Two-Birds-with-One-Stone Synthesis of Hydrophilic and Hydrophobic Fluorescent Carbon Nanodots from Dunaliella salina Biomass as 4-Nitrophenol Nanoprobes Based on Inner Filter Effect and First Derivative Redshift of Emission Band
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Culture Conditions
2.3. Synthesis of CNDs from Dunaliella salina
2.4. Instrumentation and Characterization
2.5. Quantum Yield (QY)
2.6. Probing 4-NP with Hydrophilic and Hydrophobic CNDs
2.7. Sample Preparation
3. Results and Discussion
3.1. Characterization of CNDs
3.2. Optical Properties of CNDs
3.3. CND Fluorescence Stability
3.4. Optimization of 4-NP Probing-Selectivity Study
3.5. Probing 4-NP Using HL-CNDs
3.6. Quenching Mechanism of the HL-CNDs
3.7. Harnessing the Shift of Emission Band of HL-CNDs in the Presence of 4-NP
3.8. Probing 4-NP Using HB-CNDs
3.9. Comparison with Other CND-Based Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Nitrophenols (Draft), Public Health Service; U.S. Department of Health and Human Services: Atlanta, GA, USA, 1990. [Google Scholar]
- Pohanish, R.P. Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens; William Andrew: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Li, C.; Zheng, Y.; Ding, H.; Jiang, H.; Wang, X. Chromium(III)-doped carbon dots: Fluorometric detection of p-nitrophenol via inner filter effect quenching. Microchim. Acta 2019, 186, 2–9. [Google Scholar] [CrossRef]
- US EPA. Reregistration Eligibility Decision (RED) Paranitrophenol. 1998. Available online: https://archive.epa.gov/pesticides/reregistration/web/pdf/2465red.pdf (accessed on 1 January 1998).
- Guo, X.; Wang, Z.; Zhou, S. The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis. Talanta 2004, 64, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Verchot, L.V.; Borelli, T. Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils. Soil Biol. Biochem. 2005, 37, 625–633. [Google Scholar] [CrossRef]
- Wang, B.H.; Lian, X.; Yan, B. Recyclable Eu3+ functionalized Hf-MOF fluorescent probe for urinary metabolites of some organophosphorus pesticides. Talanta 2020, 214, 120856. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Fung, Y.S. Dual-opposite multi-walled carbon nanotube modified carbon fiber microelectrode for microfluidic chip-capillary electrophoresis determination of methyl parathion metabolites in human urine. Electrophoresis 2018, 39, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Peng, R.; Zhou, H.; Liu, H. Sensitive determination of 4-nitrophenol based on its enhancement of a peroxyoxalate chemiluminescence system containing graphene oxide quantum dots and fluorescein. Microchim. Acta 2016, 183, 1699–1704. [Google Scholar] [CrossRef]
- Niazi, A.; Akrami, A.; Bagheban-Shahri, F.; Niazi, A.; Akrami, A. Simultaneous Spectrophotometric Determination of Nitrophenol Isomers in Environmental Samples Using First Derivative of the Density Ratio Spectra. J. Chem. Health Risks 2012, 2, 21–28. [Google Scholar]
- Wang, X.; Zeng, H.; Zhao, L.; Lin, J.M. A selective optical chemical sensor for 2,6-dinitrophenol based on fluorescence quenching of a novel functional polymer. Talanta 2006, 70, 160–168. [Google Scholar] [CrossRef]
- Pandith, A.; Kumar, A.; Kim, H.S. Imidazole-appended 9,10-anthracenedicarboxamide probe for sensing nitrophenols and selective determination of 2,4,6-trinitrophenol in an EtOH-water medium. RSC Adv. 2016, 6, 68627–68637. [Google Scholar] [CrossRef]
