Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = fluvial terraces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5761 KiB  
Article
Topography and Substrate Lithology Control the Position of Fluvial Channels on a Drained Lake Floor, the Case of the Postglacial Ain Valley (Eastern France)
by Cornelis Kasse and Oeki Verhage
Quaternary 2025, 8(2), 29; https://doi.org/10.3390/quat8020029 - 6 Jun 2025
Viewed by 838
Abstract
The development of fluvial systems over long time scales is a complex interplay of tectonic, climatic, and lithological factors. The initiation and location of fluvial channels in the landscape is less well understood. Recently exposed surfaces provide opportunities to determine factors controlling fluvial [...] Read more.
The development of fluvial systems over long time scales is a complex interplay of tectonic, climatic, and lithological factors. The initiation and location of fluvial channels in the landscape is less well understood. Recently exposed surfaces provide opportunities to determine factors controlling fluvial channel initiation. During the Würm Last Glacial Maximum (c. 20 ka), the Ain valley in eastern France transformed into a large proglacial lake. Following deglaciation, new drainage channels initiated on the drained lake floor. Extensive morphological and sedimentological mapping and lithogenetic interpretation of the valley fill enable to determine the forcing factors of fluvial channel initiation. The location of the postglacial channels is determined by the initial topography of the lake floor and lithological variability of the sediments. Tributary channels of the Ain preferentially initiated in depressions of gently sloping former delta bottomsets, which prograded from different directions. In addition, the location of channels is determined by the presence of low-permeability, glacio-lacustrine deposits, that favored overland flow and erosion, compared to the highly permeable terrace deposits on the former lake floor. The differences in erodibility of the fine-grained and coarse-grained deposits resulted in relief inversion. Full article
Show Figures

Figure 1

27 pages, 25471 KiB  
Article
Semi-Automated Extraction and Geomorphic Analysis of Flat Surface Landforms in Large Areas
by Salvatore Ivo Giano, Eva Pescatore and Vincenzo Siervo
Water 2025, 17(7), 1022; https://doi.org/10.3390/w17071022 - 31 Mar 2025
Viewed by 463
Abstract
The semi-automated extraction of flat surface landforms was carried out, merging a GIS tools application and a geomorphic analysis. The study focuses on seven areas in southern Italy, characterized by different physical landscapes, using a 5 m resolution digital elevation model (DEM). The [...] Read more.
The semi-automated extraction of flat surface landforms was carried out, merging a GIS tools application and a geomorphic analysis. The study focuses on seven areas in southern Italy, characterized by different physical landscapes, using a 5 m resolution digital elevation model (DEM). The GIS application allowed the selection of polygonal areas of flat surfaces from diverse arrays of landforms and was implemented using a filtering process to minimize noises. Subsequently, the mean elevation and mean slope of the detected surfaces were extracted and visualized using scatter plots, which helped in determining the elevation ranges and average slope angles for various flat-floored and terraced surfaces. To enhance the reliability of the results, a detailed geomorphic analysis and field survey were conducted to differentiate between fluvial and marine flat surfaces across different physical landscapes. This comprehensive approach included statistical analyses and comparisons with the existing literature to validate the identified flat surfaces, ensuring the accuracy and reliability of the semi-automated extraction procedure. The integration of GIS technology with field investigations not only streamlines the detection of flat landforms but also contributes to a deeper understanding of their geomorphic characteristics, ultimately enhancing geomorphic analysis efficiency. Full article
Show Figures

