Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,094)

Search Parameters:
Keywords = flight potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7808 KB  
Article
Evaluation of Development Performance and Adjustment Strategies for High Water-Cut Reservoirs Based on Flow Diagnostics: Application in the QHD Oilfield
by Yifan He, Yishan Guo, Li Wu, Liangliang Jiang, Shouliang Wang, Shangshu Ning and Zhihong Kang
Energies 2025, 18(19), 5310; https://doi.org/10.3390/en18195310 - 8 Oct 2025
Abstract
Offshore reservoirs in the high water-cut stage present significant development challenges, including declining production, complex remaining oil distribution, and the inadequacy of conventional evaluation methods to capture intricate flow dynamics. To overcome these limitations, this study introduces a novel approach based on flow [...] Read more.
Offshore reservoirs in the high water-cut stage present significant development challenges, including declining production, complex remaining oil distribution, and the inadequacy of conventional evaluation methods to capture intricate flow dynamics. To overcome these limitations, this study introduces a novel approach based on flow diagnostics for performance evaluation and potential adjustment. The method integrates key metrics such as time-of-flight (TOF) and the dynamic Lorenz coefficient, supported by reservoir engineering principles and numerical simulation, to construct a multi-parameter evaluation system. This system, which also incorporates injection–production communication volume and inter-well fluid allocation factors, precisely quantifies and visualizes waterflood displacement processes and sweep efficiency. Applied to the QHD32 oilfield, this framework was used to establish specific thresholds for operational adjustments. These include criteria for infill drilling (waterflooded ratio < 45%, remaining oil thickness > 6 m, TOF > 200 days), conformance control (TOF < 50 days, dynamic Lorenz coefficient > 0.5), and artificial lift optimization (remaining oil thickness ratio > 2/3, TOF > 200 days). Field validation confirmed the efficacy of this approach: an additional cumulative oil production of 165,600 m3 was achieved from infill drilling in the C29 well group, while displacement adjustments in the B03 well group increased oil production by 2.2–3.8 tons/day, demonstrating a significant enhancement in waterflooding performance. This research provides a theoretical foundation and a technical pathway for the refined development of offshore heavy oil reservoirs at the ultra-high water-cut stage, offering a robust framework for the sustainable management of analogous reservoirs worldwide. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoirs and Enhanced Oil Recovery)
Show Figures

Figure 1

18 pages, 4286 KB  
Article
Analysis of P300 Evoked Potentials to Determine Pilot Cognitive States
by Germán Rodríguez-Bermúdez, Benjamin Naret and Ana Rita Teixeira
Sensors 2025, 25(19), 6201; https://doi.org/10.3390/s25196201 - 7 Oct 2025
Abstract
The P300 evoked potential, recorded via electroencephalography, serves as a relevant marker of attentional allocation and cognitive workload. This work extracts and analyzes event-related potentials that reflect variations in the cognitive state of military pilots during a complex simulated flight scenario coupled with [...] Read more.
The P300 evoked potential, recorded via electroencephalography, serves as a relevant marker of attentional allocation and cognitive workload. This work extracts and analyzes event-related potentials that reflect variations in the cognitive state of military pilots during a complex simulated flight scenario coupled with simultaneous mental arithmetic tasks. The experiment was conducted at the Academia General del Aire (Spain) with 14 military pilots using a high-fidelity flight simulator. The experimental protocol involved dynamic flight instructions combined with arithmetic tasks designed to elicit varying cognitive loads. The results revealed a significant decrease in P300 amplitude across successive sessions, indicating a progressive reduction in attentional engagement due to task habituation and increased cognitive automaticity. Concurrently, P300 latency for correct responses decreased significantly, demonstrating enhanced efficiency in cognitive stimulus evaluation over repeated exposure. However, incorrect responses failed to yield robust results due to an insufficient number of trials. These findings validate the use of P300 as an objective indicator of cognitive workload variations in realistic aviation contexts. Full article
Show Figures

