Recent Uplift Characteristics of the Southeast Tibetan Plateau, an Analysis Based on Fluvial Indices
Abstract
:1. Introduction
2. Study Area, General Physiography, and Previous Studies
3. Data and Methods
Lithological Group | Description of Dominant Sediments/Rock Type |
---|---|
1. Quaternary loose sediments | Unconsolidated very weak sedimentary |
2. Limestone | Weak sedimentary (Non-Clastic) |
3. Sandstone | Medium-strong sedimentary (Clastic) |
4. Metamorphic | Strong |
5. Volcanic rock | Very strong |
6. Granite | Extremely strong |
3.1. Stream Length Gradient (SL)
3.2. Normalized Channel Steepness (Ksn)
3.3. Hypsometry
3.4. Compilation of the Leveling Data and River Incision Rates Derived from the Fluvial Terrace
3.5. Statistical Analysis
4. Results
4.1. Stream Length Gradient (SL)
4.2. Normalized Channel Steepness (Ksn)
4.3. Hypsometric Integral
4.4. Interploated Present Uplift Rates and the River Incision Rates
5. Field Evidence for Fluvial Incision and Differential Tectonic Uplift
6. Discussion
6.1. Factors Potentially Influencing SL, Ksn, and HI
6.2. Regional Seismic Hazards
7. Conclusions
- (1)
- Kendall’s rank correlation shows that the HI values are clearly influenced by the precipitation. The Statistical analysis between geomorphic indices and various impact factors shows that lithology contrast has a significant impact on SL and Ksn. SL shows the lowest value in soft Quaternary sediments and the highest value in limestone (highest SL), while the lowest Ksn values correspond with metamorphic rock, and the highest Ksn values associate with sandstone.
- (2)
- The geomorphic indices confirmed that the differential vertical uplift in the SETP is associated with the NE trending thrust-fault system. West of the Muli fault, geomorphic indices values are significantly higher compared to the east. We, therefore, conclude that the Muli fault is the most prominent tectonically active boundary of the SETP. Seismic hazards due to the uplift of the Muli fault requires further detailed studies.
- (3)
- The northwestern SETP is experiencing a higher uplift compared to the southeastern SETP, which is in agreement with GPS results. The significant variation in the recent uplift pattern refutes the distributed deformation model. Instead, the observed recent uplift pattern argues for tectonic deformation along or across discrete zones such as the Muli thrust system.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, Z.; Lü, J.; Wang, M.; Bürgmann, R. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res. 2005, 110, B11409. [Google Scholar] [CrossRef] [Green Version]
- Molnar, P.; Tapponnier, P. Cenozoic tectonics of Asia: Effects of a continental collision. Science 1975, 189, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogeny. Annu. Rev. Earth Planet Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Royden, L.H.; Burchfiel, B.C.; King, R.W.; Wang, E.; Chen, Z.; Shen, F.; Liu, Y. Surface deformation and lower crustal flow in eastern Tibet. Science 1997, 276, 788–790. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.K.; House, M.A.; Royden, L.H.; Whipple, K.X.; Burchfiel, B.C.; Zhang, X.; Tang, W. Late Cenozoic uplift of southeastern Tibet. Geology 2005, 33, 525–528. [Google Scholar] [CrossRef] [Green Version]
- England, P.; McKenzie, D.P. A thin viscous sheet model for continental deformation. Geophys. J. R. Astron. Soc. 1982, 70, 295–321. [Google Scholar] [CrossRef]