- Huo, F.; Yuan, H.; Yang, X.; Xiao, D.; Choi, M.M.F. Enhanced Indirect fluorescence detection of p-nitrophenol, 2,4-dinitrophenol and Trinitrophenol by micellar electrokinetic capillary chromatography with in-column optical-fiber LED-induced fluorescence detection. Anal. Sci. 2011, 27, 879–884. [Google Scholar] [CrossRef]
- Wennrich, L.; Efer, J.; Engewald, W. Gas chromatographic trace analysis of underivatized nitrophenols. Chromatographia 1995, 41, 361–366. [Google Scholar] [CrossRef]
- Mußmann, P.; Eisert, R.; Levsen, K.; Wünsch, G. Determination of nitrophenols, diaminotoluenes, and chloroaromatics in ammunition wastewater. Acta Hydrochim. Hydrobiol. 1995, 23, 13–19. [Google Scholar] [CrossRef]
- Yaripour, S.; Mohammadi, A.; Mousavi, S.; Esfanjani, I.; Arabzadeh, N.; Mozaffari, S. Simultaneous determination of 2-nitrophenol and 4-nitrophenol in pharmaceutical industrial wastewater by electromembrane extraction coupled with HPLC-UV analysis. Pharm. Sci. 2019, 25, 57–64. [Google Scholar] [CrossRef]
- Karaová, J.; Barek, J.; Schwarzová-Pecková, K. Oxidative and Reductive Detection Modes for Determination of Nitrophenols by High-Performance Liquid Chromatography with Amperometric Detection at a Boron Doped Diamond Electrode. Anal. Lett. 2016, 49, 66–79. [Google Scholar] [CrossRef]
- Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W. Carbon dots: Surface engineering and applications. J. Mater. Chem. B 2016, 4, 5772–5788. [Google Scholar] [CrossRef]
- Tuerhong, M.; Xu, Y.; Yin, X.B. Review on Carbon Dots and Their Applications. Chin. J. Anal. Chem. 2017, 45, 139–150. [Google Scholar] [CrossRef]
- Wang, Y.; Kim, S.H.; Feng, L. Highly luminescent N, S- Co-doped carbon dots and their direct use as mercury(II) sensor. Anal. Chim. Acta 2015, 890, 134–142. [Google Scholar] [CrossRef]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef]
- Lin, Y.; Yao, B.; Huang, T.; Zhang, S.; Cao, X.; Weng, W. Selective determination of free dissolved chlorine using nitrogen-doped carbon dots as a fluorescent probe. Microchim. Acta 2016, 183, 2221–2227. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Kasouni, A.; Sygellou, L.; Leonardos, I.; Troganis, A.; Stalikas, C. Human fingernails as an intriguing precursor for the synthesis of nitrogen and sulfur-doped carbon dots with strong fluorescent properties: Analytical and bioimaging applications. Sens. Actuators B Chem. 2018, 267, 494–501. [Google Scholar] [CrossRef]
- Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta 2017, 184, 1899–1914. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Kasouni, A.; Sygellou, L.; Avgeropoulos, A.; Troganis, A.; Stalikas, C. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta 2017, 175, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Chatzimarkou, A.; Chatzimitakos, T.G.; Kasouni, A.; Sygellou, L.; Avgeropoulos, A.; Stalikas, C.D. Selective FRET-based sensing of 4-nitrophenol and cell imaging capitalizing on the fluorescent properties of carbon nanodots from apple seeds. Sens. Actuators B Chem. 2018, 258, 1152–1160. [Google Scholar] [CrossRef]