Figure 1

21 pages, 2551 KiB  
Article
The Diversity of Geochemical and Ecotoxicological Indices of Alluvial Deposits Reflects the Pattern of Landforms: The Case of the Vistula River Valley in the Małopolski Gorge (Poland)
by Agnieszka Kałmykow-Piwińska and Ewa Falkowska
Water 2025, 17(1), 64; https://doi.org/10.3390/w17010064 - 30 Dec 2024
Cited by 1 | Viewed by 965
Abstract
This study aimed to (1) determine the environmental risk resulting from the contamination of river valley sediments with trace elements of anthropogenic origin, (2) assess the relationship between this environmental risk and the geomorphology of the valley, and (3) identify areas that may [...] Read more.
This study aimed to (1) determine the environmental risk resulting from the contamination of river valley sediments with trace elements of anthropogenic origin, (2) assess the relationship between this environmental risk and the geomorphology of the valley, and (3) identify areas that may become a source of contamination. This research was conducted in the Vistula River Valley between Sulejów and Kazimierz Dolny (Poland). Geochemical and ecotoxicological indices (for fraction < 1 mm) were analyzed (EF, Igeo, PI, CF, Cd, PISum, PIAvg, PINemerow, PLI, ER, RI). Geomorphological mapping, supported by DEM and remote sensing analysis, was performed. High concentrations of trace elements in sediments, as determined by the ICP-OES and ICP-MS methods throughout the study area, indicate generally high environmental degradation and a moderate-to-considerable ecological risk. Contamination differs in the sediments of individual landforms: the highest levels are found in the sediments of the contemporary floodplain and oxbow lakes, while the lowest are observed in the Pleistocene terrace sediments. Only high concentrations of As, Pb, Zn, and Cd are of anthropogenic origin. Their source is probably the mining area of Upper Silesia (As, Pb, Zn) and agricultural activity (Cd). The differences in the values of geochemical indices in individual landforms confirm the influence of fluvial processes on the distribution of trace elements. Full article
Show Figures

Figure 1

26 pages, 17323 KiB  
Article
Linking Inca Terraces with Landslide Occurrence in the Ticsani Valley, Peru
by Gonzalo Ronda, Paul Santi, Isaac E. Pope, Arquímedes L. Vargas Luque and Christ Jesus Barriga Paria
Geosciences 2024, 14(11), 315; https://doi.org/10.3390/geosciences14110315 - 18 Nov 2024
Cited by 1 | Viewed by 2757
Abstract
Since the times of the Incas, farmers in the remote Andes of Peru have constructed terraces to grow crops in a landscape characterized by steep slopes, semiarid climate, and landslide geohazards. Recent investigations have concluded that terracing and irrigation techniques could enhance landslide [...] Read more.
Since the times of the Incas, farmers in the remote Andes of Peru have constructed terraces to grow crops in a landscape characterized by steep slopes, semiarid climate, and landslide geohazards. Recent investigations have concluded that terracing and irrigation techniques could enhance landslide risk due to the increase in water percolation and interception of surface flow in unstable slopes, leading to failure. In this study, we generated an inventory of 170 landslides and terraced areas to assess the spatial coherence, causative relations, and geomechanical processes linking landslide presence and Inca terraces in a 250 km2 area located in the Ticsani valley, southern Peru. To assess spatial coherence, a tool was developed based on the confusion matrix approach. Performance parameters were quantified for areas close to the main rivers and communities yielding precision and recall values between 64% and 81%. On a larger scale, poor performance was obtained pointing to the existence of additional processes linked to landslide presence. To investigate the role of other natural variables in landslide prediction, a logistic regression analysis was performed. The results showed that terrace presence is a statistically relevant factor that bolsters landslide presence predictions, apart from first-order natural variables like distance to rivers, curvature, and geology. To explore potential geomechanical processes linking terraces and slope failures, FEM numerical modeling was conducted. Results suggested that both decreased permeability and increased surface irrigation, at 70% of the average annual rainfall, are capable of inducing slope failure. Overall, irrigated terraces appear to further promote slope instability due to infiltration of irrigation water in an area characterized by fluvial erosion, high relief, and poor geologic materials, exposing local communities to increased landslide risk. Full article
(This article belongs to the Special Issue Landslide Monitoring and Mapping II)
Show Figures

