Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = floating cutoff

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3173 KiB  
Article
Floating Step-Down Converter with a Novel Lossless Snubber
by Kuo-Ing Hwu, Yen-Ting Lu and Jenn-Jong Shieh
Appl. Sci. 2025, 15(15), 8146; https://doi.org/10.3390/app15158146 - 22 Jul 2025
Viewed by 205
Abstract
In this research, a step-down converter with a lossless snubber is proposed, and its output is floating; therefore, it can be applied to LED driving applications. Such a structure is a modification of the conventional buck converter by adding a resonant capacitor, a [...] Read more.
In this research, a step-down converter with a lossless snubber is proposed, and its output is floating; therefore, it can be applied to LED driving applications. Such a structure is a modification of the conventional buck converter by adding a resonant capacitor, a resonant inductor, and two diodes to form this lossless snubber to reduce the switching loss during the switching period. Although the efficiency improvement in this circuit is not as good as the existing soft switching circuits, this circuit has the advantages of simple structure, easy control, and zero voltage switching (ZVS) cutoff. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 3196 KiB  
Article
An Electronically Adjustable Floating Memcapacitor Emulator Circuit Using CDBA
by Sevgi Gursul Kalac, Zehra Gulru Cam Taskiran and Serdar Ethem Hamamci
Appl. Sci. 2025, 15(13), 7506; https://doi.org/10.3390/app15137506 - 3 Jul 2025
Viewed by 276
Abstract
Memristive elements, known as memristors, memcapacitors and meminductors, have become an important topic of research in the electronics world in recent years. As there is still no efficient way to manufacture two-terminal memristive elements, many researchers have focused their efforts on designing emulator [...] Read more.
Memristive elements, known as memristors, memcapacitors and meminductors, have become an important topic of research in the electronics world in recent years. As there is still no efficient way to manufacture two-terminal memristive elements, many researchers have focused their efforts on designing emulator circuits that mimic these devices. In this study, a memcapacitor emulator circuit using Current Derivative Buffered Amplifier (CDBA) is proposed, which has significant advantages such as wide dynamic range, differential structure at the input port, high sloping rate and wide bandwidth. The main advantages of the emulator are that it is floating without grounding constraint, it is electronically adjustable, it has charge-controlled incremental and decremental modes and it has a simpler circuit structure since it does not contain a memristor. To ensure the integrity of the circuit theory, the results of the mathematical model and the simulation of the memcapacitor are given together. In addition, the characteristics of the experimentally investigated memcapacitor emulator are in good agreement with the simulation results. To provide an illustration of the performance of the proposed emulator, firstly the second-order active low-pass filter circuit and subsequently the amoeba learning circuit are selected as the working environment. The results show that the filtering performance of the proposed emulator at a value after the cut-off frequency in the filter circuit is 25% more efficient than a standard capacitor and in terms of power consumption, it consumes 27.93% less power than a standard capacitor. Moreover, the emulator successfully accomplishes the learning and data storage tasks in the amoeba learning circuit. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 1424 KiB  
Guidelines
Cystic Fibrosis Newborn Screening: A Systematic Review-Driven Consensus Guideline from the United States Cystic Fibrosis Foundation
by Meghan E. McGarry, Karen S. Raraigh, Philip Farrell, Faith Shropshire, Karey Padding, Cambrey White, M. Christine Dorley, Steven Hicks, Clement L. Ren, Kathryn Tullis, Debra Freedenberg, Q. Eileen Wafford, Sarah E. Hempstead, Marissa A. Taylor, Albert Faro, Marci K. Sontag and Susanna A. McColley
Int. J. Neonatal Screen. 2025, 11(2), 24; https://doi.org/10.3390/ijns11020024 - 2 Apr 2025
Cited by 4 | Viewed by 6363
Abstract
Newborn screening for cystic fibrosis (CF) has been universal in the US since 2010; however, there is significant variation among newborn screening algorithms. Systematic reviews were used to develop seven recommendations for newborn screening program practices to improve timeliness, sensitivity, and equity in [...] Read more.
Newborn screening for cystic fibrosis (CF) has been universal in the US since 2010; however, there is significant variation among newborn screening algorithms. Systematic reviews were used to develop seven recommendations for newborn screening program practices to improve timeliness, sensitivity, and equity in diagnosing infants with CF: (1) The CF Foundation recommends the use of a floating immunoreactive trypsinogen (IRT) cutoff over a fixed IRT cutoff; (2) The CF Foundation recommends using a very high IRT referral strategy in CF newborn screening programs whose variant panel does not include all CF-causing variants in CFTR2 or does not have a variant panel that achieves at least 95% sensitivity in all ancestral groups within the state; (3) The CF Foundation recommends that CF newborn screening algorithms should not limit CFTR variant detection to the F508del variant or variants included in the American College of Medical Genetics-23 panel; (4) The CF Foundation recommends that CF newborn screening programs screen for all CF-causing CFTR variants in CFTR2; (5) The CF Foundation recommends conducting CFTR variant screening twice weekly or more frequently as resources allow; (6) The CF Foundation recommends the inclusion of a CFTR sequencing tier following IRT and CFTR variant panel testing to improve the specificity and positive predictive value of CF newborn screening; (7) The CF Foundation recommends that both the primary care provider and the CF specialist be notified of abnormal newborn screening results. Through implementation, it is anticipated that these recommendations will result in improved sensitivity, equity, and timeliness of CF newborn screening, leading to improved health outcomes for all individuals diagnosed with CF following newborn screening and a decreased burden on families. Full article
Show Figures

