Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = fluorescent TAP platform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3203 KiB  
Article
Green Synthesised Carbon Nanodots Using the Maillard Reaction for the Rapid Detection of Elemental Selenium in Water and Carbonated Beverages
by Arjun Muthu, Duyen H. H. Nguyen, Aya Ferroudj, József Prokisch, Hassan El-Ramady, Chaima Neji and Áron Béni
Nanomaterials 2025, 15(15), 1161; https://doi.org/10.3390/nano15151161 - 28 Jul 2025
Viewed by 140
Abstract
Selenium (Se) is an essential trace element involved in antioxidant redox regulation, thyroid hormone metabolism, and cancer prevention. Among its different forms, elemental selenium (Se0), particularly at the nanoscale, has gained growing attention in food, feed, and biomedical applications due to [...] Read more.
Selenium (Se) is an essential trace element involved in antioxidant redox regulation, thyroid hormone metabolism, and cancer prevention. Among its different forms, elemental selenium (Se0), particularly at the nanoscale, has gained growing attention in food, feed, and biomedical applications due to its lower toxicity and higher bioavailability compared to inorganic selenium species. However, the detection of Se0 in real samples remains challenging as current analytical methods are time-consuming, labour-intensive, and often unsuitable for rapid analysis. In this study, we developed a method for rapidly measuring Se0 using carbon nanodots (CNDs) produced from the Maillard reaction between glucose and glycine. The fabricated CNDs were water-dispersible and strongly fluorescent, with an average particle size of 3.90 ± 1.36 nm. Comprehensive characterisation by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), fluorescence spectroscopy, and Raman spectroscopy confirmed their structural and optical properties. The CNDs were employed as fluorescent probes for the selective detection of Se0. The sensor showed a wide linear detection range (0–12.665 mmol L−1), with a low detection limit (LOD) of 0.381 mmol L−1 and a quantification limit (LOQ) of 0.465 mmol L−1. Validation with spiked real samples—including ultra-pure water, tap water, and soft drinks—yielded high recoveries (98.6–108.1%) and low relative standard deviations (<3.4%). These results highlight the potential of CNDs as a simple, reliable, and environmentally friendly sensing platform for trace-level Se0 detection in complex food and beverage matrices. Full article
Show Figures

Graphical abstract

31 pages, 10347 KiB  
Article
Green One-Step Synthesis and Characterization of Fluorescent Carbon Quantum Dots from PET Waste as a Dual-Mode Sensing Probe for Pd(II), Ciprofloxacin, and Fluoxetine via Fluorescence Quenching and Enhancement Mechanisms
by Christian Ebere Enyoh, Qingyue Wang, Weiqian Wang, Miho Suzuki, Go Masuda, Daisuke Nakajima and Senlin Lu
Surfaces 2025, 8(2), 24; https://doi.org/10.3390/surfaces8020024 - 3 Apr 2025
Cited by 1 | Viewed by 1971
Abstract
In this study, we report a green, one-step synthesis of fluorescent carbon quantum dots (PET-FCQDs) derived from polyethylene terephthalate (PET) waste using an environmentally friendly pyrolytic method. The PET-FCQDs were systematically characterized using techniques such as UV-Vis spectroscopy, fluorescence spectroscopy, ATR-FTIR, TGA, and [...] Read more.
In this study, we report a green, one-step synthesis of fluorescent carbon quantum dots (PET-FCQDs) derived from polyethylene terephthalate (PET) waste using an environmentally friendly pyrolytic method. The PET-FCQDs were systematically characterized using techniques such as UV-Vis spectroscopy, fluorescence spectroscopy, ATR-FTIR, TGA, and fluorescence microscope, confirming their nanoscale size (2–50 nm), rich functional groups and thermal stability. Thermal stability and dynamics evaluated by the Coats–Redfern method showed endothermic reactions with an activation energy of 88.84–125.05 kJ/mol. Density functional theory studies showed a binding energy, highest occupied molecular orbital, lowest unoccupied molecular orbital, and energy gap of −675.39, −5.23, −5.07, and 0.17 eV, respectively. The as-synthesized PET-FCQDs demonstrated excellent optical properties with quantum yield (Φ) of 49.6% and were applied as a dual-mode fluorescent sensing probe for the detection of Pd2+, ciprofloxacin (CIP), and fluoxetine (FLX) in aqueous systems via fluorescence quenching and enhancement mechanisms. For Pd2+, the fluorescence emission intensity at 470 nm was quenched proportionally to the increasing concentration, while CIP and FLX induced fluorescence enhancement. The Stern–Volmer analysis confirmed strong interaction between the analytes and PET-FCQDs, distinguishing dynamic quenching for Pd2+ and static interactions for CIP and FLX. The method exhibited linear detection ranges of 1–10 mg/L for Pd2+, 50–150 µg/L for CIP, and 100–400 ng/L for FLX, with corresponding limits of detection (LOD) of 1.26 mg/L, 3.3 µg/L, and 134 ng/L, respectively. Recovery studies in spiked tap water and river water samples demonstrated the practical applicability of PET-FCQDs, although matrix effects were observed, particularly for FLX. This work not only highlights a sustainable route for PET waste upcycling but also demonstrates the potential of PET-FCQDs as cost-effective, sensitive, and versatile fluorescent probes for environmental monitoring of heavy metal ions and pharmaceutical pollutants. Further optimization of the sensing platform could enhance its selectivity and performance in real-world applications. Full article
Show Figures