Figure 1

25 pages, 4433 KiB  
Article
Sequential Changes in Coastal Plain Rivers Influenced by Rising Sea-Level
by Jonathan D. Phillips
Hydrology 2024, 11(8), 124; https://doi.org/10.3390/hydrology11080124 - 17 Aug 2024
Cited by 1 | Viewed by 1832
Abstract
Coastal backwater effects on low-gradient coastal plain rivers extend well upstream of the head of the estuary and propagate upstream as sea-level rises. Hydrological, geomorphological, and ecological indicators can serve as sentinels of the upriver encroachment. Analyzing the along-river spatial distribution of these [...] Read more.
Coastal backwater effects on low-gradient coastal plain rivers extend well upstream of the head of the estuary and propagate upstream as sea-level rises. Hydrological, geomorphological, and ecological indicators can serve as sentinels of the upriver encroachment. Analyzing the along-river spatial distribution of these indicators as a space-for-time substitution allows the prediction of sequential changes. Interpretation of results from 20 rivers in Virginia and the Carolinas shows that backwater effects at the leading edge result in higher river stages, increasing floodplain inundation, and raising water tables. Lower slopes and flow velocities reduce sediment transport, reducing river sediment input and floodplain deposition. This inhibits natural levee development, reducing bank heights. These factors combine to increase the frequency and duration of inundation, resulting in semi-permanently flooded wetlands. Anaerobic conditions limit organic decomposition, and ponding allows transported and suspended organic matter to settle, leading to organic muck and peat floodplain soils. This accumulation, coupled with general valley-filling, buries alluvial terrace remnants. Finally, vegetation changes driven by salinity increases occur, resulting in swamp conversions to brackish marsh. Backwater encroachment is strongly controlled by channel bed slope, with relatively steeper channels experiencing slower rates of tidal extension. With accelerating sea-level rise (SLR), the lowest-sloping channels could experience encroachment rates of >1 km yr−1. Hydrological changes associated with SLR are most rapid at the leading, upriver end—averaging 71 km upstream of the head of the estuary in the study rivers at present—and at the lowermost, downstream end of the fluvial-estuarine transition zone. Full article
(This article belongs to the Section Hydrology–Climate Interactions)
Show Figures

Figure 1

19 pages, 5305 KiB  
Article
Geochronological and Sedimentological Study of the Fluvio-Lacustrine Deposits from Shigu to Longjie: Implications for the Evolution of the Lower Jinsha River since the Early Pleistocene
by Fenliang Liu, Hongshan Gao, Zongmeng Li, Changjun Huang, Zhen Xi and Yun Xue
Water 2023, 15(20), 3613; https://doi.org/10.3390/w15203613 - 16 Oct 2023
Cited by 2 | Viewed by 1913
Abstract
The formation of the Jinsha River drainage is a significant subject of concern in the geological and geomorphological fields. Among them, one key question is whether there was a regional paleo lake into which Lower Jinsha River drainage drained during the late Pliocene [...] Read more.
The formation of the Jinsha River drainage is a significant subject of concern in the geological and geomorphological fields. Among them, one key question is whether there was a regional paleo lake into which Lower Jinsha River drainage drained during the late Pliocene to early Pleistocene, due to massive fluvio-lacustrine sediments widely distributed in the Lower Jinsha River. Nevertheless, there has yet to be a consensus on the genesis of those fluvio-lacustrine sediments due to poor sedimentological and chronological data. In this study, to unravel the origin of those fluvio-lacustrine sediments and the formation model of the Lower Jinsha River, sedimentary characteristics, including spatial distribution, lithological composition, and stratigraphic contact relationship of those fluvio-lacustrine sediments were analyzed, and chronological determination of the fluvio-lacustrine sediments using Electron Spin Resonance and Optically stimulated luminescence method was conducted. The results show that in the Lower Jinsha River, the lacustrine sediments are mainly composed of silt and clay, with apparent horizontal bedding, stacked with fluvial cobble-gravel and sand, and are in unconformable contact with the underlying bedrock strata or paleo soil. The lacustrine sediments are spatially discontinuous and mainly distributed in the Shigu, Taoyuan, Panzhihua, and Longjie reaches. Downstream of these reaches are deeply incised gorges with an average slope >30°, and many landslide landforms and deposits can be identified here. In each reach, the lacustrine sediments were closely distributed along the trunk and tributary channels in the plane and were distributed at different altitudes, forming a sequence of lacustrine terraces. Chronological analysis shows that in different reaches, the deposition ages of lacustrine sediments are significantly different. In each reach, the deposition age of the lacustrine terraces of high altitude is older than that of low altitude. The above characteristics collectively indicate that the lacustrine sediments in the Lower Jinsha River were locally deposited by individual dammed lakes, probably induced by landslide rather than a regional paleo lake by tectonic activities. During the incision process of the river valley, landslides continuously block the river channel, forming dammed lakes, and then deposited lacustrine sediments at different elevations, forming lacustrine terraces. The lacustrine sediment of the topmost lacustrine terrace in Panzhihua reach was dated to be 1.78 Ma, combined with previous studies on the fluvial terraces, indicating the Lower Jinsha River existed and started to incise its valley before the early Pleistocene. The widespread dammed lake sediment indicates that the formation of the Jinsha River valley follows the pattern of “incision-landslide-damming-aggradation-incision”. Full article
(This article belongs to the Special Issue Landscape Dynamics and Fluvial Geomorphology)
Show Figures