Figure 1

10 pages, 1690 KiB  
Article
Cystic Fibrosis Screening Efficacy and Seasonal Variation in California: 15-Year Comparison of IRT Cutoffs Versus Daily Percentile for First-Tier Testing
by Stanley Sciortino, Steve Graham, Tracey Bishop, Jamie Matteson, Sarah Carter, Cindy H. Wu and Rajesh Sharma
Int. J. Neonatal Screen. 2024, 10(4), 76; https://doi.org/10.3390/ijns10040076 - 22 Nov 2024
Cited by 1 | Viewed by 1473
Abstract
The California Genetic Disease Screening Program (GDSP) employs a fixed immunoreactive trypsinogen (IRT) cutoff followed by molecular testing to screen newborns for cystic fibrosis (CF). The cutoffs approximate a 1.6% yearly IRT screen-positive rate; however, seasonal variation in IRT population means has led [...] Read more.
The California Genetic Disease Screening Program (GDSP) employs a fixed immunoreactive trypsinogen (IRT) cutoff followed by molecular testing to screen newborns for cystic fibrosis (CF). The cutoffs approximate a 1.6% yearly IRT screen-positive rate; however, seasonal variation in IRT population means has led us to develop a model to establish fixed IRT cutoffs that anticipate seasonal variation and minimize missed cases below cutoff. We utilized an ARIMA model to fit monthly IRT screen-positive percentiles and estimated regular seasonal expectations. We established a retrospective cohort followed for at least 1.5 years to capture missed false-negative CF cases. We compared missed CF cases identified by seasonal cutoffs vs. floating cutoffs. GDSP screened 7,410,003 newborns, from July 2007 to December 2022, and missed 36 CF cases below the fixed cutoff; five of the 36 were within 3 ng/mL below the cutoff. There was a regular, seasonal cycle that varied from 1.4% in summer to 1.8% in winter. We would have missed 59 CF cases using a 1.6% daily floating cutoff. California would need to use a 4% daily floating cutoff to improve our current detection rate, which would double the number of specimens sent for costly molecular analysis. Full article
Show Figures

