Simulation of High Breakdown Voltage, Improved Current Collapse Suppression, and Enhanced Frequency Response AlGaN/GaN HEMT Using A Double Floating Field Plate
Abstract
:1. Introduction
2. Device Structure Design and Simulation Setup
3. Simulation Results and Discussion
3.1. DC Characteristics
3.2. Transient Characteristic
3.3. RF Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xing, H.; Keller, S.; Wu, Y.-F.; McCarthy, L.; Smorchkova, I.P.; Buttari, D.; Coffie, R.; Green, D.S.; Parish, G.; Heikman, S.; et al. Gallium nitride based transistors. J. Phys. Condens. Matter 2001, 13, 7139. [Google Scholar] [CrossRef]
- Eastman, L.; Mishra, U. The toughest transistor yet [GaN transistors]. IEEE Spectr. 2002, 39, 28–33. [Google Scholar] [CrossRef]
- Zhang, N.; Mehrotra, V.; Chandrasekaran, S.; Moran, B.; Shen, L.; Mishra, U.; Etzkorn, E.; Clarke, D. Large area GaN HEMT power devices for power electronic applications: Switching and temperature characteristics. In Proceedings of the IEEE 34th Annual Conference on Power Electronics Specialist 2003—PESC’03, Acapulco, Mexico, 15–19 June 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 1. [Google Scholar] [CrossRef]
- Mishra, U.K.; Parikh, P.; Wu, Y.-F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc. IEEE 2002, 90, 1022–1031. [Google Scholar] [CrossRef] [Green Version]
- Xing, H.; Dora, Y.; Chini, A.; Heikman, S.; Keller, S.; Mishra, U. High Breakdown Voltage AlGaN–GaN HEMTs Achieved by Multiple Field Plates. IEEE Electron Device Lett. 2004, 25, 161–163. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Wei, K.; Liu, G.-G.; Liu, X.-Y. Improvement of breakdown characteristics of an AlGaN/GaN HEMT with a U-type gate foot for millimeter-wave power application. Chin. Phys. B 2012, 21, 128501. [Google Scholar] [CrossRef]
- Moon, J.; Grabar, R.; Antcliffe, M.; Fung, H.; Tang, Y.; Tai, H. High-speed FP GaN HEMT with fT/fMAX of 95/200 GHz. Electron. Lett. 2018, 54, 657–659. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, K.; Huang, S.; Wang, X.; Zheng, Y.; Liu, G.; Chen, X.; Li, Y.; Liu, X. High-Temperature-Recessed Millimeter-Wave AlGaN/GaN HEMTs with 42.8% Power-Added-Efficiency at 35 GHz. IEEE Electron Device Lett. 2018, 39, 727–730. [Google Scholar] [CrossRef]
- Karmalkar, S.; Mishra, U. Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate. IEEE Trans. Electron Devices 2001, 48, 1515–1521. [Google Scholar] [CrossRef]
- Amit; Rawal, D.S.; Sharma, S.; Kapoor, S.; Liashram, R.; Chaubey, R.K.; Vinayak, S.; Sharma, R.K. Design and Fabrication of Multi-finger Field Plate for Enhancement of AlGaN/GaN HEMT Breakdown Voltage. Def. Sci. J. 2018, 68, 290–294. [Google Scholar] [CrossRef]
- Lian, Y.-W.; Lin, Y.-S.; Lu, H.-C.; Huang, Y.-C.; Hsu, S.S.H. Drain E-Field Manipulation in AlGaN/GaN HEMTs by Schottky Extension Technology. IEEE Trans. Electron Devices 2015, 62, 519–524. [Google Scholar] [CrossRef]
- Bahat-Treidel, E.; Hilt, O.; Brunner, F.; Sidorov, V.; Würfl, J.; Tränkle, G. AlGaN/GaN/AlGaN DH-HEMTs Breakdown Voltage Enhancement Using Multiple Grating Field Plates (MGFPs). IEEE Trans. Electron Devices 2010, 57, 1208–1216. [Google Scholar] [CrossRef]
- Luo, J.; Zhao, S.-L.; Lin, Z.-Y.; Zhang, J.-C.; Ma, X.-H.; Hao, Y. Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers. Chin. Phys. Lett. 2016, 33, 067301. [Google Scholar] [CrossRef]