- Vilotte, J.P.; Madariaga, R.; Daignieres, M.; Zienkiewicz, O. Numerical study of continental collision: Influence of buoyancy forces and initial stiff inclusion. Geophys. J. R. Astron. Soc. 1986, 84, 279–310. [Google Scholar] [CrossRef] [Green Version]
- Houseman, G.; England, P. A lithospheric thickening model for the Indo-Asian collision. In The Tectonic Evolution of Asia; Yin, A., Harrison, T.M., Eds.; Cambridge University Press: New York, NY, USA, 1996; pp. 3–17. [Google Scholar]
- Tapponnier, P.; Xu, Z.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J. Oblique stepwise rise and growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Tapponnier, P.; Peltzer, G.; Le Dain, A.Y.; Armijo, R.; Cobbold, P. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 1982, 10, 611–616. [Google Scholar] [CrossRef]
- Peltzer, G.; Tapponnier, P. Formation and evolution of strike slip faults, rifts, and basins during the India-Asia collision: An experimental approach. J. Geophys. Res. 1988, 93, 15085–15117. [Google Scholar] [CrossRef]
- Avouac, J.P.; Tapponnier, P. Kinematic model of active deformation in central Asia. Geophys. Res. Lett. 1993, 20, 895–898. [Google Scholar] [CrossRef] [Green Version]
- Bilham, R.; Larson, K.; Freymueller, J.; Idylhim, P. GPS measurements of present-day convergence across the Nepal Himalaya. Nature 1997, 386, 61–64. [Google Scholar] [CrossRef]
- King, R.W.; Shen, F.; Burchfiel, B.C.; Royden, L.H.; Wang, E.; Chen, Z.; Liu, Y.; Zhang, X.; Zhao, J.; Li, Y. Geodetic measurement of crustal motion in southwest China. Geology 1997, 25, 179–182. [Google Scholar] [CrossRef]
- Larson, K.M.; Burgmann, R.; Bilham, R.; Freymueller, J.T. Kinematics of the India-Eurasia collision zone from GPS measurements. J. Geophys. Res. 1999, 104, 1077–1093. [Google Scholar] [CrossRef]
- Chen, Z.; Burchfiel, B.C.; Liu, Y.; King, R.W.; Royden, L.H.; Tang, W.; Wang, E.; Zhao, J.; Zhang, X. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J. Geophys. Res. 2000, 105, 16215–16227. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, M.; Li, Y.; Jackson, D.D.; Yin, A.; Dong, D.; Fang, P. Crustal deformation along the Altyn Tagh fault system, western China, from GPS. J. Geophys. Res. 2001, 106, 30607–30622. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.; Freymueller, J.T.; Bilham, R.; Larson, K.M.; Lai, X.; You, X.; Niu, Z.; Wu, J.; Li, Y.; et al. Present-day crustal deformation in China constrained by Global Positioning System measurements. Science 2001, 294, 574–577. [Google Scholar] [CrossRef] [Green Version]
- Vigny, C.; Socquet, A.; Rangin, C.; Chamot-Rooke, N.; Pubellier, M.; Bouin, M.N.; Becker, G. Present-day crustal deformation around Sagaing fault, Myanmar. J. Geophys. Res. 2003, 108, 2533. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Freymueller, J.; Wang, Q.; Yang, Z.; Xu, C.; Liu, J. A deforming block model for the present-day tectonics of Tibet. J. Geophys. Res. 2004, 109, B01403. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Shen, Z.K.; Wang, M.; Gan, W.J.; Bürgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J.; et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]
- Thatcher, W. Microplate model for the present-day deformation of Tibet. J. Geophys. Res. 2007, 112, B01401. [Google Scholar] [CrossRef]