Figure 1

20 pages, 4121 KiB  
Article
Simplified Calculation Method for Active Anti-Floating of Elliptical Basements by Relief Wells
by Guanyong Luo, Fei Yang, Haoxi Li, Hong Pan and Hong Cao
Appl. Sci. 2023, 13(23), 12647; https://doi.org/10.3390/app132312647 - 24 Nov 2023
Cited by 3 | Viewed by 1531
Abstract
Currently, there are two main types of anti-floating methods for underground structures; one is the passive anti-floating method represented by anti-draft piles, the other is the active anti-floating method which focuses on interceptor-discharge pressure-reducing (IDPR). In the design of an IDPR anti-floating system, [...] Read more.
Currently, there are two main types of anti-floating methods for underground structures; one is the passive anti-floating method represented by anti-draft piles, the other is the active anti-floating method which focuses on interceptor-discharge pressure-reducing (IDPR). In the design of an IDPR anti-floating system, the relief well system situated within the cut-off wall serves as the primary drainage channel. The determination of the seepage field distribution within the multi-well system is vital for the overall design. For the seepage field analysis of the IDPR anti-floating multi-well system, currently numerical analysis is usually used, and there is a lack of simplified analysis methods. The simplified analysis methods already available are based on the uniform distribution of wells in circular pits, while the conversion of non-circular pits into circular pits produce large errors, which are not conducive to promoting the use of the method. To address this, we propose a simplified calculation approach suitable for multi-well systems (arbitrary layout) within elliptical pits. The analytical solution of non-uniformly distributed wells in circular pits is deduced through the principle of superposition. Then, the ellipse is mapped into a circle by using conformal mapping. The resistance coefficient method is adopted, and the internal and external seepage fields are connected in series to obtain the total flow rate, as well as the distribution of the seepage field. This is based on the consideration of the permeability of the waterproof curtains and the bypassing seepage. According to the verification of the calculation example, the results of the simplified algorithm are similar to the results of the finite element method, which proves the accuracy of the method; at the same time, when applied to the actual engineering, the obtained calculation results coincide with the measured data, which proves the practicability and reliability of the method. The simplified method can provide an effective way to design an IDPR anti-floating system. Full article
(This article belongs to the Special Issue Advanced Research on Tunnel Slope Stability and Land Subsidence)
Show Figures

Figure 1

26 pages, 22720 KiB  
Article
Comprehensive Analysis of Extreme Meteorological Conditions for the Safety and Reliability of Floating Photovoltaic Systems: A Case on the Mediterranean Coast
by Mehmet Seren Korkmaz, Emir Toker and Ahmet Duran Şahin
Sustainability 2023, 15(19), 14077; https://doi.org/10.3390/su151914077 - 22 Sep 2023
Cited by 5 | Viewed by 2055
Abstract
In recent decades, renewable energy projects have required careful consideration of environmental factors. This study investigates the impact of a mid-latitude cyclone on planned floating photovoltaic (FPV) facilities in Antalya, Turkey, focusing on the severe thunderstorm events that brought heavy rainfall and tornadoes [...] Read more.
In recent decades, renewable energy projects have required careful consideration of environmental factors. This study investigates the impact of a mid-latitude cyclone on planned floating photovoltaic (FPV) facilities in Antalya, Turkey, focusing on the severe thunderstorm events that brought heavy rainfall and tornadoes in January 2019. Synoptic analysis reveals a deep cut-off low over the Genoa Gulf, causing trough formation and vertical cloud development due to moisture convergence. Warm air advection pushed an unstable thunderstorm system northward along an occluded front. Using the Weather Research and Forecast (WRF) model, sensitivity analysis is conducted, highlighting regional variations in wind speeds. The model outputs are compared with observations, identifying the best configuration using statistical indicators. The Mellor–Yamada–Janjic (MYJ) planetary boundary layer (PBL) scheme and the Milbrandt microphysics scheme produced better results in the western and central regions. The model output of the best configurations is used to calculate regional wave characteristics with a modified Shore Protection Manual (SPM) method for water reservoirs. These findings offer invaluable insights for future FPV projects, providing a better understanding of how to address challenges posed by extreme weather conditions and how to enhance system safety and reliability. Full article
(This article belongs to the Special Issue Safety and Reliability of Renewable Energy Systems for Sustainability)
Show Figures