- Bahat-Treidel, E.; Brunner, F.; Hilt, O.; Cho, E.; Wurfl, J.; Trankle, G. AlGaN/GaN/GaN:C Back-Barrier HFETs with Breakdown Voltage of Over 1 kV and Low RON×A. IEEE Trans. Electron Devices 2010, 57, 3050–3058. [Google Scholar] [CrossRef]
- Bahat-Treidel, E.; Hilt, O.; Brunner, F.; Wurfl, J.; Trankle, G. Punchthrough-Voltage Enhancement of AlGaN/GaN HEMTs Using AlGaN Double-Heterojunction Confinement. IEEE Trans. Electron Devices 2008, 55, 3354–3359. [Google Scholar] [CrossRef]
- Murugapandiyan, P.; Mohanbabu, A.; Lakshmi, V.R.; Wasim, M.; Sundaram, K.M. Investigation of Quaternary Barrier InAlGaN/GaN/AlGaN Double-Heterojunction High-Electron-Mobility Transistors (HEMTs) for High-Speed and High-Power Applications. J. Electron. Mater. 2019, 49, 524–529. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, J.; Sun, R.; Wang, F.; Yao, Y. Numerical investigation on AlGaN/GaN short channel HEMT with AlGaN/InGaN/AlGaN quantum well plate. Superlattices Microstruct. 2018, 120, 753–758. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Wang, S.; Chen, C.; Wang, Z.; Yao, Y. Design and Optimization on a Novel High-Performance Ultra-Thin Barrier AlGaN/GaN Power HEMT with Local Charge Compensation Trench. Appl. Sci. 2019, 9, 3054. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wei, K.; Ma, X.; Zhang, Y.C.; Lei, T. Millimeter-wave AlGaN/GaN HEMT breakdown voltage enhancement by a recessed float field plate. Appl. Phys. Express 2019, 12, 054007. [Google Scholar] [CrossRef]
- Wu, W.-H.; Lin, Y.-C.; Chin, P.-C.; Hsu, C.-C.; Lee, J.-H.; Liu, S.-C.; Maa, J.-S.; Iwai, H.; Chang, E.Y.; Hsu, H.-T. Reliability improvement in GaN HEMT power device using a field plate approach. Solid-State Electron. 2017, 133, 64–69. [Google Scholar] [CrossRef]
- Kurbanova, N.E.; Demchenko, O.I.; Velikovskiy, L.E.; Sim, P. Field-plate design optimization for high-power GaN high electron mobility transistors. In Proceedings of the 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, Kazakhstan, 29–30 June 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Chitransh, A.; Moonka, S.; Priya, A.; Prasad, S.; Sengupta, A.; Islam, A. Analysis of breakdown voltage of a field plated High Electron Mobility Transistor. In Proceedings of the 2017 Devices for Integrated Circuit (DevIC), Kalyani, India, 23–24 March 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Mase, S.; Egawa, T.; Wakejima, A. Transient characteristics of AlGaN/GaN high-electron-mobility transistor with bias-controllable field plate. Appl. Phys. Express 2015, 8, 036601. [Google Scholar] [CrossRef]
- Koudymov, A.; Adivarahan, V.; Yang, J.; Simin, G.; Khan, M. Mechanism of current collapse removal in field-plated nitride HFETs. IEEE Electron Device Lett. 2005, 26, 704–706. [Google Scholar] [CrossRef] [Green Version]
- Brannick, A.; Zakhleniuk, N.A.; Ridley, B.K.; Shealy, J.R.; Schaff, W.J.; Eastman, L.F. Influence of Field Plate on the Transient Operation of the AlGaN/GaN HEMT. IEEE Electron Device Lett. 2009, 30, 436–438. [Google Scholar] [CrossRef]
- Saito, W.; Kakiuchi, Y.; Nitta, T.; Saito, Y.; Noda, T.; Fujimoto, H.; Yoshioka, A.; Ohno, T.; Yamaguchi, M. Field-Plate Structure Dependence of Current Collapse Phenomena in High-Voltage GaN-HEMTs. IEEE Electron Device Lett. 2010, 31, 659–661. [Google Scholar] [CrossRef]
- Hasan, T.; Asano, T.; Tokuda, H.; Kuzuhara, M. Current Collapse Suppression by Gate Field-Plate in AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2013, 34, 1379–1381. [Google Scholar] [CrossRef]
- ATLAS User’s Manual; Silvaco Int.: Santa Clara, CA, USA, 2010.