Figure 1

28 pages, 879 KB  
Article
Performance Bounds of Ranging Precision in SPAD-Based dToF LiDAR
by Hao Wu, Yingyu Wang, Shiyi Sun, Lijie Zhao, Limin Tong, Linjie Shen and Jiang Zhu
Sensors 2025, 25(19), 6184; https://doi.org/10.3390/s25196184 - 6 Oct 2025
Viewed by 108
Abstract
LiDAR with direct time-of-flight (dToF) technology based on single-photon avalanche diode detectors (SPADs) has been widely adopted in various applications. However, a comprehensive theoretical understanding of its fundamental ranging performance bounds—particularly the degradation caused by pile-up effects due to system dead time and [...] Read more.
LiDAR with direct time-of-flight (dToF) technology based on single-photon avalanche diode detectors (SPADs) has been widely adopted in various applications. However, a comprehensive theoretical understanding of its fundamental ranging performance bounds—particularly the degradation caused by pile-up effects due to system dead time and the potential benefits of photon-number-resolving detectors—remains incomplete and has not been systematically established in prior work. In this work, we present the first theoretical derivation of the Cramér–Rao lower bound (CRLB) for dToF systems explicitly accounting for dead time effects, generalize the analysis to SPADs with photon-number-resolving capabilities, and further validate the results through Monte Carlo simulations and maximum likelihood estimation. Our analysis reveals that pile-up not only reduces the information contained within individual ToF but also introduces a previously overlooked statistical coupling between distance and photon flux rate, further degrading ranging precision. The derived CRLB enables the determination of the optimal optical photon flux, laser pulse width (with FWHM of 0.56τ), and ToF quantization resolution that yield the best achievable ranging precision, showing that an optimal precision of approximately 0.53τ/N remains theoretically achievable, where τ is TDC resolution and N is the number of laser pulses. The analysis further quantifies the limited performance improvement enabled by increased photon-number resolution, which exhibits rapidly diminishing returns. Overall, these findings establish a unified theoretical framework for understanding the fundamental limits of SPAD-based dToF LiDAR, filling a gap left by earlier studies and providing concrete design guidelines for the selection of optimal operating points. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

36 pages, 20759 KB  
Article
Autonomous UAV Landing and Collision Avoidance System for Unknown Terrain Utilizing Depth Camera with Actively Actuated Gimbal
by Piotr Łuczak and Grzegorz Granosik
Sensors 2025, 25(19), 6165; https://doi.org/10.3390/s25196165 - 5 Oct 2025
Viewed by 307
Abstract
Autonomous landing capability is crucial for fully autonomous UAV flight. Currently, most solutions use either color imaging from a camera pointed down, lidar sensors, dedicated landing spots, beacons, or a combination of these approaches. Classical strategies can be limited by either no color [...] Read more.
Autonomous landing capability is crucial for fully autonomous UAV flight. Currently, most solutions use either color imaging from a camera pointed down, lidar sensors, dedicated landing spots, beacons, or a combination of these approaches. Classical strategies can be limited by either no color data when lidar is used, limited obstacle perception when only color imaging is used, a low field of view from a single RGB-D sensor, or the requirement for the landing spot to be prepared in advance. In this paper, a new approach is proposed where an RGB-D camera mounted on a gimbal is used. The gimbal is actively actuated to counteract the limited field of view while color images and depth information are provided by the RGB-D camera. Furthermore, a combined UAV-and-gimbal-motion strategy is proposed to counteract the low maximum range of depth perception to provide static obstacle detection and avoidance, while preserving safe operating conditions for low-altitude flight, near potential obstacles. The system is developed using a PX4 flight stack, CubeOrange flight controller, and Jetson nano onboard computer. The system was flight-tested in simulation conditions and statically tested on a real vehicle. Results show the correctness of the system architecture and possibility of deployment in real conditions. Full article
(This article belongs to the Special Issue UAV-Based Sensing and Autonomous Technologies)
Show Figures

