A Bifunctional Fluorescence Probe Based on AIE-ICT Strategy for Visual Detection of Cu2+/Co2+ in Complex Matrix
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aggregation-Induced Emission
2.2. Characterization of AMN and AMN- Cu2+/Co2+
2.3. Optimization of Experimental Conditions
2.4. Spectral Response of AMN to Cu2+ and Co2+
2.5. Selectivity and Interference
2.6. Binding Mechanism Studies of Probe AMN to Cu2+ and Co2+
2.7. Distinction between Cu2+ and Co2+ by GSH
2.8. Actual Sample Testing
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instruments
3.3. Synthesis of AMN
3.4. Spectral Measurement
3.5. Determination of the Detection of Limit (LOD) and Association Constant (K)
3.6. Calculation of Density Functional Theory
3.7. Analysis of Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Coen, N.; Mothersill, C.; Kadhim, M.; Wright, E.G. Heavy metals of relevance to human health induce genomic instability. J. Pathol. 2001, 195, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.T.; Ramos-Torres, K.M.; Cotruvo, J.A.; Chang, C.J. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems. Acc. Chem. Res. 2015, 48, 2434–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chem. Rev. 2014, 114, 4564–4601. [Google Scholar] [CrossRef]
- Kumar, G.G.V.; Kesavan, M.P.; Sivaraman, G.; Annaraj, J.; Anitha, K.; Tamilselvi, A.; Athimoolam, S.; Sridhar, B.; Rajesh, J. Reversible NIR fluorescent probes for Cu2+ ions detection and its living cell imaging. Sens. Actuators B-Chem. 2018, 255, 3235–3247. [Google Scholar] [CrossRef]
- Sivaraman, G.; Iniya, M.; Anand, T.; Kotla, N.G.; Sunnapu, O.; Singaravadivel, S.; Gulyani, A.; Chellappa, D. Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord. Chem. Rev. 2018, 357, 50–104. [Google Scholar] [CrossRef]
- Ishida, S.; Andreux, P.; Poitry-Yamate, C.; Auwerx, J.; Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 19507–19512. [Google Scholar] [CrossRef] [Green Version]
- Festa, R.A.; Thiele, D.J. Copper: An essential metal in biology. Curr. Biol. 2011, 21, R877–R883. [Google Scholar] [CrossRef] [Green Version]
- Ayton, S.; Lei, P.; Bush, A.I. Metallostasis in Alzheimer’s disease. Free. Radic. Biol. Med. 2013, 62, 76–89. [Google Scholar] [CrossRef]
- Madsen, E.; Gitlin, J.D. Copper and iron disorders of the brain. Annu. Rev. Neurosci. 2007, 30, 317–337. [Google Scholar] [CrossRef]
- Jiang, S.; Qiu, J.; Chen, S.; Guo, H.; Yang, F. Double-detecting fluorescent sensor for ATP based on Cu2+ and Zn2+ response of hydrazono-bis-tetraphenylethylene. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117568. [Google Scholar] [CrossRef]
- Peng, F.; Lutsenko, S.; Sun, X.; Muzik, O. Positron Emission Tomography of Copper Metabolism in the Atp7b(-/-) Knock-out Mouse Model of Wilson’s Disease. Mol. Imaging Biol. 2012, 14, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Altarelli, M.; Ben-Hamouda, N.; Schneider, A.; Berger, M.M. Copper Deficiency: Causes, Manifestations, and Treatment. Nutr. Clin. Pract. 2019, 34, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Osman, D.; Cooke, A.; Young, T.R.; Deery, E.; Robinson, N.J.; Warren, M.J. The requirement for cobalt in vitamin B-12: A paradigm for protein metalation. Biochim. Et Biophys. Acta-Mol. Cell Res. 2021, 1868, 118896. [Google Scholar] [CrossRef] [PubMed]
