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Abstract: The interaction between polythymine (dTn) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl)
porphyrin (TMPyP) was systematically studied using various techniques. dTn remarkably enhanced
the fluorescence intensity of TMPyP as compared to other oligonucleotides. The enhanced
fluorescence intensity and the shift of the emission peaks were ascribed to the formation of a π-π
complex between TMPyP and dTn. And the quenching of the dTn-enhanced fluorescence by Hg2+

through a synergistic effect occurs due to the heavy atom effect. The binding of Hg2+ to TMPyP plays
an important role in the Hg-TMPyP-dT30 ternary complex formation. A TMPyP-dT30-based Hg2+

sensor was developed with a dynamic range of Hg2+ from 5 nM to 100 nM. The detection limit of
1.3 nM was low enough for Hg2+ determination. The sensor also exhibited good selectivity against
other metal ions. Experiments for tap water and river water demonstrated that the detection method
was applicable for Hg2+ determination in real samples. The Hg2+ sensor based on oligonucleotide
dT30-enhanced TMPyP fluorescence was fast and low-cost, presenting a promising platform for
practical Hg2+ determination.
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1. Introduction

As one of the most important conjugated organic molecules, porphyrins play a crucial role in
the metabolism of living organisms [1]. For example, porphyrins are responsible for the production
of singlet oxygen, which could damage DNA in tumor cells [2]. The interaction between porphyrins
or their derivatives and nucleic acids has been extensively investigated [3–5], in which three binding
types including intercalation, external or groove binding, and outside stacking were involved [6].

5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP) is a water-soluble cationic porphyrin,
which contains a porphyrin core and N-methylpyridinium side chains [7]. Due to their planarity and
hydrophobicity, the porphyrin rings can intercalate into the base pairs of DNA and in the same time,
the positively charged side chains can electrostatically interact with the negatively charged nucleic
acids [8]. For example, evidenced by nuclear magnetic resonance spectroscopy, TMPyP can intercalate
into GC-rich regions of duplex DNA [9,10]. However, the binding of TMPyP to the major groove of the
AT-rich regions has also been proposed [11]. TMPyP has been reported to interact with triplex DNA,
in which the third strand could inhibit the assembly of TMPyP with duplex DNA [12]. TMPyP can
also bind to the G-quadruplex structure through external stacking rather than intercalation between
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the G-tetrads [13–15]. As probably the most flexible form, the single stranded DNA enables unrivaled
access to individual bases [6], which facilitates the interaction with TMPyP.

Mercuric ion (Hg2+) possesses serious immunotoxic, genotoxic, and neurotoxic effects, causing
damage to the central nervous system, endocrine system and other organs such as the kidney, liver,
heart, and lung [16]. Hg2+ usually serves as a fluorescent quencher through enhancement of spin-orbit
coupling [17]. A colorimetric method for Hg2+ determination through platinum nanoparticles with
limit of detection 8.5 pM and a linear range from 0.01 to 4 nM has been reported by Aragay et al. [18].
MoS2 nanosheet/DNA/carbon dot-based fluorescence method has been reported to detect Hg2+ [19].
However, most of the methods were based on synthesized nanometer materials such as nanoparticle,
quantum dots, nanosheet, which were hard to be modified. Herein, the interaction between TMPyP and
polyadenine (dAn), polycytosine (dCn), polyguanine (dGn) and polythymine (dTn) were investigated.
dTn was found to substantially enhance the fluorescence intensity of TMPyP due to the formation
of a TMPyP-dTn complex. The incorporation of Hg2+ significantly quenched the fluorescence of the
complex and a fluorescent sensor for Hg2+ was developed. The sensing strategy is shown in Figure 1.
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Figure 1. Schematic of Hg2+ assay by quenching the fluorescence of TMPyP-dT30.

2. Materials and Methods

2.1. Reagents and Chemicals

5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP) was purchased from Sigma-Aldrich
(St. Louis, MO, USA). The oligonucleotides (ODNs), such as polyadenine dA13, polycytosine dC13,
polyguanine dG6TG6 and polythymine dT5, dT10, dT13, dT15, dT20, dT30, dT40, dT50 were synthesized
by Sangon Biotechnology Co., Ltd. (Shanghai, China). Hg(NO3)2, Cd(NO3)2·4H2O, Cr(NO3)3·9H2O,
Cu(NO3)2·3H2O, Fe(NO3)3·9H2O, FeSO4·7H2O, Mn(CH3COO)2·4H2O, MgCl2·6H2O, NiCl2·6H2O,
Pb(NO3)2, ZnCl2, Tris-HCl, CH3COOH, NaCl and NaOH were acquired from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). All the ODNs were prepared with Tris-HCl buffer (10 mM Tris,
100 mM NaCl, pH 7.4). All reagents were of analytical grade and used as received. Ultrapure water
was obtained from a Millipore water purification system (≥18 MΩ, Milli-Q, Millipore).