- Deng, Q.D. Map of Active Tectonics in China; Seismological Press: Beijing, China, 2007. [Google Scholar]
- Sun, H.; He, H.; Ikeda, Y.; Wei, Z.; Chen, C.; Xu, Y.; Shi, F.; Bi, L.; Shirahama, Y.; Okada, S.; et al. Paleoearthquake history along the southern segment of the Daliangshan fault zone in the southeastern Tibetan Plateau. Tectonics 2019, 38, 2208–2231. [Google Scholar] [CrossRef] [Green Version]
- Kirby, E.; Whipple, K.X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Burbank, D.W.; Anderson, S.R. Tectonic Geomorphology; Blackwell Scientific: Oxford, UK, 2001. [Google Scholar]
- Brookfield, M.E. The evolution of the great river systems of southern Asia during the Cenozoic India–Asia collision: Rivers draining southwards. Geomorphology 1998, 22, 285–312. [Google Scholar] [CrossRef]
- Keller, E.A.; Pinter, N. Active Tectonics: Earthquakes, Uplift and Landscape; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Chen, Y.C.; Sung, Q.; Cheng, K.Y. Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream gradient and hypsometric analysis. Geomorphology 2003, 56, 109–137. [Google Scholar] [CrossRef]
- El Hamdouni, R.; Irigaray, C.; Fernández, T.; Chacόn, J.; Keller, E.A. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Gao, M.; Zeilinger, G.; Xu, X.; Wang, Q.; Hao, M. DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China. Geomorphology 2013, 190, 61–72. [Google Scholar] [CrossRef]
- Peng, X.F.; Huang, F.Z.; Zhou, R.L. Comparison of spatial interpolation mimic method for the mean annual precipitation in Yunnan Province. J. Southwest For. Univ. 2010, 30, 25–28. (In Chinese) [Google Scholar]
- Font, M.; Amorese, D.; Lagarde, J.L. DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: The Normandy intraplate area (NW France). Geomorphology 2010, 119, 172–179. [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Tapponnier, J.P.; Gaudemer, Y.; Ding, L. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. J. Geophys. Res. 2008, 113, F04018. [Google Scholar] [CrossRef] [Green Version]
- Tapponnier, P.; Peltzer, G.; Armijo, R. On the mechanics of the collision between India and Asia. In Collision Tectonics; Coward, M.P., Ries, A.C., Eds.; Geological Society Special Publication: London, UK; Geological Society of London: London, UK, 1986; pp. 115–157. [Google Scholar]
- Pan, G.; Wang, L.; Zhu, D. Thoughts on some important scientific problems in regional geological survey of the Qinghai–Tibet Plateau. Geol. Bull. China 2004, 23, 12–19. [Google Scholar]
- Morley, C.K. Nested strike-slip duplexes, and other evidence for Late Cretaceous–Palaeogene transpressional tectonics before and during India–Eurasia collision, in Thailand, Myanmar and Malaysia. J. Geol. Soc. Lond. 2004, 161, 799–812. [Google Scholar] [CrossRef]
- Lacassin, R.; Schärer, U.; Leloup, P.H.; Arnaud, N.; Tapponnier, P.; Liu, X.; Zhang, L. Tertiary deformation and metamorphism SE of Tibet: The folded Tiger-leap décollement of NW Yunnan, China. Tectonics 1996, 15, 605–622. [Google Scholar] [CrossRef]
- Zhong, D.; Ding, L.; Liu, F.; Liu, J.; Zhang, J.; Ji, J.; Chen, H. Multi-oriented and layered structures of lithosphere in erogenic belt and their effects on Cenozoic magmatism–A case study of western Yunnan and Sichuan. China. Sci. China 2000, 43, 122–133. [Google Scholar] [CrossRef]