- Park, G.J.; Na, Y.J.; Jo, H.Y.; Lee, S.A.; Kim, C. A colorimetric organic chemo-sensor for Co2+ in a fully aqueous environment. Dalton Trans. 2014, 43, 6618–6622. [Google Scholar] [CrossRef] [PubMed]
- Sule, K.; Umbsaar, J.; Prenner, E.J. Mechanisms of Co, Ni, and Mn toxicity: From exposure and homeostasis to their interactions with and impact on lipids and biomembranes. Biochim. Biophys. Acta-Biomembr. 2020, 1862, 183250. [Google Scholar] [CrossRef]
- Celestina, J.J.; Tharmaraj, P.; Jeevika, A.; Sheela, C.D. Fabrication of triazine based colorimetric and electrochemical sensor for the quantification of Co2+ ion. Microchem. J. 2020, 155, 104692. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Z.; Tian, X.; Shu, H.; Yang, Y.; Xiao, X.; Wang, Y. Excellent fluorescence detection of Cu2+ in water system using N-acetyl-L-cysteines modified CdS quantum dots as fluorescence probe. Nanotechnology 2021, 32, 405707. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.K.; Angamaly, S.A.; Pradeep, S.D.; Madhusoodhanan, D.T.; Manoharan, D.K.; Mohanan, P.V. A Novel Imidazole Bound Schiff Base as Highly Selective “Turn-on” Fluorescence Sensor for Zn2+ and Colorimetric Kit for Co2+. J. Fluoresc. 2022, 32, 189–202. [Google Scholar] [CrossRef]
- Gonzales, A.P.S.; Firmino, M.A.; Nomura, C.S.; Rocha, F.R.P.; Oliveira, P.V.; Gaubeur, I. Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry. Anal. Chim. Acta 2009, 636, 198–204. [Google Scholar] [CrossRef]
- Maity, D.; Manna, A.K.; Karthigeyan, D.; Kundu, T.K.; Pati, S.K.; Govindaraju, T. Visible-Near-Infrared and Fluorescent Copper Sensors Based on Julolidine Conjugates: Selective Detection and Fluorescence Imaging in Living Cells. Chem. A Eur. J. 2011, 17, 11152–11161. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Li, G.; Sheng, Y.; Sun, Y.; Rui, H.; Zhang, J.; Xu, J.; Jiang, D. The Triple Roles of Glutathione for a DNA-Cleaving DNAzyme and Development of a Fluorescent Glutathione/Cu2+-Dependent DNAzyme Sensor for Detection of Cu2+ in Drinking Water. ACS Sens. 2017, 2, 364–370. [Google Scholar] [CrossRef]
- Harrington, C.F.; Merson, S.A.; D’ Silva, T.M.D. Method to reduce the memory effect of mercury in the analysis of fish tissue using inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2004, 505, 247–254. [Google Scholar] [CrossRef]
- Shtoyko, T.; Conklin, S.; Maghasi, A.T.; Richardson, J.N.; Piruska, A.; Seliskar, C.J.; Heineman, W.R. Spectroelectrochemical sensing based on attenuated total internal reflectance stripping voltammetry. 3. Determination of cadmium and copper. Anal. Chem. 2004, 76, 1466–1473. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Z.Y.; Zhang, D.L.; Deng, J.L.; Chen, X.; Xie, C.Z.; Qiao, X.; Li, Q.Z.; Xu, J.Y. Highly selective and sensitive turn-on fluorescent sensor for detection of Al3+ based on quinoline-base Schiff base. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2018, 195, 157–164. [Google Scholar] [CrossRef]
- Hu, Y.; Kang, J.; Zhou, P.; Han, X.; Sun, J.; Liu, S.; Zhang, L.; Fang, J. A selective colorimetric and red-emitting fluorometric probe for sequential detection of Cu2+ and H2S. Sens. Actuators B Chem. 2018, 255, 3155–3162. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, P.D.; Wu, W.N.; Mao, X.J.; Fan, Y.C.; Zhao, X.L.; Xu, Z.Q.; Xu, Z.H. New pyrrole-based single-molecule multianalyte sensor for Cu2+, Zn2+, and Hg2+ and its AIE activity. Sens. Actuators B Chem. 2018, 255, 3085–3092. [Google Scholar] [CrossRef]