Figure 1

42 pages, 16555 KiB  
Article
Lagoonal Microfacies, Lithostratigraphy, Correlation and Shale Migration of the Basal Middle Eocene Seeb Formation (Rusayl Embayment, Sultanate of Oman)
by Frank Mattern, Andreas Scharf, Abdul Razak Al-Sayigh, Nada Al-Wahaibi, Laura Galluccio, Gianluca Frijia and Mazin Al-Salmani
Geosciences 2023, 13(9), 254; https://doi.org/10.3390/geosciences13090254 - 22 Aug 2023
Cited by 6 | Viewed by 3252
Abstract
The study improves the understanding of the basal part of the Eocene Seeb Formation of Oman, informally known as “Unit 1”, in terms of microfacies, lithostratigraphy and shale migration within the context of regional tectonics. We logged four sections bed-by-bed over a distance [...] Read more.
The study improves the understanding of the basal part of the Eocene Seeb Formation of Oman, informally known as “Unit 1”, in terms of microfacies, lithostratigraphy and shale migration within the context of regional tectonics. We logged four sections bed-by-bed over a distance of 8.3 km, collected samples and analyzed thin-sections as well as XRD samples. For the first time, the microfacies and stratigraphic correlation of the lowermost part of the limestone-dominated Seeb Formation were studied in detail. In the analyzed area, Unit 1 is ~20 to 40 m thick, with the thickness increasing to the SE. In the upper part of Unit 1 is a laterally continuous shale horizon. The limestones of Unit 1 contain mostly packstones and grainstones. The dominant standard microfacies types are SMF 18-FOR and SMF 16. The former is dominated by benthic foraminifera, and the latter by peloids. Both SMFs indicate restricted lagoonal conditions. Foraminifera are common in Unit 1 and indicate a middle Eocene age. Considering the abundance of encountered foraminiferal bioclasts, it appears probable that the lagoon barrier was mainly composed of foraminiferal tests. Gutter casts, slumps and debrites indicate an active, partly unstable syndepositional slope, which was likely initially created by uplift of the Saih Hatat Dome and Jabal Nakhl Subdome. Differential regional uplift due to a more pronounced overall doming in the NW (Jabal Nakhl Subdome) than in the SE (Saih Hatat Dome) explains more accommodation space and greater thickness towards the SE. For the first time, we report visco-plastic shale migration/intrusion within the Seeb Formation, related to a shale horizon of Unit 1. This shale locally migrated as indicated by (1) local thickness variations, (2) detached limestone boulders floating in the shale, (3) limestone beds that have been cut-off by the shale and (4) dragged by the shale (5) an upward shale intrusion/injection which then spread parallelly to bedding similar to a salt tongue and (6) tilting overlying limestones. We suggest that shale migration is related to post-“mid”-Eocene E-W convergence between Arabia and India and to faulting or to the second, late Paleogene/early Neogene, faulting interval of the Frontal Range Fault. The shale horizon in the upper part of Unit 1 is a marker bed, which can be correlated across the study area. Full article
(This article belongs to the Special Issue Tectonics of Oman—from the Precambrian to the Present)
Show Figures