- Wang, E.; Burchfiel, B.C.; Royden, L.H.; Chen, L.; Chen, J.; Li, W.; Chen, Z. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Spec. Pap. Geol. Soc. Am. 1998, 327, 1–108. [Google Scholar]
- Tapponnier, P.; Molnar, P. Active faulting and tectonics in China. J. Geophys. Res. 1977, 82, 2905–2930. [Google Scholar] [CrossRef]
- Allen, C.R.; Gillespie, A.R.; Han, Y.; Sieh, K.E.; Zhang, B.; Zhu, C. Red River and associated faults, Yunnan province, China: Quaternary geology, slip rate and Seismic hazard. Geol. Soc. Am. Bull. 1984, 95, 686–700. [Google Scholar] [CrossRef]
- Leloup, P.H.; Arnaud, N.; Lacassin, R.; Kienast, J.R.; Harrison, T.M.; Phan Trong, T.T.; Replumaz, A.; Tapponnier, P. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. J. Geophys. Res. 2001, 106, 6683–6732. [Google Scholar] [CrossRef]
- Ma, X. Lithospheric Dynamics Atlas of China; China Cartographic Publishing House: Beijing, China, 1989. [Google Scholar]
- Wang, E.; Burchfiel, B.C. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geol. Soc. Am. Bull. 2000, 112, 413–423. [Google Scholar] [CrossRef]
- Shi, X.; Sieh, K.; Weldon, R.; Zhu, C.; Han, Y.; Yang, J.; Robinson, S. Slip rate and rare large prehistoric earthquakes of the Red River fault, southwestern China. Geochem. Geophys. Geosystems 2018, 19, 2014–2031. [Google Scholar] [CrossRef]
- Replumaz, A.; Lacassin, R.; Tapponnier, P.; Leloup, P.H. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China). J. Geophys. Res. 2001, 106, 819–836. [Google Scholar] [CrossRef] [Green Version]
- Le Dain, A.Y.; Tapponnier, P.; Molnar, P. Active faults and tectonics of Burma and surrounding regions. J. Geophys. Res. 1984, 89, 453–472. [Google Scholar] [CrossRef]
- Wang, E.; Burchfiel, B.C. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. Int. Geol. Rev. 1997, 39, 191–219. [Google Scholar] [CrossRef]
- Lacassin, R.; Replumaz, A.; Leloup, P.H. Hairpin river loops and slip-sense inversion on southeast Asian strike-slip faults. Geology 1998, 26, 703–706. [Google Scholar] [CrossRef]
- Chen, S.; Wilson, C.; Deng, Q.; Zhao, X.; Luo, Z. Active faulting and block movement associated with large earthquakes in the Min Shan and Longmen mountains, northeastern Tibetan Plateau. J. Geophys. Res. 1994, 99, 24025–24038. [Google Scholar] [CrossRef]
- Tang, R.; Huang, Z.; Ma, S.; Gong, Y.; Zou, R. Basic characteristics of active fault zones in Sichuan Province. Seismol. Geol. 1995, 17, 390–396. [Google Scholar]
- Burchfiel, B.C.; Chen, Z.; Liu, Y.; Royden, L.H. Tectonics of the Longmen Shan and adjacent regions. Int. Geol. Rev. 1995, 37, 661–735. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X.; Tang, W.Q.; Chen, Z.L. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. J. Geophys. Res. Solid Earth 2003, 108, 2217. [Google Scholar] [CrossRef] [Green Version]
- Hack, J.T. Stream-profile analysis and stream-gradient index. US Geol. Surv. J. Res. 1973, 1, 421–429. [Google Scholar]
- Gao, M.; Zeilinger, G.; Xu, X.; Tan, X.; Wang, Q.; Hao, M. Active tectonics evaluation from geomorphic indices for the central and the southern Longmenshan range on the Eastern Tibetan Plateau, China. Tectonics 2016, 35, 1812–1826. [Google Scholar] [CrossRef]
- Dehbozorgi, M.; Pourkermani, M.; Arian, M.; Matkan, A.A.; Motamedi, H.; Hosseiniasl, A. Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology 2010, 121, 329–341. [Google Scholar] [CrossRef]