- Chatzimitakos, T.G.; Kasouni, A.I.; Troganis, A.N.; Stalikas, C.D. Carbonization of Human Fingernails: Toward the Sustainable Production of Multifunctional Nitrogen and Sulfur Codoped Carbon Nanodots with Highly Luminescent Probing and Cell Proliferative/Migration Properties. ACS Appl. Mater. Interfaces 2018, 10, 16024–16032. [Google Scholar] [CrossRef] [PubMed]
- Chatzimitakos, T.G.; Stalikas, C.D. Carbon nanodots from natural (re)sources: A new perspective on analytical chemistry. In Handbook of Nanomaterials in Analytical Chemistry: Modern Trends in Analysis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–28. ISBN 9780128166994. [Google Scholar]
- Shen, J.; Shang, S.; Chen, X.; Wang, D.; Cai, Y. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater. Sci. Eng. C 2017, 76, 856–864. [Google Scholar] [CrossRef]
- Zhao, S.; Lan, M.; Zhu, X.; Xue, H.; Ng, T.W.; Meng, X.; Lee, C.S.; Wang, P.; Zhang, W. Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging. ACS Appl. Mater. Interfaces 2015, 7, 17054–17060. [Google Scholar] [CrossRef]
- Cakmak, Y.S.; Kaya, M.; Asan-Ozusaglam, M. Biochemical composition and bioactivity screening of various extracts from Dunaliella salina, a green microalga. EXCLI J. 2014, 13, 679–690. [Google Scholar]
- Hosseini Tafreshi, A.; Shariati, M. Dunaliella biotechnology: Methods and applications. J. Appl. Microbiol. 2009, 107, 14–35. [Google Scholar] [CrossRef]
- Singh, A.K.; Tiwari, R.; Singh, V.K.; Singh, P.; Khadim, S.R.; Singh, U.; Laxmi; Srivastava, V.; Hasan, S.H.; Asthana, R.K. Green synthesis of gold nanoparticles from Dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line. J. Drug Deliv. Sci. Technol. 2019, 51, 164–176. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Cai, J.; Huang, X.; Lin, L.; Lin, Y.; Yang, H.; Li, S. Nitrogen and sulfur co-doped carbon dots synthesis via one step hydrothermal carbonization of green alga and their multifunctional applications. Microchem. J. 2019, 147, 1038–1047. [Google Scholar] [CrossRef]
- Chatzimitakos, T.G.; Kasouni, A.; Troganis, A.; Leonardos, I.; Tzovenis, I.; Ntzouvaras, A.; Stalikas, C. Carbon Nanodots Synthesized from Dunaliella salina as Sun Protection Filters. C 2020, 6, 69. [Google Scholar] [CrossRef]
- Sygellou, L.; Paterakis, G.; Galiotis, C.; Tasis, D. Work Function Tuning of Reduced Graphene Oxide Thin Films. J. Phys. Chem. C 2016, 120, 281–290. [Google Scholar] [CrossRef]
- Jia, X.; Li, J.; Wang, E. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 2012, 4, 5572–5575. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, D.; Chiang, W.H. Microplasma-enabled colloidal nitrogen-doped graphene quantum dots for broad-range fluorescent pH sensors. Carbon N. Y. 2020, 167, 675–684. [Google Scholar] [CrossRef]
- Lee, H.J.; Jana, J.; Chung, J.S.; Hur, S.H. Uncovering the actual inner-filter effect between highly efficient carbon dots and nitroaromatics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 236, 118342. [Google Scholar] [CrossRef] [PubMed]
- El-Shaheny, R.; Yoshida, S.; Fuchigami, T. Graphene quantum dots as a nanoprobe for analysis of o- and p-nitrophenols in environmental water adopting conventional fluorometry and smartphone image processing-assisted paper-based analytical device. In-depth study of sensing mechanisms. Microchem. J. 2020, 158, 105241. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, H.; Song, X.; Ma, X.; Wang, J.; Tan, M. Presence of photoluminescent carbon dots in Nescafe® original instant coffee: Applications to bioimaging. Talanta 2014, 127, 68–74. [Google Scholar] [CrossRef]