Figure 1

21 pages, 2769 KB  
Article
Computational Intelligence-Based Modeling of UAV-Integrated PV Systems
by Mohammad Hosein Saeedinia, Shamsodin Taheri and Ana-Maria Cretu
Solar 2025, 5(4), 45; https://doi.org/10.3390/solar5040045 - 3 Oct 2025
Viewed by 171
Abstract
The optimal utilization of UAV-integrated photovoltaic (PV) systems demands accurate modeling that accounts for dynamic flight conditions. This paper introduces a novel computational intelligence-based framework that models the behavior of a moving PV system mounted on a UAV. A unique mathematical approach is [...] Read more.
The optimal utilization of UAV-integrated photovoltaic (PV) systems demands accurate modeling that accounts for dynamic flight conditions. This paper introduces a novel computational intelligence-based framework that models the behavior of a moving PV system mounted on a UAV. A unique mathematical approach is developed to translate UAV flight dynamics, specifically roll, pitch, and yaw, into the tilt and azimuth angles of the PV module. To adaptively estimate the diode ideality factor under varying conditions, the Grey Wolf Optimization (GWO) algorithm is employed, outperforming traditional methods like Particle Swarm Optimization (PSO). Using a one-year environmental dataset, multiple machine learning (ML) models are trained to predict maximum power point (MPP) parameters for a commercial PV panel. The best-performing model, Rational Quadratic Gaussian Process Regression (RQGPR), demonstrates high accuracy and low computational cost. Furthermore, the proposed ML-based model is experimentally integrated into an incremental conductance (IC) MPPT technique, forming a hybrid MPPT controller. Hardware and experimental validations confirm the model’s effectiveness in real-time MPP prediction and tracking, highlighting its potential for enhancing UAV endurance and energy efficiency. Full article
(This article belongs to the Special Issue Efficient and Reliable Solar Photovoltaic Systems: 2nd Edition)
15 pages, 937 KB  
Article
Kinematic Comparison of Different Types of Start Technique in Bi-Finswimming
by Gregory Kalaitzoglidis, Konstantinos Papadimitriou, Ioannis Kostoulas, Anastasios Papadopoulos and George Tsalis
J. Funct. Morphol. Kinesiol. 2025, 10(4), 384; https://doi.org/10.3390/jfmk10040384 - 2 Oct 2025
Viewed by 264
Abstract
Objective: This study aimed to experimentally investigate the biomechanical and performance differences between the grab start (GS) and the kick start (KS) with each leg on the kickplate (KSR, KSL) in Bi-Finswimming (BFS). It focused on the effect of foot placement on the [...] Read more.
Objective: This study aimed to experimentally investigate the biomechanical and performance differences between the grab start (GS) and the kick start (KS) with each leg on the kickplate (KSR, KSL) in Bi-Finswimming (BFS). It focused on the effect of foot placement on the starting block, equipped with an adjustable, inclined rear kickplate (Omega, OSB11), to determine potential performance advantages and contribute evidence-based recommendations for optimizing start techniques in competitive BFS. Methods: Thirteen national-level finswimmers (seven males, six females; age: 17.7 ± 2.1 years) voluntarily participated. Each athlete performed two trials of three start techniques (GS, KSR, KSL) over three days in a randomized order. Four synchronized cameras recorded video data. Performance metrics (time to 5 m (T5), 15 m (T15), 25 m (T25), reaction time, block time (BT), flight time (FT), and entry characteristics) along with joint angles (hip, knee, ankle), were analyzed using Kinovea software (v. 2024.1). A two-way repeated measures ANOVA (start type × gender) was conducted to analyze performance metrics, and a paired-sample t-test assessed differences in joint angles. Also, correlations between dependent (type of start) and independent variables (start-examined variables) were examined through bivariate Pearson’s r analysis. Results: No significant gender differences were found (p > 0.05). Significant differences emerged between the starting techniques, with KS showing faster T5, T15, and T25 (p < 0.001, η2p = 0.6; p < 0.001, η2p = 0.5; p < 0.05, η2p = 0.3, respectively). BT was significantly longer in GS compared to KS (p < 0.001, η2p = 0.8), while FT was shorter in GS (p = 0.002, η2p = 0.4). Faster T5, T15, and T25 were associated with increased flight distance and longer FT in KSL. Conclusions: The kick start generally outperforms the grab start, especially in block time, in Bi-Finswimming. These preliminary results suggest that it could be considered for future discussion regarding potential legalization by the World Underwater Federation, pending further research. Full article
Show Figures