Figure 1

10 pages, 2501 KiB  
Article
Simulation of High Breakdown Voltage, Improved Current Collapse Suppression, and Enhanced Frequency Response AlGaN/GaN HEMT Using A Double Floating Field Plate
by Peiran Wang, Chenkai Deng, Hongyu Cheng, Weichih Cheng, Fangzhou Du, Chuying Tang, Chunqi Geng, Nick Tao, Qing Wang and Hongyu Yu
Crystals 2023, 13(1), 110; https://doi.org/10.3390/cryst13010110 - 7 Jan 2023
Cited by 9 | Viewed by 4564
Abstract
In this paper, DC, transient, and RF performances among AlGaN/GaN HEMTs with a no field plate structure (basic), a conventional gate field plate structure (GFP), and a double floating field plate structure (2FFP) were studied by utilizing SILVACO ATLAS 2D device technology computer-aided [...] Read more.
In this paper, DC, transient, and RF performances among AlGaN/GaN HEMTs with a no field plate structure (basic), a conventional gate field plate structure (GFP), and a double floating field plate structure (2FFP) were studied by utilizing SILVACO ATLAS 2D device technology computer-aided design (TCAD). The peak electric fields under the gate in drain-side can be alleviated effectively in 2FFP devices, compared with basic and GFP devices, which promotes the breakdown voltage (BV) and suppresses the current collapse phenomenon. As a result, the ON-resistance increase caused by the current collapse phenomena is dramatically suppressed in 2FFP ~19.9% compared with GFP ~49.8% when a 1 ms duration pre-stress was applied with Vds = 300 V in the OFF-state. Because of the discontinuous FP structure, more electric field peaks appear at the edge of the FFP stacks, which leads to a higher BV of ~454.4 V compared to the GFP ~394.3 V and the basic devices ~57.6 V. Moreover, the 2FFP structure performs lower a parasitic capacitance of Cgs = 1.03 pF and Cgd = 0.13 pF than those of the GFP structure (i.e., Cgs = 1.89 pF and Cgd = 0.18 pF). Lower parasitic capacitances lead to a much higher cut-off frequency (ft) of 46 GHz and a maximum oscillation frequency (fmax) of 130 GHz than those of the GFP structure (i.e., ft = 27 GHz and fmax = 93 GHz). These results illustrate the superiority of the 2FFP structure for RF GaN HEMT and open up enormous opportunities for integrated RF GaN devices. Full article
(This article belongs to the Special Issue Wide-Bandgap Semiconductor Materials, Devices and Systems)
Show Figures

Figure 1

17 pages, 600 KiB  
Article
0.6-V 1.65-μW Second-Order Gm-C Bandpass Filter for Multi-Frequency Bioimpedance Analysis Based on a Bootstrapped Bulk-Driven Voltage Buffer
by Juan M. Carrillo and Carlos A. de la Cruz-Blas
J. Low Power Electron. Appl. 2022, 12(4), 62; https://doi.org/10.3390/jlpea12040062 - 30 Nov 2022
Cited by 8 | Viewed by 3401
Abstract
A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus [...] Read more.
A bootstrapping technique used to increase the intrinsic voltage gain of a bulk-driven MOS transistor is described in this paper. The proposed circuit incorporates a capacitor and a cutoff transistor to be connected to the gate terminal of a bulk-driven MOS device, thus achieving a quasi-floating-gate structure. As a result, the contribution of the gate transconductance is cancelled out and the voltage gain of the device is correspondingly increased. The technique allows for implementing a voltage follower with a voltage gain much closer to unity as compared to the conventional bulk-driven case. This voltage buffer, along with a pseudo-resistor, is used to design a linearized transconductor. The proposed transconductance cell includes an economic continuous tuning mechanism that permits programming the effective transconductance in a range sufficiently wide to counteract the typical variations that process parameters suffer during fabrication. The transconductor has been used to implement a second-order Gm-C bandpass filter with a relatively high selectivity factor, suited for multi-frequency bioimpedance analysis in a very low-voltage environment. All the circuits have been designed in 180 nm CMOS technology to operate with a 0.6-V single-supply voltage. Simulated results show that the proposed technique allows for increasing the linearity and reducing the input-referred noise of the bootstrapped bulk-driven MOS transistor, which results in an improvement of the overall performance of the transconductor. The center frequency of the bandpass filter designed can be programmed in the frequency range from 6.5 kHz to 37.5 kHz with a power consumption ranging between 1.34 μW and 2.19 μW. The circuit presents an in-band integrated noise of 190.5 μVrms and is able to process signals of 110 mVpp with a THD below −40 dB, thus leading to a dynamic range of 47.4 dB. Full article
(This article belongs to the Special Issue Ultra-Low-Power ICs for the Internet of Things)
Show Figures

Figure 1

Back to TopTop