Graphical abstract

30 pages, 5793 KiB  
Article
Advanced Solubilization of Brazilian Cerrado Byproduct Extracts Using Green Nanostructured Lipid Carriers and NaDESs for Enhanced Antioxidant Potentials
by Victor Carlos Mello, Giovanna Oliveira de Brito, Marina Arantes Radicchi, Isadora Florêncio, Tathyana Benetis Piau, Eduardo Antonio Ferreira, Leonardo Fróes de Azevedo Chang, Ariane Pandolfo Silveira, Marina Mesquita Simões, Karen Letycia Rodrigues de Paiva, Mac-Kedson Medeiros Salviano Santos, Nicole Santana Alves, Cesar Koppe Grisolia, Sônia Nair Báo and Eliana Fortes Gris
Antioxidants 2025, 14(3), 290; https://doi.org/10.3390/antiox14030290 - 28 Feb 2025
Viewed by 885
Abstract
This study explores the development and characterization of lipid nanostructures (NLCs) containing natural deep eutectic solvents (NaDESs) derived from taperebá peel extract (Spondias mombin), a by-product rich in bioactive phenolic compounds, including ellagic acid and quercetin. The taperebá extract exhibited a [...] Read more.
This study explores the development and characterization of lipid nanostructures (NLCs) containing natural deep eutectic solvents (NaDESs) derived from taperebá peel extract (Spondias mombin), a by-product rich in bioactive phenolic compounds, including ellagic acid and quercetin. The taperebá extract exhibited a high polyphenol content (2623 mg GAE/L) and notable antioxidant activity, as demonstrated by DPPH (258 mM TEAC/100 mL) and ABTS (495 mM TEAC/100 mL) assays. NLCs were developed using NaDESs to enhance the stability and bioavailability of the antioxidant compounds. Physicochemical characterization confirmed the formation of stable, nanometric, and monodispersed formulations with efficient encapsulation. Biological evaluation of the NLC-TAP-NaDES formulation demonstrated its remarkable capacity to mitigate oxidative stress in cells subjected to H2O2-induced ROS generation. Fluorescence imaging revealed a significant reduction in intracellular ROS levels in treated cells compared to untreated controls, confirming the antioxidant efficacy of the formulation. This outcome underscores the synergy between NaDESs and NLC systems in protecting and delivering phenolic compounds. This study highlights the potential of utilizing underexplored by-products, such as taperebá peels, to develop sustainable and effective antioxidant delivery systems. The NLC-TAP-NaDES platform combines nanotechnology with green chemistry principles, presenting significant implications for the treatment of oxidative stress-related conditions and broader applications in pharmaceutical and nutraceutical sciences. These findings contribute to advancing sustainable innovations in antioxidant therapies, leveraging the dual benefits of bioeconomy and high-performance nanomaterials. Full article
Show Figures