- Tumay, S.O.; Yesilot, S. Tripodal synthetic receptors based on cyclotriphosphazene scaffold for highly selective and sensitive spectrofluorimetric determination of iron (III) in water samples. Photochem. Photobiol. A Chem. 2019, 372, 156–167. [Google Scholar] [CrossRef]
- Ozcan, E.; Tumay, S.O.; Alidagi, H.A.; Cosut, B.; Yesilot, S. A new cyclotriphosphazene appended phenanthroline derivative as a highly selective and sensitive OFF-ON fluorescent chemosensor for Al3+ ions. Dyes Pigments 2016, 132, 230–236. [Google Scholar] [CrossRef]
- Aruna, C.; Deepak, T.; Gaurav, B.; Madhuri, C.; Anuj, S.; Swarita, G.; Sulekh, C. Thiadiazole Functionalized Salicylaldehyde-Schiff Base as a pH-responsive and chemo-reversible “Turn-Off” fluorescent probe for selective cu (II) detection: Logic Gate Behaviour and Molecular Docking Studies. J. Fluoresc. 2022, 33, 25–41. [Google Scholar]
- Zhong, T.Y.; Jiang, N.; Li, C.; Wang, G. A highly selective fluorescence and absorption sensor for rapid recognition and detection of Cu2+ ion in aqueous solution and film. Lumin. J. Biol. Chem. Lumin. 2021, 37, 391–398. [Google Scholar] [CrossRef]
- Zhang, J.L.; Liu, Y.M.; Fei, Q.; Shan, H.Y.; Chen, F.; Liu, Q.; Chai, G.P.; Chai, G.D.; Feng, G.; Huan, Y.F. A salicylal-derived Schiff base as Co(II) selective fluorescent probe. Sens. Actuators B Chem. 2017, 239, 203–210. [Google Scholar] [CrossRef]
- Gorai, S.; Ghosh, A.; Chakraborty, S.; Retailleau, P.; Ghanty, T.K.; Patro, B.S.; Mula, S. Fluorescent Cu2+ sensor based on phenanthroline-BODIPY conjugate: A mechanistic study. Dyes Pigments 2022, 203, 110343. [Google Scholar] [CrossRef]
- Eren, M.C.; Eren, A.; Dartar, S.; Tutuncu, B.B.; Emrullahoglu, M. A cyclopalladated BODIPY construct as a fluorescent probe for carbon monoxide. Eur. J. Inorg. Chem. 2022, 2022, e202200093. [Google Scholar]
- Chen, H.J.; Li, X.W.; Gao, P.; Pan, Y.; Liu, J. A BODIPY-based turn-off fluorescent probe for mercury ion detection in solution and on test strips. J. Mol. Struct. 2022, 1262, 133015. [Google Scholar] [CrossRef]
- Rai, A.; Singh, A.K.; Tripathi, K.; Sonkar, A.K.; Chauhan, B.S.; Srikrishna, S.; James, T.D.; Mishra, L. A quick and selective rhodamine based “smart probe” for “signal-on” optical detection of Cu2+ and Al3+ in water, cell imaging, computational studies and solid state analysis. Sens. Actuators B Chem. 2018, 266, 95–105. [Google Scholar] [CrossRef]
- Murugan, A.S.; Vidhyalakshmi, N.; Ramesh, U.; Annaraj, J. In vivo bio-imaging studies of highly selective, sensitive rhodamine based fluorescent chemosensor for the detection of Cu2+/Fe3+ ions. Sens. Actuators B Chem. 2018, 274, 22–29. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.; Cheng, L.; Chen, H.; Qiu, C.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B.Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef]
- Tang, B.Z.; Zhan, X.W.; Yu, G.; Lee, P.P.S.; Liu, Y.Q.; Zhu, D.B. Efficient blue emission from siloles. J. Mater. Chem. 2001, 11, 2974–2978. [Google Scholar] [CrossRef]
- Leung, N.L.; Xie, N.; Yuan, W.Z.; Liu, Y.; Wu, Q.Y.; Peng, Q.; Miao, Q.; Lam, J.W.; Tang, B.Z. Restriction of intramolecular motions: The general mechanism behind aggregation-induced emission. Chemistry 2014, 20, 15349–15353. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, P.; Li, D.; Wang, D.; Tang, B.Z. NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics. Biosensors 2022, 12, 46. [Google Scholar] [CrossRef]