Figure 1

13 pages, 1900 KB  
Article
Simulation-Based Design of a Silicon SPAD with Dead-Space-Aware Avalanche Region for Picosecond-Resolved Detection
by Meng-Jey Youh, Hsin-Liang Chen, Nen-Wen Pu, Mei-Lin Liu, Yu-Pin Chou, Wen-Ken Li and Yi-Ping Chou
Sensors 2025, 25(19), 6054; https://doi.org/10.3390/s25196054 - 2 Oct 2025
Viewed by 233
Abstract
This study presents a simulation-based design of a silicon single-photon avalanche diode (SPAD) optimized for picosecond-resolved photon detection. Utilizing COMSOL Multiphysics, we implement a dead-space-aware impact ionization model to accurately capture history-dependent avalanche behavior. A guard ring structure and tailored doping profiles are [...] Read more.
This study presents a simulation-based design of a silicon single-photon avalanche diode (SPAD) optimized for picosecond-resolved photon detection. Utilizing COMSOL Multiphysics, we implement a dead-space-aware impact ionization model to accurately capture history-dependent avalanche behavior. A guard ring structure and tailored doping profiles are introduced to improve electric field confinement and suppress edge breakdown. Simulation results show that the optimized device achieves a peak electric field of 7 × 107 V/m, a stable gain slope of −0.414, and consistent avalanche triggering across bias voltages. Transient analysis further confirms sub-20 ps response time under −6.5 V bias, validated by a full-width at half-maximum (FWHM) of ~17.8 ps. Compared to conventional structures without guard rings, the proposed design exhibits enhanced breakdown localization, reduced gain sensitivity, and improved timing response. These results highlight the potential of the proposed SPAD for integration into next-generation quantum imaging, time-of-flight LiDAR, and high-speed optical communication systems. Full article
Show Figures