Figure 1

14 pages, 3860 KiB  
Article
Two-Birds-with-One-Stone Synthesis of Hydrophilic and Hydrophobic Fluorescent Carbon Nanodots from Dunaliella salina Biomass as 4-Nitrophenol Nanoprobes Based on Inner Filter Effect and First Derivative Redshift of Emission Band
by Thomais A. Skolariki, Theodoros G. Chatzimitakos, Lamprini Sygellou and Constantine D. Stalikas
Nanomaterials 2023, 13(10), 1689; https://doi.org/10.3390/nano13101689 - 21 May 2023
Cited by 3 | Viewed by 1913
Abstract
4-Nitrophenol (4-NP) has been listed as a priority pollutant and has also been reported as a human urinary metabolite used as a marker to evaluate exposure to certain pesticides. In the work herein, a solvothermal approach is applied to the one-pot synthesis of [...] Read more.
4-Nitrophenol (4-NP) has been listed as a priority pollutant and has also been reported as a human urinary metabolite used as a marker to evaluate exposure to certain pesticides. In the work herein, a solvothermal approach is applied to the one-pot synthesis of both hydrophilic and hydrophobic fluorescent carbon nanodots (CNDs), utilizing the halophilic microalgae Dunaliella salina as a biomass precursor. Both kinds of the produced CNDs showed appreciable optical properties and quantum yields, good photostability and they were capable of probing 4-NP by quenching their fluorescence through the inner filter effect. Interestingly, a prominent 4-NP concentration-dependent redshift of the corresponding emission band of the hydrophilic CNDs was noticed, which was further exploited, for the first time, as an analytical platform. Capitalizing on these properties, analytical methods were developed and applied to a variety of matrixes, such as tap water, treated municipal wastewater and human urine. The method based on the hydrophilic CNDs (λexem: 330/420 nm) was linear in the range of 0.80–45.0 μM and showed acceptable recoveries (from 102.2 to 113.7%) with relative standard deviations of 2.1% (intra-day) and 2.8% (inter-day) for the quenching-based detection mode and 2.9% (intra-day) and 3.5% (inter-day) for the redshift one. The method based on the hydrophobic CNDs (λexem: 380/465 nm) was linear in the range of 1.4–23.0 μM, with recoveries laying within the range of 98.2–104.5% and relative standard deviations of 3.3% and 4.0% for intra-day and inter-day assays, respectively. Full article
Show Figures

Figure 1

16 pages, 6232 KiB  
Article
A Bifunctional Fluorescence Probe Based on AIE-ICT Strategy for Visual Detection of Cu2+/Co2+ in Complex Matrix
by Jingtao Zhao, Jiaxin Lian, Wenyue Pan, Jialing Du, Ziteng Liu and Longshan Zhao
Molecules 2023, 28(5), 2059; https://doi.org/10.3390/molecules28052059 - 22 Feb 2023
Cited by 8 | Viewed by 2316
Abstract
A novel fluorescence chemical sensor-based probe 1-{[(E)-(2-aminophenyl)azanylidene]methyl}naphthalen-2-ol (AMN) was designed and synthesized, which performed a “naked eye” detection ability toward Cu2+ and Co2+ based on aggregation-induced emission (AIE) fluorescence strategy. It has sensitive detection ability for Cu2+ and Co2+ [...] Read more.
A novel fluorescence chemical sensor-based probe 1-{[(E)-(2-aminophenyl)azanylidene]methyl}naphthalen-2-ol (AMN) was designed and synthesized, which performed a “naked eye” detection ability toward Cu2+ and Co2+ based on aggregation-induced emission (AIE) fluorescence strategy. It has sensitive detection ability for Cu2+ and Co2+. In addition, the color changed from yellow-green to orange under the sunlight, realizing the rapid identification of Cu2+/Co2+, which has the potential of on-site visual detection under the “naked eye”. Moreover, different “on” and “off” fluorescence expressions were exhibited under excessive glutathione (GSH) in AMN-Cu2+ and AMN-Co2+ systems, which could be employed to distinguish Cu2+ from Co2+. The detection limits for Cu2+ and Co2+ were measured to be 8.29 × 10−8 M and 9.13 × 10−8 M, respectively. The binding mode of AMN was calculated to be 2:1 by Jobs’ plot method analysis. Ultimately, the new fluorescence sensor was applied to detect Cu2+ and Co2+ in real samples (tap water, river water, and yellow croaker), and the results were satisfying. Therefore, this high-efficiency bifunctional chemical sensor platform based on “on–off” fluorescence detection will provide significant guidance for the advance development of single-molecule sensors for multi-ion detection. Full article
Show Figures