Figure 1

16 pages, 3884 KiB  
Article
The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mureş (Maros), Romania
by Tamás Bartyik, Petru Urdea, Tímea Kiss, Alexandru Hegyi and György Sipos
Quaternary 2023, 6(2), 35; https://doi.org/10.3390/quat6020035 - 2 Jun 2023
Cited by 2 | Viewed by 2636
Abstract
Fluvial terrace formation is a complex process governed by the interplay of climatic and tectonic forcings. From a climatic perspective, an incision is usually related to climatic transitions, while valley aggradation is attributed to glacial periods. We have reconstructed the formation of Late [...] Read more.
Fluvial terrace formation is a complex process governed by the interplay of climatic and tectonic forcings. From a climatic perspective, an incision is usually related to climatic transitions, while valley aggradation is attributed to glacial periods. We have reconstructed the formation of Late Pleistocene fluvial terraces along the middle, mountainous section of a temperate zone river (Mureş/Maros) in order to identify the roles of different climatic periods and potential vertical displacement in terrace development. Investigations were based on two profiles representing two different terrace levels. The profiles were subjected to sedimentological and detailed geochronological analyses using optically stimulated luminescence (OSL). The results indicated that the investigated terraces represent different incision events coinciding with climatic transition periods. However, a joint MIS 3 valley aggradation period can be identified at both of them. Thus, the relatively mild but highly variable climate of the MIS 3 facilitated sediment mobilization from upland catchments. On the other hand, there is no evidence of aggradation under the cold and stable climate of MIS 2. However, the tectonic setting favours incision at the site. Based on our results, we concluded that the timing of the main events was controlled primarily by climatic forcing. The terrace formation model recognised might also be applied at other rivers in the region. Full article
Show Figures

Figure 1

12 pages, 5939 KiB  
Communication
Study of a Steady-State Landscape Using Remote Sensing and Topographic Analysis
by Xueliang Wang, Yanjie Zhang, John J. Clague, Songfeng Guo, Qisong Jiao, Junfei Wang, Juanjuan Sun, Wenxin Fang and Shengwen Qi
Remote Sens. 2023, 15(10), 2583; https://doi.org/10.3390/rs15102583 - 15 May 2023
Viewed by 2048
Abstract
The current limited approaches to calculating hillslope erosion rate hamper the study of the relationships among the rates of hillslope erosion, river incision, and tectonic uplift and hence the discussion of steady-state landscape evolution. In this paper, we use remote sensing and geochronological [...] Read more.
The current limited approaches to calculating hillslope erosion rate hamper the study of the relationships among the rates of hillslope erosion, river incision, and tectonic uplift and hence the discussion of steady-state landscape evolution. In this paper, we use remote sensing and geochronological methods to calculate the upper and lower bounding hillslope erosion rates in the Qilian Shan range, Tibet. Our analysis focuses on five convex landslide sediment units derived from the weathered hillslopes at Qingyang Mountain on the tectonically active northeastern Tibetan Plateau. These sediment units range in thickness from 5.5 to 12.8 m and in volume from 119 × 103 to 260 × 103 m3. Based on field observations, measurements extracted from high-resolution DEMs, and optical stimulated luminescence (OSL) ages on fluvial terraces, we obtain lower and upper bounding rates of 0.13 ± 0.03 and 0.21 ± 0.04 mm/yr, respectively. Finally, we calculate incision rates, ranging from 0.21 ± 0.02 to 0.39 ± 0.01 mm/yr, from heights of a dated fluvial terrace above the present river and the time of abandonment of the associated bedrock strath estimated from OSL ages. The rates of hillslope erosion and river incision at Qingyang Mountain and the tectonic uplift of the Qilian Mountains are estimated to be within a factor of two over the past 117 ka, suggesting that a state of dynamic equilibrium has likely existed on this timescale. Full article
Show Figures