Graphical abstract

26 pages, 2204 KB  
Article
Angular Motion Stability of Large Fineness Ratio Wrap-Around-Fin Rotating Rockets
by Zheng Yong, Juanmian Lei and Jintao Yin
Aerospace 2025, 12(10), 890; https://doi.org/10.3390/aerospace12100890 - 30 Sep 2025
Viewed by 107
Abstract
Long-range rotating wrap-around-fin rockets may exhibit non-convergent conical motion at high Mach numbers, causing increased drag, reduced range, and potential flight instability. This study employs the implicit dual time-stepping method to solve the unsteady Reynolds-averaged Navier–Stokes (URANS) equations for simulating the flow field [...] Read more.
Long-range rotating wrap-around-fin rockets may exhibit non-convergent conical motion at high Mach numbers, causing increased drag, reduced range, and potential flight instability. This study employs the implicit dual time-stepping method to solve the unsteady Reynolds-averaged Navier–Stokes (URANS) equations for simulating the flow field around a high aspect ratio wrap-around-fin rotating rocket at supersonic speeds. Validation of the numerical method in predicting aerodynamic characteristics at small angles of attack is achieved by comparing numerically obtained side force and yawing moment coefficients with experimental data. Analyzing the rocket’s angular motion process, along with angular motion equations, reveals the necessary conditions for the yawing moment to ensure stability during angular motion. Shape optimization is performed based on aerodynamic coefficient features and flow field structures at various angles of attack and Mach numbers, using the yawing moment stability condition as a guideline. Adjustments to parameters such as tail fin curvature radius, tail fin aspect ratio, and body aspect ratio diminish the impact of asymmetric flow induced by the wrap-around fin on the lateral moment, effectively resolving issues associated with near misses and off-target impacts resulting from dynamic instability at high Mach numbers. Full article
32 pages, 25347 KB  
Article
NMPC-Based Trajectory Optimization and Hierarchical Control of a Ducted Fan Flying Robot with a Robotic Arm
by Yibo Zhang, Bin Xu, Yushu Yu, Shouxing Tang, Wei Fan, Siqi Wang and Tao Xu
Drones 2025, 9(10), 680; https://doi.org/10.3390/drones9100680 - 29 Sep 2025
Viewed by 197
Abstract
Ducted fan flying robots with robotic arms can perform physical interaction tasks in complex environments such as indoors. However, the coupling effects between the aerial platform, the robotic arm, and physical environment pose significant challenges for the robot to accurately approach and stably [...] Read more.
Ducted fan flying robots with robotic arms can perform physical interaction tasks in complex environments such as indoors. However, the coupling effects between the aerial platform, the robotic arm, and physical environment pose significant challenges for the robot to accurately approach and stably contact the target. To address this problem, we propose a unified control framework for a ducted fan flying robot that encompasses both flight planning and physical interaction. This contribution mainly includes the following: (1) A nonlinear model predictive control (NMPC)-based trajectory optimization controller is proposed, which achieves accurate and smooth tracking of the robot’s end effector by considering the coupling of redundant states and various motion and performance constraints, while avoiding potential singularities and dangers. (2) On this basis, an easy-to-practice hierarchical control framework is proposed, achieving stable and compliant contact of the end effector without controller switching between the flight and interaction processes. The results of experimental tests show that the proposed method exhibits accurate position tracking of the end effector without overshoot, while the maximum fluctuation is reduced by up to 75.5% without wind and 71.0% with wind compared to the closed-loop inverse kinematics (CLIK) method, and it can also ensure continuous stable contact of the end effector with the vertical wall target. Full article
(This article belongs to the Section Drone Design and Development)
13 pages, 1239 KB  
Article
Irregularity of Flight and Slow-Flight Practice Evident for a Subset of Private Pilots—Potential Adverse Impact on Safe Operations
by Douglas D. Boyd and Mark T. Scharf
Aerospace 2025, 12(10), 877; https://doi.org/10.3390/aerospace12100877 - 29 Sep 2025
Viewed by 253
Abstract
Background: General aviation pilots are, anecdotally, referred to as “weekend warriors” due to their flying infrequency. Considering that flight skills erode with irregular practice/reinforcement, we determined whether private pilots (PPLs) fly/train sufficiently to operate safely in the context of slow flight, a skill [...] Read more.
Background: General aviation pilots are, anecdotally, referred to as “weekend warriors” due to their flying infrequency. Considering that flight skills erode with irregular practice/reinforcement, we determined whether private pilots (PPLs) fly/train sufficiently to operate safely in the context of slow flight, a skill critical for safe operations and which rapidly atrophies with <~51 h flight time/8 months per prior research. Method: Slow-flight-related aviation accidents (2008–2019) were per the NTSB AccessR database, and fatal mishap rates were calculated using general aviation fleet times. Eight-month flight histories of airplanes in single PPL ownership were captured retrospectively using FlightAwareR. PPL survey responses were collected between January and March 2025. Statistical tests employed proportion/Independent-Samples Median Tests and a Poisson Distribution. Results: The slow-flight-related fatal accident rate (2017–2019) trended downwards (p = 0.077). In-flight tracking of 90 airplanes revealed an 8-month median flight time of 6 h, which is well below the aforementioned 51 h requisite for safe operations. Of the aircraft flown < 51 h, only 9% engaged in slow-flight practice. In the online survey, only the upper quartile of 126 PPLs achieved the aforementioned time requisite for preserving slow-flight skills, but nevertheless, 89% of respondents attested to being flight-proficient. Conclusions: Persistence in slow-flight-related fatal accidents likely partly reflects PPLs’ deficiency in in-flight time/slow-flight practice. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 6389 KB  
Article
Study on Characteristics and Numerical Simulation of a Convective Low-Level Wind Shear Event at Xining Airport
by Juan Gu, Yuting Qiu, Shan Zhang, Xinlin Yang, Shi Luo and Jiafeng Zheng
Atmosphere 2025, 16(10), 1137; https://doi.org/10.3390/atmos16101137 - 27 Sep 2025
Viewed by 179
Abstract
Low-level wind shear (LLWS) is a critical issue in aviation meteorology, posing serious risks to flight safety—especially at plateau airports with high elevation and complex terrain. This study investigates a convective wind shear event at Xining Airport on 29 May 2021. Multi-source observations—including [...] Read more.
Low-level wind shear (LLWS) is a critical issue in aviation meteorology, posing serious risks to flight safety—especially at plateau airports with high elevation and complex terrain. This study investigates a convective wind shear event at Xining Airport on 29 May 2021. Multi-source observations—including the Doppler Wind Lidar (DWL), the Doppler weather radar (DWR), reanalysis datasets, and automated weather observation systems (AWOS)—were integrated to examine the event’s fine-scale structure and temporal evolution. High-resolution simulations were conducted using the Large Eddy Simulation (LES) framework within the Weather Research and Forecasting (WRF) model. Results indicate that the formation of this wind shear was jointly triggered by convective downdrafts and the gust front. A northwesterly flow with peak wind speeds of 18 m/s intruded eastward across the runway, generating multiple radial velocity couplets on the eastern side, closely associated with mesoscale convergence and divergence. A vertical shear layer developed around 700 m above ground level, and the critical wind shear during aircraft go-around was linked to two convergence zones east of the runway. The event lasted about 30 min, producing abrupt changes in wind direction and vertical velocity, potentially causing flight path deviation and landing offset. Analysis of horizontal, vertical, and glide-path wind fields reveals the spatiotemporal evolution of the wind shear and its impact on aviation safety. The WRF-LES accurately captured key features such as wind shifts, speed surges, and vertical disturbances, with strong agreement to observations. The integration of multi-source observations with WRF-LES improves the accuracy and timeliness of wind shear detection and warning, providing valuable scientific support for enhancing safety at plateau airports. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