- Bogireddy, N.K.R.; Silva, R.C.; Valenzuela, M.A.; Agarwal, V. 4-nitrophenol optical sensing with N doped oxidized carbon dots. J. Hazard. Mater. 2019, 386, 121643. [Google Scholar] [CrossRef]
- Zhou, Y.; Qu, Z.B.; Zeng, Y.; Zhou, T.; Shi, G. A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol. Biosens. Bioelectron. 2014, 52, 317–323. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Y.; Luo, Z.; Zhang, B.; Mei, X.; Yang, X. Facile synthesis of fluorescent sulfur quantum dots for selective detection of p-nitrophenol in water samples. Microchem. J. 2021, 170, 106735. [Google Scholar] [CrossRef]
- Liao, S.; Ding, Z.; Wang, S.; Tan, F.; Ge, Y.; Cui, Y.; Tan, N.; Wang, H. Fluorescent nitrogen-doped carbon dots for high selective detecting p-nitrophenol through FRET mechanism, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 259, 119897. [Google Scholar] [CrossRef] [PubMed]
Sample | 4-NP Concentration (μΜ) | Recovery (%) | |
---|---|---|---|
Added | Determined | ||
Tap water | 0 | non-detected | - |
5.1 | 5.3 | 103.9 | |
15.3 | 15.8 | 103.3 | |
40.2 | 41.1 | 102.2 | |
Effluent from a wastewater treatment plant | 0 | non-detected | - |
5.1 | 5.5 | 107.8 | |
15.3 | 16 | 104.6 | |
40.2 | 41.4 | 103.0 | |
0 | non-detected | - | |
5.1 | 5.8 | 113.7 | |
Human urine | 15.3 | 16.1 | 105.2 |
40.2 | 41.1 | 102.2 |
Sample | 4-NP Concentration (μΜ) | Recovery (%) | |
---|---|---|---|
Added | Determined | ||
Effluent from a wastewater treatment plant | 0 | non-detected | - |
7.5 | 7.6 | 101.3 | |
15.4 | 16.1 | 104.5 | |
22.6 | 22.2 | 98.2 | |
Human urine | 0 | non-detected | - |
7.5 | 7.8 | 104.0 | |
15.4 | 15.3 | 99.3 | |
22.6 | 23.2 | 102.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skolariki, T.A.; Chatzimitakos, T.G.; Sygellou, L.; Stalikas, C.D. Two-Birds-with-One-Stone Synthesis of Hydrophilic and Hydrophobic Fluorescent Carbon Nanodots from Dunaliella salina Biomass as 4-Nitrophenol Nanoprobes Based on Inner Filter Effect and First Derivative Redshift of Emission Band. Nanomaterials 2023, 13, 1689. https://doi.org/10.3390/nano13101689
Skolariki TA, Chatzimitakos TG, Sygellou L, Stalikas CD. Two-Birds-with-One-Stone Synthesis of Hydrophilic and Hydrophobic Fluorescent Carbon Nanodots from Dunaliella salina Biomass as 4-Nitrophenol Nanoprobes Based on Inner Filter Effect and First Derivative Redshift of Emission Band. Nanomaterials. 2023; 13(10):1689. https://doi.org/10.3390/nano13101689
Chicago/Turabian StyleSkolariki, Thomais A., Theodoros G. Chatzimitakos, Lamprini Sygellou, and Constantine D. Stalikas. 2023. "Two-Birds-with-One-Stone Synthesis of Hydrophilic and Hydrophobic Fluorescent Carbon Nanodots from Dunaliella salina Biomass as 4-Nitrophenol Nanoprobes Based on Inner Filter Effect and First Derivative Redshift of Emission Band" Nanomaterials 13, no. 10: 1689. https://doi.org/10.3390/nano13101689
APA StyleSkolariki, T. A., Chatzimitakos, T. G., Sygellou, L., & Stalikas, C. D. (2023). Two-Birds-with-One-Stone Synthesis of Hydrophilic and Hydrophobic Fluorescent Carbon Nanodots from Dunaliella salina Biomass as 4-Nitrophenol Nanoprobes Based on Inner Filter Effect and First Derivative Redshift of Emission Band. Nanomaterials, 13(10), 1689. https://doi.org/10.3390/nano13101689