Graphical abstract

25 pages, 21962 KiB  
Article
Quaternary Crustal Shortening of the Houyanshan Structure in the Eastern Chinese Tian Shan: Constrained from Geological and Geomorphological Analyses
by Xue Yang, Zhigang Li, Weitao Wang, Peizhen Zhang, Chuanyong Wu, Gan Chen, Lei Duan, Xiancan Wu and Kang Liu
Remote Sens. 2023, 15(6), 1603; https://doi.org/10.3390/rs15061603 - 15 Mar 2023
Cited by 8 | Viewed by 2742
Abstract
The Tian Shan is one of the most active intracontinental orogenic belts in the world. It has undergone complex deformation that has resulted in the formation of several fold-and-thrust belts (FTBs) in the piedmonts and intermontane basins. Investigating the deformation histories of these [...] Read more.
The Tian Shan is one of the most active intracontinental orogenic belts in the world. It has undergone complex deformation that has resulted in the formation of several fold-and-thrust belts (FTBs) in the piedmonts and intermontane basins. Investigating the deformation histories of these FTBs is important for understanding the tectonic propagation processes of the Tian Shan. Here, we gain insight into these crustal shortening processes by deciphering the Houyanshan structure, a typical fold-thrust belt in the eastern Chinese Tian Shan. We first describe a curved thrust ramp and related fold pairs of the structure using high-resolution remote sensing photography, deformation of fluvial terraces, and field-based geological cross-section. Combined with deformed terrace records and optically stimulated luminescence (OSL) dating results, the kinematic style allows us to yield a geologic shortening rate of 1.6 ± 0.2 mm/a since ~52 ka. Second, to reduce uncertainty in the seismic interpretation and quantify the amount and time of crustal shortening, we interpret three seismic reflection profiles by using the theory of quantitative fault-related fold, area-depth-strain (ADS), and reverse modeling analyses. These profiles provide direct evidence that this structure connects by means of a listric thrust ramp to a shallow detachment level. ADS analysis reveals that the maximum shortening of the Huoyanshan structure is ~4.5 km, which is consistent with the result of quantitative inverse modeling. Each of the structural analysis methods gives similar parameters, and the high consistency of results greatly improves the soundness of a given geologic interpretation. Finally, the shortening rate and total shortening amount suggest that the structure may have formed at 1.8–3.7 Ma, which is nearly synchronous around the Tibetan Plateau. Together, these results indicate that this combined geological and geomorphological analysis provides greater insight into deformation information than can be achieved by any individual technique in studying fold-and-thrust belts worldwide. Full article
(This article belongs to the Special Issue Remote Sensing Perspectives of Geomorphology and Tectonic Processes)
Show Figures