15 pages, 769 KB  
Article
Antioxidant, Anti-Melanogenic, and Anti-Aging Activities of the Aqueous–Ethanolic Dry Extract of Rosa lucieae with Phytochemical Profiling
by Yun Gyeong Park, Ji-Yul Kim, Seok-Chun Ko, Kyung Woo Kim, Dongwoo Yang, Du-Min Jo, Hyo-Geun Lee, Jeong Min Lee, Mi-Jin Yim, Chul Hwan Kim, Dae-Sung Lee, Hyun-Soo Kim and Gun-Woo Oh
Antioxidants 2025, 14(10), 1177; https://doi.org/10.3390/antiox14101177 - 26 Sep 2025
Viewed by 406
Abstract
In this study, the cosmeceutical potential of a 70% ethanol extract of Rosa lucieae was investigated as a multifunctional bioactive ingredient. The extract was systematically evaluated for its antioxidant, anti-melanogenic, and anti-aging properties, and was comprehensively phytochemically profiled using ultra-high-performance liquid chromatography–quadrupole time-of-flight [...] Read more.
In this study, the cosmeceutical potential of a 70% ethanol extract of Rosa lucieae was investigated as a multifunctional bioactive ingredient. The extract was systematically evaluated for its antioxidant, anti-melanogenic, and anti-aging properties, and was comprehensively phytochemically profiled using ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. The analysis tentatively identified 21 metabolites, including phenolic acids (gallic acid, ellagic acid, and corilagin), flavonoids (catechin, rutin, quercetin, hyperoside, and quercitrin), and glycosidic derivatives (e.g., phlorizin), several of which are well-documented for their skin-protective effects. Quantitative measurements confirmed high polyphenol and flavonoid contents, correlating with strong radical-scavenging and reducing capacities in α-diphenyl-β-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, as well as ferric ion reducing antioxidant power assays. Moreover, the extract inhibited tyrosinase activity and 3,4-dihydroxyphenylalanine oxidation, thereby suppressing melanin biosynthesis. In addition, marked inhibitory effects against collagenase, elastase, and hyaluronidase were observed; these enzymes are critically involved in extracellular matrix degradation and skin aging. Taken together, these results indicate that the biological activities of R. lucieae are supported by a diverse polyphenol- and flavonoid-rich chemical profile, highlighting the potential of this plant as a natural multifunctional ingredient for cosmeceutical, nutraceutical, functional food, and preventive healthcare applications. Full article
Show Figures