2.2. Apparatus

UV-vis spectra and circular dichroism (CD) spectra were recorded on a UV-2450
spectrophotometer (Shimadzu, Japan) and a Jasco-815 spectropolarimeter (Jasco, Japan), respectively.
Fluorescence spectra were collected on a Hitachi F-4600 spectrofluorometer (Hitachi, Japan).
Fluorescence lifetime was measured on a compact FluoTime 100 fluorescence lifetime spectrometer
(PicoQuant GmbH, Germany).
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2.3. Procedure

The TMPyP-ODN complex was formed by mixing 1 µM TMPyP and 2 µM ODN, followed by
dilution to 200 µL with Tris-HCl buffer and stirring for 50 min. For the Hg2+ assay, Hg2+ with various
concentrations was added into the solution of TMPyP-dT30 complex under stirring for 1 min. For the
fluorescence, measurement with excitation was 422 nm and emission was at 660 nm. The fluorescence
lifetimes were determined from the data obtained from a compact FluoTime 100 fluorescence lifetime
spectrometer. The data could be analyzed by exponential fits. The solution of Hg2+, TMPyP and
dT30 were mixed by 1 µM Hg2+ and 1 µM TMPyP for Hg-TMPyP; 1 µM TMPyP and 2 µM dT30

for TMPyP-dT30; 1 µM Hg2+, 1 µM TMPyP and 2 µM dT30 for Hg-TMPyP-dT30. The solutions
were followed by dilution to 200 µL with Tris-HCl buffer and stirring for 120 min. All the lifetime
measurements were with an excitation at 422 nm.

3. Results and Discussion

3.1. Interaction between ODNs and TMPyP

The interaction between TMPyP and ODNs was characterized by fluorescence and UV-vis
absorption spectroscopy. As shown in Figure 2A, upon excitation at 422 nm, TMPyP exhibited two
broad peaks at around 665 nm and 715 nm (curve a). With the addition of dG6TG6, the fluorescence
of TMPyP decreased due to the electron transfer from guanine to TMPyP (curve b) [20]. However,
the incorporation of dA13 (curve c), dC13 (curve d) and dT13 (curve e) increased the fluorescence of
TMPyP, and the emission wavelengths were shifted to 660 nm and 720 nm. The enhanced fluorescence
intensity and the shift of the emission peaks were ascribed to the formation of a π-π complex between
TMPyP and ODNs [20]. The above results were consistent with those in the cases of mononucleotides.
Mononucleotides interacted differently with TMPyP, in which adenine, thymine, and cytosine increased
the fluorescence intensity of TMPyP, while guanine substantially quenched the fluorescence intensity
of TMPyP [20]. The higher fluorescence of TMPyP by dT13 than that by dA13 or dC13 indicated that
TMPyP binded to dT13 with stronger affinity [21].
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Figure 2. (A) Fluorescence and (B) UV-vis absorption spectra of 1.0 µM TMPyP in the (a) absence and
(b) presence of 2.0 µM dG6TG6, (c) dA13, (d) dC13 or (e) dT13.

TMPyP displayed a characteristic absorption peak at 422 nm known as the Soret band (curve a
in Figure 2B), which originated from the S0–S2 transition [22]. The incorporation of dG6TG6 (curve
b), dA13 (curve c), dC13 (curve d) and dT13 (curve e) decreased the absorption of TMPyP, and the
absorbance peak of TMPyP was red-shifted to 426 nm and 431 nm in the case of dC13 (curve d) and
dT13 (curve e), respectively. The larger bathochromic shift in curve e suggested the higher binding
affinity between TMPyP and dT13.