- Pedrera, A.; Pérez-Peña, J.V.; Galindo-Zaldívar, J.; Azañόn, J.M.; Azor, A. Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain). Geomorphology 2009, 105, 218–231. [Google Scholar] [CrossRef]
- Yeats, R.S.; Sieh, K.; Allen, C.R. The Geology of Earthquakes; Oxford University Press: New York, NY, USA, 1997; 568p. [Google Scholar]
- Kirby, E.; Whipple, K.X. Quantifying differential rock-uplift rates via stream profile analysis. Geology 2001, 29, 415–418. [Google Scholar] [CrossRef]
- Snyder, N.P.; Whipple, K.X.; Tucker, G.E.; Merritts, D.M. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geol. Soc. Am. Bull 2000, 112, 1250–1263. [Google Scholar] [CrossRef]
- Wobus, C.W.; Whipple, K.X.; Kirby, E.; Snyder, N.; Johnson, J.; Spyropolou, K.; Crosby, B.; Sheehan, D. Tectonics from topography: Procedures, promise, and pitfalls. In Tectonics, Climate, and Landscape Evolution; Willett, S.D., Hovius, N., Brandon, M.T., Fisher, D.M., Eds.; The Geological Society of America: Boulder, CO, USA, 2006; pp. 55–74. [Google Scholar]
- Schwanghart, W.; Scherler, D. Short Communication: TopoToolbox 2—MATLAB-Based Software for Topographic Analysis and Modeling in Earth Surface Sciences. Earth Surf. Dyn. 2014, 2, 1–7. [Google Scholar] [CrossRef]
- Tao, Y.L.; Xiong, J.; Zhang, H.; Chang, H.; Li, L. Climate-driven formation of fluvial terraces across the Tibetan Plateau since 200 ka: A review. Quat. Sci. Rev. 2020, 237, 106303. [Google Scholar] [CrossRef]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 1952, 63, 1117–1141. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Whipple, K.X. Fluvial landscape response time: How plausible is steady-state denudation? Am. J. Sci. 2001, 301, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Whipple, K.X. Bedrock rivers and the geomorphology of active orogens. Annu. Rev. Earth Planet. Sci. 2004, 32, 151–185. [Google Scholar] [CrossRef] [Green Version]
- Azañón, J.M.; Galve, J.P.; Pérez-Peña, J.V.; Giaconia, F.; Carvajal, R.; Booth-Rea, G.; Jabaloy, A.; Vazquez, M.; Azor, A.; Roldán, F.J. Relief and drainage evolutionduring the exhumation of the Sierra Nevada (SE Spain): Is denudation keeping pace with uplift? Tectonophysics 2015, 663, 19–32. [Google Scholar] [CrossRef]
- Schwanghart, W.; Kuhn, N.J. TopoToolbox: A set of Matlab functions for topographic analysis. Environ. Model. Softw. 2010, 25, 770–781. [Google Scholar] [CrossRef]
- Chen, K.; Yang, M.; Huang, Y.; Ching, K.; Rau, R. Vertical displacement rate field of Taiwan from geodetic levelling data 2000–2008. Surv. Rev. 2011, 43, 296–302. [Google Scholar] [CrossRef]
- Hao, M. Present Vertical Velocity Field in the Eastern Margin of Tibetan Plateau Derived from Precise Leveling. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2012. [Google Scholar]
- Hao, M.; Wang, Q.; Shen, Z.; Cui, D.; Ji, L.; Li, Y.; Qin, S. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics 2014, 632, 281–292. [Google Scholar] [CrossRef]
- Ruszkiczay-Rüdiger, Z.; Braucher, R.; Novothny, A.; Csillag, G.; Fodor, L.; Molnar, G.; Madarasz, B.; ASTER Team. Tectonic and climatic control on terrace formation: Coupling in situ produced 10Be depth profiles and luminescence approach, Danube River, Hungary, Central Europe. Quat. Sci. Rev. 2016, 131, 127–147. [Google Scholar] [CrossRef]
- Davis, W.M. The geographical cycle. Geogr. J. 1899, 14, 481–504. [Google Scholar] [CrossRef]