Figure 1

18 pages, 3830 KiB  
Article
Spray Deposition on Weeds (Palmer Amaranth and Morningglory) from a Remotely Piloted Aerial Application System and Backpack Sprayer
by Daniel Martin, Vijay Singh, Mohamed A. Latheef and Muthukumar Bagavathiannan
Drones 2020, 4(3), 59; https://doi.org/10.3390/drones4030059 - 19 Sep 2020
Cited by 35 | Viewed by 8066
Abstract
This study was designed to determine whether a remotely piloted aerial application system (RPAAS) could be used in lieu of a backpack sprayer for post-emergence herbicide application. Consequent to this objective, a spray mixture of tap water and fluorescent dye was applied on [...] Read more.
This study was designed to determine whether a remotely piloted aerial application system (RPAAS) could be used in lieu of a backpack sprayer for post-emergence herbicide application. Consequent to this objective, a spray mixture of tap water and fluorescent dye was applied on Palmer amaranth and ivyleaf morningglory using an RPAAS at 18.7 and 37.4 L·ha−1 and a CO2-pressurized backpack sprayer at a 140 L·ha−1 spray application rate. Spray efficiency (the proportion of applied spray collected on an artificial sampler) for the RPAAS treatments was comparable to that for the backpack sprayer. Fluorescent spray droplet density was significantly higher on the adaxial surface for the backpack sprayer treatment than that for the RPAAS platforms. The percent of spray droplets on the abaxial surface for the RPAAS aircraft at 37.4 L·ha−1 was 4-fold greater than that for the backpack sprayer at 140 L·ha−1. The increased spray deposition on the abaxial leaf surfaces was likely caused by rotor downwash and wind turbulence generated by the RPAAS which caused leaf fluttering. This improved spray deposition may help increase the efficacy of contact herbicides. Test results indicated that RPAASs may be used for herbicide application in lieu of conventional backpack sprayers. Full article
(This article belongs to the Special Issue Feature Papers of Drones)
Show Figures

Figure 1

20 pages, 4991 KiB  
Article
Fluorescent TAP as a Platform for Virus-Induced Degradation of the Antigenic Peptide Transporter
by Magda Wąchalska, Małgorzata Graul, Patrique Praest, Rutger D. Luteijn, Aleksandra W. Babnis, Emmanuel J. H. J. Wiertz, Krystyna Bieńkowska-Szewczyk and Andrea D. Lipińska
Cells 2019, 8(12), 1590; https://doi.org/10.3390/cells8121590 - 7 Dec 2019
Cited by 6 | Viewed by 5571
Abstract
Transporter associated with antigen processing (TAP), a key player in the major histocompatibility complex class I-restricted antigen presentation, makes an attractive target for viruses that aim to escape the immune system. Mechanisms of TAP inhibition vary among virus species. Bovine herpesvirus 1 (BoHV-1) [...] Read more.
Transporter associated with antigen processing (TAP), a key player in the major histocompatibility complex class I-restricted antigen presentation, makes an attractive target for viruses that aim to escape the immune system. Mechanisms of TAP inhibition vary among virus species. Bovine herpesvirus 1 (BoHV-1) is unique in its ability to target TAP for proteasomal degradation following conformational arrest by the UL49.5 gene product. The exact mechanism of TAP removal still requires elucidation. For this purpose, a TAP-GFP (green fluorescent protein) fusion protein is instrumental, yet GFP-tagging may affect UL49.5-induced degradation. Therefore, we constructed a series of TAP-GFP variants using various linkers to obtain an optimal cellular fluorescent TAP platform. Mel JuSo (MJS) cells with CRISPR/Cas9 TAP1 or TAP2 knockouts were reconstituted with TAP-GFP constructs. Our results point towards a critical role of GFP localization on fluorescent properties of the fusion proteins and, in concert with the type of a linker, on the susceptibility to virally-induced inhibition and degradation. The fluorescent TAP platform was also used to re-evaluate TAP stability in the presence of other known viral TAP inhibitors, among which only UL49.5 was able to reduce TAP levels. Finally, we provide evidence that BoHV-1 UL49.5-induced TAP removal is p97-dependent, which indicates its degradation via endoplasmic reticulum-associated degradation (ERAD). Full article
(This article belongs to the Special Issue Cell Biology of Viral Infections)
Show Figures