The length of polythymine also influenced the fluorescence enhancement of TMPyP (Figure 3).
The incorporation of different lengths of polythymine resulted in increased fluorescence and began
to level off with the length of dT30. Thus, the length of dT30 might have been more favorable for π-π
stacking between TMPyP and polythymine.
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3.2. Fluorescence Quenching of TMPyP-dT30 Complex by Hg2+

In comparison with the fluorescence of TMPyP at 665 nm and 715 nm (curve a in Figure 4A),
the fluorescence of the TMPyP-dT30 complex at 660 nm and 720 nm (curve b in Figure 4A) was
significantly enhanced. With the addition of Hg2+, the fluorescence of the TMPyP-dT30 complex at
660 nm was greatly quenched and in the same time, a tiny and broad emission peak at 635 nm was
attained (curve c). The emission peak at 635 nm was ascribed to that of Hg-TMPyP, as evidenced by the
emission of Hg-TMPyP in curve d. Porphyrins have been reported to bind to Hg2+ with the formation
of metalloporphyrin [23], and the fluorescence of porphyrins could be quenched by Hg2+ due to the
heavy atom effect [24]. Based on the results above, a new ternary complex of Hg-TMPyP-dT30 might
have formed [25], providing the possibility for a Hg2+ assay.
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Figure 4. (A) Fluorescence and (B) UV-vis absorption spectra of (a) 1.0 µM TMPyP, (b) 1.0 µM TMPyP
+ 2.0 µM dT30, (c) 1.0 µM TMPyP + 2.0 µM dT30 + 4.0 µM Hg2+, (d) 1.0 µM TMPyP + 4.0 µM Hg2+.
(C) CD spectra of (a) 20 µM dT30, (b) 20 µM dT30 + 100 µM TMPyP, (c) b + 100 µM Hg2+, (d) a +
100 µM Hg2+. (D) Fluorescence spectra of (a) 1.0 µM TMPyP + 2.0 µM dC30, (b) a + 4.0 µM Hg2+. The
fluorescence was excited at 422 nm and measured at 660 nm.
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To further demonstrate the formation of the ternary complex, UV-vis absorption spectra were
investigated (Figure 4B). With the addition of dT30, the Soret band of TMPyP at 422 nm (curve a)
was red-shifted to 431 nm (curve b). The electrostatic interaction and π-π stacking facilitated the
formation of the TMPyP-dT30 complex [20]. The formation of the ternary complex of Hg-TMPyP-dT30

led to a larger bathochromic shift of the Soret band to 462 nm, and in the same time, a new and small
peak appeared at 437 nm (curve c). The new peak originated from the absorption of Hg-TMPyP
(curve d) [26].

The conformational change of dT30 induced by TMPyP was studied by CD measurements
(Figure 4C). The dT30 exhibited a negative peak at 250 nm and a positive peak at 275 nm (curve a).
Upon adding TMPyP to the solution of dT30, both peaks decreased slightly and in the same time, a new
positive peak at 430 nm appeared (curve b), which indicated the binding of TMPyP to dT30 through
π-π stacking [27,28]. Note that TMPyP did not show any detectable CD signal. With the incorporation
of Hg2+ to the TMPyP-dT30 complex, the 275 nm-peak disappeared and the negative peak at 250 nm
shifted to 260 nm (curve c). Furthermore, the 430 nm-peak disappeared. The results above suggested
that the binding of TMPyP to dT30 was interrupted by Hg2+. Such an interruption might have been
ascribed to the alteration of the planarity of the TMPyP core induced by Hg2+ [5]. When adding Hg2+

to dT30 solution, the formation of the T–Hg–T complex was characterized by the negative peak at
255 nm and the positive peak at 280 nm (curve d). No positive peak at 280 nm in curve c was shown
compared to the T–Hg–T complex, which indicated the different structure of dT30 in T–Hg–T and the
Hg-TMPyP-dT30 complex.

The fluorescence lifetime measurement provided deep insight into the ternary complex formation.
The lifetime of TMPyP determined from the decay curve was 4.6 ns, consistent with that reported
previously [26]. The lifetime was increased to 10.2 ns upon formation of TMPyP-dT30. However, the
ternary complex of Hg-TMPyP-dT30 possessed a much shorter lifetime of 2.0 ns. Upon adding Hg2+ to
the solution of TMPyP, a lifetime of 1.2 ns was observed, indicating the binding of Hg2+ to TMPyP [26].

As reported previously, the binding of TMPyP to dT30 possessed high binding affinity (binding
constant of 107 M−1), while the coordination of Hg2+ to dT30 was a slow dynamic process at
low concentrations of Hg2+ [29]. The binding of Hg2+ to TMPyP plays an important role in the
Hg-TMPyP-dT30 ternary complex formation. Upon addition of Hg2+ to the solution of TMPyP-dC30,
the ternary complex of Hg-TMPyP-dC30 was also formed, as evidenced by the quenching of the
fluorescence of TMPyP-dC30 by Hg2+ (Figure 4D). Considering the relatively lower affinity between
Hg2+ and dC30 than that between Hg2+ and TMPyP [26,30], the coordination of Hg2+ to TMPyP was
essential for the formation of the Hg-TMPyP-dC30 complex. The quenching of the fluorescence of
TMPyP-dT30 by Hg2+ provided the possibility for a Hg2+ assay.