Figure 1

21 pages, 3713 KB  
Article
Unraveling the Chemical Composition and Biological Activity of Geum aleppicum Jacq.: Insights from Plants Collected in Kazakhstan
by Gulnur N. Kuntubek, Martyna Kasela, Kaldanay K. Kozhanova, Wirginia Kukula-Koch, Łukasz Świątek, Kinga Salwa, Piotr Okińczyc, Aleksandra Józefczyk, Jarosław Widelski, Gulnara M. Kadyrbayeva, Aigerim Z. Mukhamedsadykova, Zuriyadda B. Sakipova and Anna Malm
Molecules 2025, 30(19), 3888; https://doi.org/10.3390/molecules30193888 - 26 Sep 2025
Viewed by 348
Abstract
Geum aleppicum Jacq. (yellow avens), a species traditionally used in folk medicine, remains understudied in the ethnopharmacological aspects. In this study, we comprehensively evaluated the phytochemical composition and biological activity of a hydroethanolic (50:50, v/v) extract from the aerial parts [...] Read more.
Geum aleppicum Jacq. (yellow avens), a species traditionally used in folk medicine, remains understudied in the ethnopharmacological aspects. In this study, we comprehensively evaluated the phytochemical composition and biological activity of a hydroethanolic (50:50, v/v) extract from the aerial parts of G. aleppicum collected in Kazakhstan. Using the high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-QTOF-MS/MS), we identified 24 compounds, predominantly phenolic acids, flavonoids, tannins, and triterpenoids. The major compound was ellagic acid (2.28 mg/g dry extract) as revealed by the reverse phase high-performance liquid chromatography–diode array detector (RP-HPLC-DAD). The extract exhibited a high polyphenol content (131.45 mg GAE/g) and strong antioxidant activity in Ferric Reducing Antioxidant Power (FRAP) assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay (3.82 ± 0.07 mmol Fe2+/g and 106.61 ± 0.89 mg GAE/g, respectively). Antimicrobial assay of the extract revealed notable antifungal activity against Candida spp., especially against C. glabrata and C. tropicalis with minimum inhibitory concentration (MIC) of as low as 0.125 mg/mL, showing fungistatic effect. Although the extract inhibited the cytopathic effect induced by Human Herpesvirus 1 (HHV-1) in VERO cells, it did not significantly reduce viral replication. Moreover, among human cancer cell lines studied, the extract exerted moderate and selective cytotoxicity against A549 lung cancer cells (CC50 = 75.51 µg/mL, SI = 9). These findings highlight G. aleppicum as a rich source of bioactive compounds, especially phenolics, supporting its potential for development of pharmaceutical and cosmetic applications. Full article
(This article belongs to the Special Issue Biological Evaluation of Plant Extracts)
Show Figures

