially on fungi. Aspergillus flavus is a notorious pathogenic fungus which may contaminate a large variety of crops worldwide by [...] Read more.
Dimethyl sulfoxide (DSMO) is a simple molecule widely used because of its great solvating ability, but this solvent also has little-known biological effects, especially on fungi. Aspergillus flavus is a notorious pathogenic fungus which may contaminate a large variety of crops worldwide by producing aflatoxins, endangering at the same time food safety and international trade. The aim of this study was to characterize the effect of DMSO on A. flavus including developmental parameters such as germination and sporulation, as well as its transcriptome profile using high-throughput RNA-sequencing assay and its impact on secondary metabolism (SM). After DMSO exposure, A. flavus displayed depigmented conidia in a dose-dependent manner. The four-day exposition of cultures to two doses of DMSO, chosen on the basis of depigmentation intensity (35 mM “low” and 282 mM “high”), led to no significant impact on fungal growth, germination or sporulation. However, transcriptomic data analysis showed that 4891 genes were differentially regulated in response to DMSO (46% of studied transcripts). A total of 4650 genes were specifically regulated in response to the highest dose of DMSO, while only 19 genes were modulated upon exposure to the lowest dose. Secondary metabolites clusters genes were widely affected by the DMSO, with 91% of clusters impacted at the highest dose. Among these, aflatoxins, cyclopiazonic acid and ustiloxin B clusters were totally under-expressed. The genes belonging to the AFB1 cluster were the most negatively modulated ones, the two doses leading to 63% and 100% inhibition of the AFB1 production, respectively. The SM analysis also showed the disappearance of ustiloxin B and a 10-fold reduction of cyclopiazonic acid level when A. flavus was treated by the higher DMSO dose. In conclusion, the present study showed that DMSO impacted widely A. flavus’ transcriptome, including secondary metabolism gene clusters with the aflatoxins at the head of down-regulated ones. The solvent also inhibits conidial pigmentation, which could illustrate common regulatory mechanisms between aflatoxins and fungal pigment pathways. Because of its effect on major metabolites synthesis, DMSO should not be used as solvent especially in studies testing anti-aflatoxinogenic compounds. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

Back to TopTop