- Mueller, E.R.; Pitlick, J. Sediment supply and channel morphology in mountain river systems: 1. Relative importance of lithology, topography, and climate. J. Geophys. Res. Earth Surf. 2013, 118, 2325–2342. [Google Scholar] [CrossRef]
- Harel, M.-A.; Mudd, S.M.; Attal, M. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates. Geomorphology 2016, 268, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Hurtrez, J.E.; Sol, C.; Lucazeau, F. Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik hills (Central Nepal). Earth Surf. Process. Landf. 1999, 24, 799–808. [Google Scholar] [CrossRef]
- Pérez-Peña, J.V.; Azañόn, J.M.; Azor, A.; Delgado, J.; González-Lodeiro, F. Spatial analysis of stream power using GIS: SLK anomaly maps. Earth Surf. Process. Landf. 2009, 34, 16–25. [Google Scholar] [CrossRef]
- Bernard, T.; Sinclair, H.; Gailleton, B.; Mudd, S.; Ford, M. Lithological control on the post-orogenic topography and erosion history of the Pyrenees. Earth Planet. Sci. Lett. 2019, 518, 53–66. [Google Scholar] [CrossRef]
- Guo, S.; Xiang, H.; Zhang, J.; Hu, R.; Zhang, G. Discussion on the deformation band and magnitude of the 1515 Yongsheng earthquake in Yunnan province. J. Seismol. Res. 1988, 11, 153–162. [Google Scholar]
- Huang, X.; Wu, Z.; Wu, K. Surface Rupture of the 1515 Yongsheng Earthquake in Northwest Yunnan, and Its Seismogeological Implications. Acta Geol. Sin. 2018, 92, 1324–1333. [Google Scholar] [CrossRef]
- Chang, Z. Relics of the Yunnan Yongsheng M 73/4 earthquake in 1515. Seismol. Geomagn. Obs. Res. 2021, 42, 176–178. [Google Scholar]
- Yang, R.; Willett, S.D.; Goren, L. In situ low-relief landscapeformation as a result of river network disruption. Nature 2015, 520, 526–529. [Google Scholar] [CrossRef]
- Weissel, J.K.; Pratson, L.F.; Malinverno, A. The length-scaling properties of topography. J. Geophys. Res. 1994, 99, 13997–14012. [Google Scholar] [CrossRef]
- Nadeu, E.; Quiñonero-Rubio, J.M.; de Vente, J.; Boix-Fayos, C. The influence of catchment morphology, lithology and land use on soil organic carbon export in a Mediterranean mountain region. Catena 2015, 126, 117–125. [Google Scholar] [CrossRef]
- Harkins, N.W.; Anastasio, D.J.; Pazzaglia, F.J. Tectonic geomorphology of the Red Rock fault, insights into segmentation and landscape evolution of a developing range front normal fault. J. Struct. Geol. 2005, 27, 1925–1939. [Google Scholar] [CrossRef]
- Qiao, X.J.; Wang, Q.; Du, R.L. Characteristics of current crustal deformation of active blocks in the Sichuan-Yunnan region. Chin. J. Geophys. 2004, 47, 805–811. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, E.; Shen, Z.; Wang, M.; Gan, W.; Qiao, X.; Meng, G.; Li, T.; Tao, W.; Yang, Y.; et al. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Sci. China Ser. D Earth Sci. 2008, 51, 1267–1283. [Google Scholar] [CrossRef]
- Xiang, H.; Xu, X.; Guo, S.; Zhang, W.; Li, H.; Yu, G. Sinistral thrusting along the Lijiang-Xiaojinhe fault since Quaternary and its geologic-tectonic significance-Shielding effect of transverse structure of intracontinental active block. Seismol. Geol. 2002, 24, 188–198. [Google Scholar]
- Xu, X.; Wen, X.; Zheng, R.; Ma, W.; Song, F.; Yu, G. Pattern of latest tectonic motion and dynamics of faulted blocks in Yunnan and Sichuan. Sci. China 2003, 33, 151–162. [Google Scholar]