3.3. Calibration Curve of The Hg2+ Assay

The fluorescence intensity of TMPyP-dT30 at 660 nm gradually decreased with an increased Hg2+

concentration (Figure 5A). The dependence of (F0 − F)/F0 on the concentration of Hg2+ was shown in
Figure 5B, where F0 and F represented the fluorescence intensities in the absence and presence of Hg2+,
respectively. The inset of Figure 5B depicted the linear portion of the curve with Hg2+ concentrations
ranging from 5 nM to 100 nM and the linear regression equation was presented as (F0 − F)/F0 =
3.22 [Hg2+] (µM) + 0.05 (R2 = 0.9605). The detection limit was estimated to be 1.3 nM, being much
lower than those by the 8-amino BODIPY-based fluorescence assay (49 nM) [31], Raman spectroscopic
method (10 nM) [32], colorimetric assay employing plasmonic gold nanoparticles (50 nM [33] and
17.3 nM [34]), colorimetric assay based on Cu2-xSe nanoparticles (2.7nM) [35] and the fluorescence
polarization assay based on CdTe/CdS quantum dots (8.6 nM) [36]. Such a concentration level was
also comparable with those by fluorescent assay based on phosphorothioate RNA modifications
(1.7 nM) [37]. The comparison of the proposed sensor with other methods is shown in Table 1. Because
the maximum permissible level of Hg2+ in drinking water and food, set by the U.S. Environmental
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Protection Agency and World Health Organization, is at 2 ppb (10 nM) [38], the sensing protocol serves
as a viable alternative for a practical Hg2+ assay.
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Table 1. A comparison of the proposed sensor with other detection methods.

Method Tool Linear Range LOD Time Real Sample Ref.

colorimetric platinum nanoparticles 0.01–4 nM 0.0085 nM 10 min tap water [18]

colorimetric gold nanoparticles 25–750 nM 50 nM 40 min pond and river
water [33]

colorimetric Cu2-xSe nanoparticles 0–800 nM 2.7 nM 10 min tap, pond and
river water [35]

colorimetric gold nanoparticles and
aptamer 10–1000 nM 17.3 nM 20 min tap, rivers, lakes

and ocean water [34]

Raman
spectroscopy silver nanoparticles 1–1000 µM 10 nM 30 min drinking mineral

water [32]

fluorescence Phosphorothioate RNA
Modifications 0–50 nM 1.7 nM 20 min lake water [37]

fluorescence MoS2 nanosheet/DNA/
carbon dot 0–10 nM 1.02 nM 15 min tap and lake

water [19]

fluorescence fluorescent 8-amino
BODIPY-based probe 0.5–5 µM 49 nM 50 min SMMC-7721 cells [31]

fluorescence
polarization CdTe/CdS QDs 10–800 nM 8.6 nM 2.0 h lake and spiked

lake water [36]

fluorescence polyT-TMPyP 5–100 nM 1.3 nM 60 s Tap and river
water this work

3.4. Selectivity of the Assay

The selectivity of the method was evaluated by the addition of various metal ions of 4.0 µM
(Figure 6). Hg2+ quenched about 90% of the fluorescence intensity of the TMPyP-dT30 complex at
660 nm. However, other metal ions, such as Cu2+, Fe3+, Fe2+, Cd2+, Cr3+, Mg2+, Mn2+ and Ni2+ exerted
negligible influence on the fluorescence intensity of TMPyP-dT30. Pb2+ caused 30% quenching of
the fluorescence intensity due to the formation of the unstable Pb2+-TMPyP-dT30 [39]. The proposed
fluorescence method possessed good selectivity toward Hg2+ determination.

3.5. Practical Samples for the Hg2+ Assay

The practical application of this method for Hg2+ determination was evaluated by the standard
addition method through adding different concentration of Hg2+ in tap water and river water. As
shown in Table 2, the recoveries were between 96–105%. The recovery suggested that the method was



Sensors 2018, 18, 3998 7 of 9

largely free from the matrix effect of the complex real water samples and could be served for Hg2+

determination in tap water and river water.Sensors 2018, 18, x 7 of 9 

 

 
Figure 6. Selectivity of the fluorescence assay of Hg2+. The fluorescence intensity of TMPyP-dT30 was 
attained in the absence (Blank) and presence of 4.0 μM of Hg2+, Pb2+, Cu2+, Fe3+, Fe2+, Cd2+, Cr3+, Mg2+, 
Mn2+ or Ni2+. The vertical bars designate the standard deviation of the mean of three replicate 
measurements. 