- Zalmi, G.A.; Jadhav, R.W.; Mirgane, H.A.; Bhosale, S.V. Recent Advances in Aggregation-Induced Emission Active Materials for Sensing of Biologically Important Molecules and Drug Delivery System. Molecules 2022, 27, 150. [Google Scholar] [CrossRef]
- Huang, S.; Shan, G.; Qin, C.; Liu, S. Polymerization-Enhanced Photophysical Performances of AIEgens for Chemo/Bio-Sensing and Therapy. Molecules 2023, 28, 78. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, J.J.; Choi, Y.W.; You, G.R.; Nguyen, L.; Noh, I.; Kim, C. Simultaneous bioimaging recognition of cation Al3+ and anion F- by a fluorogenic method. Dyes Pigments 2016, 129, 43–53. [Google Scholar] [CrossRef]
- McDonald, L.; Wang, J.F.; Alexander, N.; Li, H.; Liu, T.B.; Pang, Y. Origin of Water-Induced fluorescence Turn-On from a Schiff base compound: AIE or H-Bonding promoted ESIPT? J. Phys. Chem. B 2016, 120, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.X.; Xiang, Y.; Tong, A.J. Salicylaldehyde azines as fluorophores of aggregation-induced emission enhancement characteristics. J. Org. Chem. 2009, 74, 2163–2166. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X.N.; Guo, C.Q.; Fang, M.; Li, C.; Zhu, W.J. Carbazole-based dual-functional chemosensor: Colorimetric sensor for Co2+ and fluorescent sensor for Cu2+ and its application. J. Chin. Chem. Soc. 2021, 68, 2368–2377. [Google Scholar] [CrossRef]
- Nasibeh, A.K.; Asadollah, M.; Hassan, Z.M.; Nina, A. A novel thiosemicarbazide based chemosensor for colorimetric detection of Co2+ in commercial B12 vitamin and Co2+, Ni2+ simultaneously in aqueous media. Supramol. Chem. 2021, 33, 513–526. [Google Scholar]
- Jiang, X.; Pan, W.Y.; Chen, M.Y.; Yuan, Y.X.; Zhao, L.S. The fabrication of a thiol-modified chitosan magnetic graphene oxide nanocomposite and its adsorption performance towards the illegal drug clenbuterol in pork samples. Dalton Trans. 2020, 49, 6097–6107. [Google Scholar] [CrossRef]
- Wang, Z.G.; Wang, Y.; Ding, X.J.; Sun, Y.X.; Liu, H.B.; Xie, C.Z.; Qian, J.; Li, Q.Z.; Xu, J.Y. A highly selective colorimetric and fluorescent probe for quantitative detection of Cu2+/Co2+: The unique ON-OFF-ON fluorimetric detection strategy and applications in living cells/zebrafish. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117763. [Google Scholar] [CrossRef]
- Asavasuthiphan, V.; Nuisin, R.; Kraiya, C.; Sukwattanasinitt, M.; Rashatasakhon, P. Ratiometric fluorescent sensor for copper(II) and phosphate ions from aminopyrene derivatives. Photochem. Photobiol. 2021, 98, 856–863. [Google Scholar] [CrossRef]
- He, X.J.; Xie, Q.; Fan, J.Y.; Xu, C.C.; Xu, W.; Li, Y.H.; Ding, F.; Deng, H.; Chen, H.J.; Shen, L. Dual-functional chemosensor with colorimetric/ratiometric response to Cu(II)/Zn(II) ions and its applications in bioimaging and molecular logic gates. Dyes Pigments 2020, 177, 108255. [Google Scholar] [CrossRef]
- Li, S.L.; Cao, D.L.; Meng, X.J.; Hu, Z.Y.; Li, Z.C.; Yuan, C.C.; Zhou, T.; Han, X.H.; Ma, W.B. A novel fluorescent chemosensor based on coumarin and quinolinyl-benzothiazole for sequential recognition of Cu2+ and PPi and its applicability in live cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 230, 118022. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wang, W.; Li, R.; Zhang, E.S.; Li, Z.H.; Tang, L.; Han, B.; Hou, X.F.; Wang, J.J. A novel rhodamine-based colorimetric and fluorometric probe for simultaneous detection of multi-metal ions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 230, 118050. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.B.; Jiang, S.J.; Lin, B.N.; Guo, H.Y.; Yang, F.F. An unusual AIE fluorescent sensor for sequentially detecting Co2+-Hg2+-Cu2+ based on diphenylacrylonitrile Schiff-base derivative. Dyes Pigments 2019, 170, 107590. [Google Scholar] [CrossRef]