- Zhang, C.; Xie, F.; Zhang, S. A modeling study on the controlling factors of seismic source distribution and their strength index—Practical analyses of the seismic environmental factors of the Red River fault. Acta Seismol. Sin. 2001, 23, 125–135. [Google Scholar]
- Tang, R.; Han, W.; Huang, Z.; Zian, H.; Zhang, Y. Active Faults and Earthquakes in Sichuan Province; Seismology Publishing House: Beijing, China, 1993. [Google Scholar]
- Holt, W.E.; Li, M.; Haines, A.J. Earthquake strain rates and instantaneous relative motions within central and eastern Asia. Geophys. J. Int. 1995, 122, 569–593. [Google Scholar] [CrossRef] [Green Version]
- Burchfiel, B.C.; Royden, L.H.; Van Der Hilst, R.D.; Hager, B.H.; Chen, Z.; King, R.W.; Li, C.; Lü, J.; Yao, H. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China. GSA Today 2008, 18, 4–11. [Google Scholar] [CrossRef]
- Gan, W.; Zhang, P.; Shen, Z.; Niu, Z.; Wang, M.; Wan, Y.; Zhou, D.; Cheng, J. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. 2007, 112, B08416. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.M.; Gan, W.J.; Shen, C.Z.; Xiao, G.R.; Liu, J.; Chen, W.T.; Ding, X.; Zhou, D. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res. Solid Earth 2013, 118, 5722–5732. [Google Scholar] [CrossRef]
- Wen, X.Z.; Zhang, P.Z.; Du, F. The background of historical and modern seismic activities of the occurrence of the 2008 Ms 8.0 Wenchuan, Sichuan, earthquake. Chin. J. Geophys. 2009, 52, 444–454. [Google Scholar]
- Zhang, P. Beware of slowly slipping faults. Nat. Geosci. 2013, 6, 323–324. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Xu, X.W.; Wen, X.Z. Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China. Chin. J. Geophys. 2008, 51, 1066–1073. [Google Scholar]
- Zhang, P.Z.; Wen, X.Z.; Shen, Z.K.; Chen, J.H. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annu. Rev. Earth Planet. Sci. 2010, 38, 353–382. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Wang, Y.; Yu, W.; Cao, Z.; Shen, X.; Shen, J. The Xiaojiang Active Fault Zone; Seismological Press: Beijing, China, 1998. [Google Scholar]
- Xu, Z.; Li, H.; Hou, L.; Fu, X. Uplift of the Longmen-Jinping orogenic belt along the eastern margin of the Qinghai-Tibet Plateau: Large-scale detachment faulting and extrusion mechanism. Geol. Bull. China 2007, 26, 1262–1276. [Google Scholar]
- Cao, K.; Wang, G.; Leloup, P.H.; Mahéo, G.; Xu, Y.; van der Beek, P.A.; Replumaz, A.; Zhang, K. Oligocene-Early Miocene topographic relief generation of southeastern Tibet triggered by thrusting. Tectonics 2019, 38, 374–391. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Hao, M.; Zeilinger, G.; Xu, X. Recent Uplift Characteristics of the Southeast Tibetan Plateau, an Analysis Based on Fluvial Indices. Remote Sens. 2023, 15, 433. https://doi.org/10.3390/rs15020433
Gao M, Hao M, Zeilinger G, Xu X. Recent Uplift Characteristics of the Southeast Tibetan Plateau, an Analysis Based on Fluvial Indices. Remote Sensing. 2023; 15(2):433. https://doi.org/10.3390/rs15020433
Chicago/Turabian StyleGao, Mingxing, Ming Hao, Gerold Zeilinger, and Xiwei Xu. 2023. "Recent Uplift Characteristics of the Southeast Tibetan Plateau, an Analysis Based on Fluvial Indices" Remote Sensing 15, no. 2: 433. https://doi.org/10.3390/rs15020433
APA StyleGao, M., Hao, M., Zeilinger, G., & Xu, X. (2023). Recent Uplift Characteristics of the Southeast Tibetan Plateau, an Analysis Based on Fluvial Indices. Remote Sensing, 15(2), 433. https://doi.org/10.3390/rs15020433