3.5. Practical Samples for the Hg2+ Assay 

The practical application of this method for Hg2+ determination was evaluated by the standard 
addition method through adding different concentration of Hg2+ in tap water and river water. As 
shown in Table 2, the recoveries were between 96–105%. The recovery suggested that the method 
was largely free from the matrix effect of the complex real water samples and could be served for 
Hg2+ determination in tap water and river water. 

Table 2. Determination of Hg2+ in water samples with the proposed method. 

Sample Added (nM) Measured (nM) a Recovery (%) 
tap water 2.0 2.1 ± 0.17 105 ± 0.085 

 5.0 4.9 ± 0.32 98 ± 0.064 
 10.0 9.6 ± 0.62 96 ± 0.062 

river water 2.0 2.1 ± 0.11 105 ± 0.055 
 5.0 5.1 ± 0.43 102 ± 0.086 
 10.0 9.7 ± 0.65 97 ± 0.065 

a Mean values and standard deviations were obtained from three independent experiments. 

4. Conclusions 

The fluorescence quenching capability of Hg2+ on the TMPyP-dT30 has been proposed, enabling 
a sensitive and selective Hg2+ assay. The formation of the Hg-TMPyP-dT30 ternary complex was 
characterized by various techniques. The mechanism inherent in the fluorescence quenching of 
TMPyP-dT30 by Hg2+ involved a synergistic effect. The detection limit of the proposed method was 
obtained as 1.3 nM. Experiments for tap water and river water demonstrated that the detection 
method was applicable for Hg2+ determination in real samples. The Hg2+ sensor based on 
oligonucleotide dT30-enhanced TMPyP fluorescence was fast and low-cost, presenting a promising 
platform for practical Hg2+ determination. In addition, this is the first time dT30 enhanced TMPyP 
fluorescence intensity was used for Hg2+ determination. The sensing protocol may provide useful 
information on the interaction among porphyrins, DNA and heavy metal ions. 

Author Contributions: Conceptualization, D.W.; methodology, S.H.; investigation, D.W., Y.H. and S.H.; data 
curation, D.W. and Y.H.; writing—original draft preparation, D.W.; writing—review and editing, X.Y. and J.W.; 
supervision, X.Y. and J.W.; project administration, X.Y. and J.W.; funding acquisition, J.W.  

Funding: The authors thank the National Natural Science Foundation of China (Nos. 21705166 and 21575166) 
for the financial support of this work. 

Figure 6. Selectivity of the fluorescence assay of Hg2+. The fluorescence intensity of TMPyP-dT30

was attained in the absence (Blank) and presence of 4.0 µM of Hg2+, Pb2+, Cu2+, Fe3+, Fe2+, Cd2+,
Cr3+, Mg2+, Mn2+ or Ni2+. The vertical bars designate the standard deviation of the mean of three
replicate measurements.

Table 2. Determination of Hg2+ in water samples with the proposed method.

Sample Added (nM) Measured (nM) a Recovery (%)

tap water 2.0 2.1 ± 0.17 105 ± 0.085
5.0 4.9 ± 0.32 98 ± 0.064

10.0 9.6 ± 0.62 96 ± 0.062
river water 2.0 2.1 ± 0.11 105 ± 0.055

5.0 5.1 ± 0.43 102 ± 0.086
10.0 9.7 ± 0.65 97 ± 0.065

a Mean values and standard deviations were obtained from three independent experiments.

4. Conclusions

The fluorescence quenching capability of Hg2+ on the TMPyP-dT30 has been proposed, enabling
a sensitive and selective Hg2+ assay. The formation of the Hg-TMPyP-dT30 ternary complex was
characterized by various techniques. The mechanism inherent in the fluorescence quenching of
TMPyP-dT30 by Hg2+ involved a synergistic effect. The detection limit of the proposed method was
obtained as 1.3 nM. Experiments for tap water and river water demonstrated that the detection method
was applicable for Hg2+ determination in real samples. The Hg2+ sensor based on oligonucleotide
dT30-enhanced TMPyP fluorescence was fast and low-cost, presenting a promising platform for
practical Hg2+ determination. In addition, this is the first time dT30 enhanced TMPyP fluorescence
intensity was used for Hg2+ determination. The sensing protocol may provide useful information on
the interaction among porphyrins, DNA and heavy metal ions.
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