Figure 1

25 pages, 5716 KB  
Article
Characterization and Anti-Allergic Mechanisms of Bioactive Compounds in a Traditional Chinese Medicine Prescription Using UHPLC-Q-TOF-MS/MS, Network Pharmacology and Computational Simulations
by Liang Hong, You Qin, Chiwai Ip, Wenfei Xu, Haoxuan Zeng, Xiu Duan, Ji Wang, Jing Zhao, Qi Wang and Shaoping Li
Pharmaceuticals 2025, 18(10), 1444; https://doi.org/10.3390/ph18101444 - 26 Sep 2025
Viewed by 412
Abstract
Background/Objectives: Allergic diseases (e.g., asthma, chronic urticaria) are increasing globally, but current anti-allergic drugs exhibit limitations in efficacy and safety. Traditional Chinese Medicine (TCM) emphasizes constitutional regulation for allergic diseases management. The allergic constitution prescription (ACP), a TCM formulation, lacks clear mechanistic insights. [...] Read more.
Background/Objectives: Allergic diseases (e.g., asthma, chronic urticaria) are increasing globally, but current anti-allergic drugs exhibit limitations in efficacy and safety. Traditional Chinese Medicine (TCM) emphasizes constitutional regulation for allergic diseases management. The allergic constitution prescription (ACP), a TCM formulation, lacks clear mechanistic insights. Methods: This study employs a novel network pharmacology approach integrating ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS) to identify ACP’s chemical components and compare its mechanisms with anti-allergic drugs. Chemical components of ACP were analyzed via UHPLC-Q-TOF-MS/MS, and allergic disease-related targets were collected from public databases. Anti-allergic drug targets were intersected with ACP-disease targets to identify unique and common pathways. Molecular docking and dynamics simulations assessed binding affinity between key compounds and core targets. Results: We identified 126 compounds in ACP. Compared to anti-allergic drugs, ACP targeted 10 unique and five common key pathways (e.g., MAPK signaling), 10 unique and nine common core targets (e.g., Tumor Necrosis Factor (TNF), IL-6), and 14 unique and 15 common key compounds. Simulations confirmed high binding affinity of ACP compounds to core targets. Conclusions: These findings highlight ACP’s potential multi-target mechanisms for allergic diseases treatment, identifying unique and shared pathways, targets, and compounds compared to anti-allergic drugs, offering new insights for further mechanistic studies. However, it is crucial to note that these mechanistic predictions and compound-target interactions are primarily derived from computational analyses, and experimental validation (e.g., in vitro or in vivo assays) is essential to confirm these computational findings. Full article
(This article belongs to the Topic Research on Natural Products of Medical Plants)
Show Figures

Graphical abstract

17 pages, 1339 KB  
Article
Bioconversion of Deoxynivalenol by Mealworm (Tenebrio molitor) Larvae: Implications for Feed Safety and Nutritional Value
by Marcin Wróbel, Michał Dąbrowski, Michał Łuczyński, Krzysztof Waśkiewicz, Tadeusz Bakuła, Łukasz Nowicki and Łukasz Zielonka
Toxins 2025, 17(10), 478; https://doi.org/10.3390/toxins17100478 - 25 Sep 2025
Viewed by 259
Abstract
Deoxynivalenol (DON) is one of the most common trichothecene mycotoxins found in cereals, posing a significant hazard to food and feed safety. Insects, especially the yellow mealworm (Tenebrio molitor), offer promising alternative protein sources; however, their capacity to metabolise mycotoxins and [...] Read more.
Deoxynivalenol (DON) is one of the most common trichothecene mycotoxins found in cereals, posing a significant hazard to food and feed safety. Insects, especially the yellow mealworm (Tenebrio molitor), offer promising alternative protein sources; however, their capacity to metabolise mycotoxins and the nutritional implications are still not fully understood. In this study, T. molitor larvae were reared for two weeks on diets containing DON at 663 or 913 µg/kg, and their biomass was analysed using Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF) for DON metabolites and free amino acids, as well as Gas Chromatography–Flame Ionization Detector (GC-FID) for fatty acid profiles. Larvae metabolised DON via multiple pathways, including sulfonation, glucuronidation, sulfation, glucosylation, and de-epoxidation, with a time- and dose-dependent shift towards glucosylation and de-epoxidation. DON exposure significantly reduced the levels of essential amino acids such as methionine, lysine, phenylalanine, and isoleucine, and lowered metabolic intermediates like aspartic and glutamic acid. Conversely, prolonged DON exposure increased linoleic acid levels in larval fat, indicating altered lipid metabolism. These findings demonstrate that T. molitor larvae detoxify DON but incur measurable metabolic costs, leading to changes in amino acid and fatty acid profiles. The dual effect—reduction of toxin levels and nutritional shifts—highlights both the potential and the challenges of using insects for sustainable feed production. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

Back to TopTop