- Dogaheh, S.G.; Khanmohammadi, H.; Sanudo, E.C. Selective detection of Cu2+ and Co2+ in aqueous media: Asymmetric chemosensors, crystal structure and spectroscopic studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 179, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Y.; Liu, H.; Liu, S.P.; Yang, R. A simple fluorescent receptor selective for Mg2+. Analyst 2012, 137, 2313–2317. [Google Scholar] [CrossRef]
- Xie, Y.; Yan, L.Q.; Tang, Y.J.; Tang, M.H.; Wang, S.Y.; Bi, L.; Sun, W.Y.; Li, J.P. A smart fluorescent probe based on salicylaldehyde Schiff’s base with AIE and ESIPT characteristics for the detections of N2H4 and ClO−. J. Fluoresc. 2019, 29, 399–406. [Google Scholar] [CrossRef]
- Ma, Z.; Sun, W.; Chen, L.Z.; Li, J.; Liu, Z.Z.; Bai, H.X.; Zhu, M.Y.; Du, L.P.; Shi, X.D.; Li, M.Y. A novel hydrazino-substituted naphthalimide-based fluorogenic probe for tert-butoxy radicals. Chem. Commun. 2013, 49, 6295–6297. [Google Scholar] [CrossRef]
- You, G.R.; Jang, H.J.; Jo, T.G.; Kim, C. A novel displacement-type colorimetric chemosensor for the detection of Cu2+ and GSH in aqueous solution. RSC Adv. 2016, 6, 74400–74408. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Sun, L.L.; Gu, Y.Y.; Jiang, Y. A sensitive and selective fluorescent probe for detection of glutathione in the presence of Cu2+ and its application to biological imaging. Sens. Actuators B Chem. 2015, 212, 220–224. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, Y.; Lin, Z.H.; Cao, Q.; Chen, Y. Fluorescent norbornene for sequential detection of mercury and biothiols. Dyes Pigments 2020, 172, 220–224. [Google Scholar] [CrossRef]
- Jayaraj, A.; Gayathri, M.S.; Sivaraman, G.; Swamy, C.A. A highly potential acyclic Schiff base fluorescent turn on sensor for Zn2+ ions and colorimetric chemosensor for Zn2+, Cu2+ and Co2+ ions and its applicability in live cell imaging. J. Photochem. Photobiol. B 2022, 226, 112371. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Lian, J.; Pan, W.; Du, J.; Liu, Z.; Zhao, L. A Bifunctional Fluorescence Probe Based on AIE-ICT Strategy for Visual Detection of Cu2+/Co2+ in Complex Matrix. Molecules 2023, 28, 2059. https://doi.org/10.3390/molecules28052059
Zhao J, Lian J, Pan W, Du J, Liu Z, Zhao L. A Bifunctional Fluorescence Probe Based on AIE-ICT Strategy for Visual Detection of Cu2+/Co2+ in Complex Matrix. Molecules. 2023; 28(5):2059. https://doi.org/10.3390/molecules28052059
Chicago/Turabian StyleZhao, Jingtao, Jiaxin Lian, Wenyue Pan, Jialing Du, Ziteng Liu, and Longshan Zhao. 2023. "A Bifunctional Fluorescence Probe Based on AIE-ICT Strategy for Visual Detection of Cu2+/Co2+ in Complex Matrix" Molecules 28, no. 5: 2059. https://doi.org/10.3390/molecules28052059
APA StyleZhao, J., Lian, J., Pan, W., Du, J., Liu, Z., & Zhao, L. (2023). A Bifunctional Fluorescence Probe Based on AIE-ICT Strategy for Visual Detection of Cu2+/Co2+ in Complex Matrix. Molecules, 28(5), 2059. https://doi.org/10.3390/molecules28052059