Graphical abstract

13 pages, 2989 KiB  
Article
A Nanocomposite Based on Reduced Graphene and Gold Nanoparticles for Highly Sensitive Electrochemical Detection of Pseudomonas aeruginosa through Its Virulence Factors
by Islem Gandouzi, Mihaela Tertis, Andreea Cernat, Dalila Saidane-Mosbahi, Aranka Ilea and Cecilia Cristea
Materials 2019, 12(7), 1180; https://doi.org/10.3390/ma12071180 - 11 Apr 2019
Cited by 24 | Viewed by 4916
Abstract
Pyoverdine is a fluorescent siderophore produced by Pseudomonas aeruginosa that can be considered as a detectable marker in nosocomial infections. The presence of pyoverdine in water can be directly linked to the presence of the P. aeruginosa, thus being a nontoxic and [...] Read more.
Pyoverdine is a fluorescent siderophore produced by Pseudomonas aeruginosa that can be considered as a detectable marker in nosocomial infections. The presence of pyoverdine in water can be directly linked to the presence of the P. aeruginosa, thus being a nontoxic and low-cost marker for the detection of biological contamination. A novel platform was developed and applied for the electrochemical selective and sensitive detection of pyoverdine, based on a graphene/graphite-modified screen-printed electrode (SPE) that was electrochemically reduced and decorated with gold nanoparticles (NPs). The optimized sensor presenting higher sensitivity towards pyoverdine was successfully applied for its detection in real samples (serum, saliva, and tap water), in the presence of various interfering species. The excellent analytical performances underline the premises for an early diagnosis kit of bacterial infections based on electrochemical sensors. Full article
(This article belongs to the Special Issue Graphene Oxide: Synthesis, Reduction, and Frontier Applications)
Show Figures

Figure 1

9 pages, 1710 KiB  
Article
Sensitive Hg2+ Sensing via Quenching the Fluorescence of the Complex between Polythymine and 5,10,15,20-tetrakis(N-methyl-4-pyridyl) Porphyrin (TMPyP)
by Daohong Wu, Yaliang Huang, Shengqiang Hu, Xinyao Yi and Jianxiu Wang
Sensors 2018, 18(11), 3998; https://doi.org/10.3390/s18113998 - 16 Nov 2018
Cited by 15 | Viewed by 3103
Abstract
The interaction between polythymine (dTn) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl) porphyrin (TMPyP) was systematically studied using various techniques. dTn remarkably enhanced the fluorescence intensity of TMPyP as compared to other oligonucleotides. The enhanced fluorescence intensity and the shift of the emission peaks were ascribed to the [...] Read more.
The interaction between polythymine (dTn) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl) porphyrin (TMPyP) was systematically studied using various techniques. dTn remarkably enhanced the fluorescence intensity of TMPyP as compared to other oligonucleotides. The enhanced fluorescence intensity and the shift of the emission peaks were ascribed to the formation of a π-π complex between TMPyP and dTn. And the quenching of the dTn-enhanced fluorescence by Hg2+ through a synergistic effect occurs due to the heavy atom effect. The binding of Hg2+ to TMPyP plays an important role in the Hg-TMPyP-dT30 ternary complex formation. A TMPyP-dT30-based Hg2+ sensor was developed with a dynamic range of Hg2+ from 5 nM to 100 nM. The detection limit of 1.3 nM was low enough for Hg2+ determination. The sensor also exhibited good selectivity against other metal ions. Experiments for tap water and river water demonstrated that the detection method was applicable for Hg2+ determination in real samples. The Hg2+ sensor based on oligonucleotide dT30-enhanced TMPyP fluorescence was fast and low-cost, presenting a promising platform for practical Hg2+ determination. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

Back to TopTop