- Chiang, C.-Y.; Hsu, H.-T.; Chang, E.Y. Effect of Field Plate on the RF Performance of AlGaN/GaN HEMT Devices. Phys. Procedia 2012, 25, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Bhat, A.M.; Shafi, N.; Sahu, C.; Periasamy, C. Analysis of AlGaN/GaN HEMT and Its Operational Improvement Using a Grated Gate Field Plate. J. Electron. Mater. 2021, 50, 6218–6227. [Google Scholar] [CrossRef]
- Fletcher, A.S.A.; Nirmal, D.; Ajayan, J.; Arivazhagan, L. An Intensive Study on Assorted Substrates Suitable for High JFOM AlGaN/GaN HEMT. Silicon 2020, 13, 1591–1598. [Google Scholar] [CrossRef]
- Toprak, A.; Osmanoğlu, S.; Öztürk, M.; Yılmaz, D.; Cengiz, Ö.; Şen, Ö.; Bütün, B.; Özcan, Ş.; Özbay, E. Effect of gate structures on the DC and RF performance of AlGaN/GaN HEMTs. Semicond. Sci. Technol. 2018, 33, 125017. [Google Scholar] [CrossRef] [Green Version]
- Subramani, N.K.; Couvidat, J.; Al Hajjar, A.; Nallatamby, J.-C.; Sommet, R.; Quere, R. Identification of GaN Buffer Traps in Microwave Power AlGaN/GaN HEMTs through Low Frequency S-Parameters Measurements and TCAD-Based Physical Device Simulations. IEEE J. Electron Devices Soc. 2017, 5, 175–181. [Google Scholar] [CrossRef]
Parameters | GaN | AlGaN |
---|---|---|
Eg300 (eV) | 3.4 | 3.96 |
Affinity (eV) | -- | 3.82 |
Align | 0.8 | 0.8 |
Permittivity | 9.5 | 9.5 |
Mun (cm2/V-s) | 900 | 600 |
Mup (cm2/V-s) | 10 | 10 |
Vsatn (cm/s) | 2 × 107 | -- |
Nc300 (/cm3) | 1.07 × 1018 | 2.07 × 1018 |
Nv300 (/cm3) | 1.16 × 1018 | 1.16 × 1018 |
Devices | BV (V) | ft (GHz) | JFOM (THz·V) |
---|---|---|---|
basic | 57.6 | 93 | 1.03 |
GFP | 394.3 | 27 | 10.65 |
2FFP | 454.4 | 46 | 20.90 |
Parameter | Previous Work [32,33] | Proposed 2FFP | ||||||
---|---|---|---|---|---|---|---|---|
Type I | Type II | Type III | Type IV | Type V | GFP | GGFP | ||
gm (S/mm) | 0.29 | 0.25 | 0.29 | 0.28 | 0.33 | 0.34 | 0.35 | 0.38 |
BV (V) | -- | - | - | - | - | - | 270 | 454 |
ft (GHz) | 14.14 | 17.33 | 21.79 | 14.52 | 25.87 | 17.61 | 28.34 | 46 |
fmax (GHz) | 35.5 | 28.2 | 44.65 | 35.45 | 53.1 | 44 | 80 | 130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Deng, C.; Cheng, H.; Cheng, W.; Du, F.; Tang, C.; Geng, C.; Tao, N.; Wang, Q.; Yu, H. Simulation of High Breakdown Voltage, Improved Current Collapse Suppression, and Enhanced Frequency Response AlGaN/GaN HEMT Using A Double Floating Field Plate. Crystals 2023, 13, 110. https://doi.org/10.3390/cryst13010110
Wang P, Deng C, Cheng H, Cheng W, Du F, Tang C, Geng C, Tao N, Wang Q, Yu H. Simulation of High Breakdown Voltage, Improved Current Collapse Suppression, and Enhanced Frequency Response AlGaN/GaN HEMT Using A Double Floating Field Plate. Crystals. 2023; 13(1):110. https://doi.org/10.3390/cryst13010110
Chicago/Turabian StyleWang, Peiran, Chenkai Deng, Hongyu Cheng, Weichih Cheng, Fangzhou Du, Chuying Tang, Chunqi Geng, Nick Tao, Qing Wang, and Hongyu Yu. 2023. "Simulation of High Breakdown Voltage, Improved Current Collapse Suppression, and Enhanced Frequency Response AlGaN/GaN HEMT Using A Double Floating Field Plate" Crystals 13, no. 1: 110. https://doi.org/10.3390/cryst13010110
APA StyleWang, P., Deng, C., Cheng, H., Cheng, W., Du, F., Tang, C., Geng, C., Tao, N., Wang, Q., & Yu, H. (2023). Simulation of High Breakdown Voltage, Improved Current Collapse Suppression, and Enhanced Frequency Response AlGaN/GaN HEMT Using A Double Floating Field Plate. Crystals, 13(1), 110. https://doi.org/10.3390/cryst13010110