Figure 1

17 pages, 3427 KiB  
Article
Pedogenesis of Fluvial Terrace Soils Related to Geomorphic Processes in Central Taiwan
by Wen-Shu Huang, Chi-Shu Liang, Heng Tsai, Zeng-Yi Hseu and Shiuh-Tsuen Huang
Land 2023, 12(3), 535; https://doi.org/10.3390/land12030535 - 22 Feb 2023
Cited by 2 | Viewed by 2893
Abstract
Pedogenetic features of the soils could be a proxy for revealing the landform surface processes. Our work first analyzed the particle size distributions and lithological discontinuities (LDs) of the soils in the midstream of the Zoushui River, central Taiwan. The results showed that [...] Read more.
Pedogenetic features of the soils could be a proxy for revealing the landform surface processes. Our work first analyzed the particle size distributions and lithological discontinuities (LDs) of the soils in the midstream of the Zoushui River, central Taiwan. The results showed that the parental materials of the soils derive from mixed sediments of the Zoushui River and its tributaries, and the LDs of some soils suggested multi-depositional events with homogeneous lithology. Then, we proposed a soil chronosequence of Inceptisols, Ultisols, and Oxisols, over the Pleistocene timescale. There was a very well-defined semilogarithmic relationship between weighted profile development index (WPDI) values and soil age with correlation coefficients (r) greater than 0.9. The age of the soils did not certainly agree with the interglacials of the main marine isotope stage (MIS). However, the soils started to develop only after being aggraded by relatively warm and humid periods or by extreme rain events in cool and dry periods. Irrespective of whether the soils had started to develop, tectonic downcutting, providing clear altitudinal separation of the terrace treads, could inevitably happen later (or almost synchronologically) to ensure stabilities of the tread surfaces. Full article
Show Figures

Figure 1

21 pages, 10836 KiB  
Article
Recent Uplift Characteristics of the Southeast Tibetan Plateau, an Analysis Based on Fluvial Indices
by Mingxing Gao, Ming Hao, Gerold Zeilinger and Xiwei Xu
Remote Sens. 2023, 15(2), 433; https://doi.org/10.3390/rs15020433 - 11 Jan 2023
Cited by 4 | Viewed by 2728
Abstract
The southeastern Tibetan Plateau (SETP) is well known for its large strike–slip faults with high slip rates and a high potential for seismic hazards. However, little is known about its thrust faults and associated seismic hazards, even though they can produce devastating earthquakes [...] Read more.
The southeastern Tibetan Plateau (SETP) is well known for its large strike–slip faults with high slip rates and a high potential for seismic hazards. However, little is known about its thrust faults and associated seismic hazards, even though they can produce devastating earthquakes despite their relatively low slip rate. Here we investigated the thrust faults and the recent tectonic uplift pattern in the SETP on a regional scale by combining geomorphic analysis and geodetic data. We quantify the potential differential uplift in the SETP recorded in the long-term landscape evolution with geomorphic indices and compare them with differential uplift derived from decadal leveling data and millennial-scale fluvial terrace incision rates. The results show that the northwest of the SETP underwent higher uplift rates compared to its southeast areas, which is in agreement with the GPS-based leveling. Essentially, the geomorphic indices build two value ranges that are spatially clustered and separated by the Muli thrust fault system, a transverse fault system, which is orientated oblique/perpendicular to the large strike–slip fault. The geomorphic indices indicating rapid uplift rates spatially correspond with high rates derived from leveling data on the northwest side of the Muli thrust fault. The Muli thrust fault, therefore, acted as an important topographic and tectonic boundary absorbing partial southeast crustal movement. Hence, further detailed studies, such as seismological investigations, are suggested to be conducted on the Muli fault for seismic hazards evaluation. Full article
Show Figures

Graphical abstract

20 pages, 22663 KiB  
Article
Enhancing the Identification and Mapping of Fluvial Terraces Combining Geomorphological Field Survey with Land-Surface Quantitative Analysis
by Giulia Iacobucci, Daniela Piacentini and Francesco Troiani
Geosciences 2022, 12(11), 425; https://doi.org/10.3390/geosciences12110425 - 18 Nov 2022
Cited by 6 | Viewed by 3733
Abstract
A methodological approach to refining the identification and mapping of fluvial terraces has been applied, combining geomorphological field surveys with the computation and assessment of different morphometric parameters (local, statistical, and object-oriented), derived from a high-resolution digital terrain model (DTM) obtained from a [...] Read more.
A methodological approach to refining the identification and mapping of fluvial terraces has been applied, combining geomorphological field surveys with the computation and assessment of different morphometric parameters (local, statistical, and object-oriented), derived from a high-resolution digital terrain model (DTM) obtained from a LiDAR survey. The mid-sector floodplain of the Misa River basins was taken as a valid example of the main river valleys draining the northern Marche Apennines (Italy) and was considered an ideal site to test a combination of different geomorphological techniques for enhancing fluvial terraces’ detection and mapping. In this area, late Pleistocene–Holocene fluvial terraces are well exposed, and their geomorphological and geochronological characteristics have largely already been studied. However, a reliable distinction of the different Holocene terrace levels, including a detailed geomorphological mapping of different terrace features, is still lacking due to the very complex terrace geometry and the lack of good-quality deposit outcrops. Land-surface quantitative (LSQ) analysis has been coupled with the available outcomes of previous studies and ad-hoc geomorphological field surveys to enhance the identification and mapping of fluvial terraces. The results of this work provided information for the discernment of terrace remnants belonging to the full-glacial fill terrace generation (late Pleistocene) as well as reconstruction of the terrace top–surface, and can be used to distinguish the inner terrace limits coinciding with the margin of the floodplain. It has also been possible to identify and delimit the late Pleistocene terrace from a staircase of three younger strath terraces formed during the Holocene. The results of this study demonstrated that the investigation of fluvial landforms, at different scales, can strongly benefit from the integration of field surveys and quantitative geomorphic analysis based on high-resolution digital topographic datasets. In particular, the integration of LSQ analysis with ground-truth geomorphological data can be dramatically helpful for the identification and mapping of fluvial terraces. Full article
(This article belongs to the Topic Advances in Environmental Remote Sensing)
Show Figures

Graphical abstract

23 pages, 18739 KiB  
Article
Factors Affecting the Rates and Modes of Landslide Colluvium Removal in River Channels of Podhale (Western Carpathians)
by Józef Kukulak, Karol Augustowski and Janusz Olszak
Water 2022, 14(21), 3577; https://doi.org/10.3390/w14213577 - 7 Nov 2022
Cited by 3 | Viewed by 2451
Abstract
This paper presented some hydrological factors affecting the course and rate of fluvial erosion of landslide colluvium at its contact with river flow. Volumes of colluvium eroded by rivers in the period 2013–2019 were measured at Podhale (a part of Polish West Carpathians) [...] Read more.
This paper presented some hydrological factors affecting the course and rate of fluvial erosion of landslide colluvium at its contact with river flow. Volumes of colluvium eroded by rivers in the period 2013–2019 were measured at Podhale (a part of Polish West Carpathians) on four landslides representing various geological settings. At each landslide, changes in shape and position of the contact zone between colluvium and river water were registered after episodes of high river stage. The obtained data on changes in relief of the landslide fronts and adjacent river channels were used to calculate volumes of colluvium removed during each episode. The course of erosion and volumes of colluvium eroded were compared with the water stage records for the studied period of time. Intensity of colluvium erosion was found to be strongly dependent on the water levels and cohesion of colluvium. Volumes of removed colluvium were the greatest during short-lived (1–2 days) and prolonged (7–10 days) periods of high river stages. The rate of erosional removal was the highest for colluvium consisting of poorly consolidated Quaternary matrix-supported massive gravel and overlying fine deposits stored within river terraces. Colluvium composed of Neogene mudstones and sandstones was removed at a lower rate and the rate of removal was lowest for large blocks and slices composed of solid layers of alternating sandstone and shales belonging to the Podhale Flysch series. Erosion of the landslide toes was more intense at those sites where the river flow approached the landslide front at a wider angle. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

22 pages, 29816 KiB  
Article
The Response of the Rivers of NW Greece to Late Quaternary Neotectonics, as Interpreted from Detrital Petrology
by David J. W. Piper and Georgia Pe-Piper
Geosciences 2022, 12(11), 392; https://doi.org/10.3390/geosciences12110392 - 25 Oct 2022
Cited by 2 | Viewed by 2209
Abstract
The modern drainage systems of the fold and thrust belt of the external Hellenide orogen of NW Greece are principally orogen-parallel. Late Quaternary changes in river courses have resulted from neotectonic deformation associated with the Katouna–Stamna fault and with footwall uplift in developing [...] Read more.
The modern drainage systems of the fold and thrust belt of the external Hellenide orogen of NW Greece are principally orogen-parallel. Late Quaternary changes in river courses have resulted from neotectonic deformation associated with the Katouna–Stamna fault and with footwall uplift in developing transverse grabens. This study assesses the impact of neotectonic deformation on river patterns and basin deposition. River sands show differences in modal abundance and varietal geochemistry of heavy minerals and fine sand lithic clasts, determined by scanning electron microscope, that allow identification of past river supply to raised fluvial terrace and beach deposits. In the past 200 ka, footwall uplift south of developing grabens at Lake Trichonis and the Amvrakikos Gulf promoted orogen-transverse flow, diverting the Arachthos-Louros rivers to the west, causing reversal of drainage to the north in the lower reach of the Acheloos River. A raised terrace gravel south of Preveza records the southwestward flow of a large paleo-Arachthos river, confirmed by sand petrology in beaches farther south on the Echinadon Sea coast. The use of varietal heavy minerals and lithic clasts is a rapid and powerful tool for tracking tectonically-induced changes in river patterns. Full article
(This article belongs to the Special Issue Tectonic Geomorphology in Modern Orogenic Zones)
Show Figures

Graphical abstract

16 pages, 3803 KiB  
Article
Genesis and Distribution of Low Fluvial Terraces Formed by Holocene Climate Pulses in Brazil
by Archimedes Perez Filho, Vinícius B. Moreira, Luca Lämmle, André O. Souza, Bruno A. Torres, Pedro I. C. Aderaldo, Éverton V. Valezio, David O. B. F. Machado, Mateus M. Prebianca, Alysson F. Mazoni, Carolina Zabini and Felipe G. Rubira
Water 2022, 14(19), 2977; https://doi.org/10.3390/w14192977 - 22 Sep 2022
Cited by 8 | Viewed by 3252
Abstract
Low fluvial terraces present azonal spatialization, encompassing several geomorphological compartments and climate zones in Brazil. Their genesis is directly related to river dynamics. When influenced by allogenic forces, such as Holocene climate pulses, it results in channel incision and posterior abandonment of the [...] Read more.
Low fluvial terraces present azonal spatialization, encompassing several geomorphological compartments and climate zones in Brazil. Their genesis is directly related to river dynamics. When influenced by allogenic forces, such as Holocene climate pulses, it results in channel incision and posterior abandonment of the floodplain. Relatively plain landforms at different altimetric levels identified between the current floodplain and hillslope (low river terraces) are a result of these processes. Previous works using Optically Stimulated Luminescence (OSL) in low terraces of several rivers in Brazil have indicated morpho-chronologic similarities between depositional events, raising the hypothesis of feedbacks and fluvial adjustments relatively simultaneous to Holocene climate events. Considering these dynamics, this study employed OSL to obtain absolute dating information for 114 samples taken from distinct levels of the low river terraces of 30 rivers in Brazil, integrating the database of the IG-UNICAMP laboratory of Geomorphology and Environmental Analysis. Based on the data and statistical analysis (cluster and correlation analysis), this study aimed to identify relationships between different variables which might have controlled spatial homogenous and heterogeneous feedbacks during distinct paleoenvironmental contexts. The proposed methodology tested a fundamental hypothesis of the regional climatic geomorphology, and the results obtained may contribute to future discussions on the relationship between low river terraces and anthropic occupation. Full article
(This article belongs to the Special Issue Fluvial Geomorphology, River Management and Restoration)
Show Figures

Figure 1

Back to TopTop