Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (245)

Search Parameters:
Keywords = flexible print circuit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5281 KiB  
Article
Flexible Receiver Antenna Prepared Based on Conformal Printing and Its Wearable System
by Qian Zhu, Wenjie Zhang, Wencheng Zhu, Chao Wu and Jianping Shi
Sensors 2025, 25(14), 4488; https://doi.org/10.3390/s25144488 - 18 Jul 2025
Viewed by 381
Abstract
Microwave energy is ideal for wearable devices due to its stable wireless power transfer capabilities. However, rigid receiving antennas in conventional RF energy harvesters compromise wearability. This study presents a wearable system using a flexible dual-band antenna (915 MHz/2.45 GHz) fabricated via conformal [...] Read more.
Microwave energy is ideal for wearable devices due to its stable wireless power transfer capabilities. However, rigid receiving antennas in conventional RF energy harvesters compromise wearability. This study presents a wearable system using a flexible dual-band antenna (915 MHz/2.45 GHz) fabricated via conformal 3D printing on arm-mimicking curvatures, minimizing bending-induced performance loss. A hybrid microstrip–lumped element rectifier circuit enhances energy conversion efficiency. Tested with commercial 915 MHz transmitters and Wi-Fi routers, the system consistently delivers 3.27–3.31 V within an operational range, enabling continuous power supply for real-time physiological monitoring (e.g., pulse detection) and data transmission. This work demonstrates a practical solution for sustainable energy harvesting in flexible wearables. Full article
(This article belongs to the Special Issue Wearable Sensors in Medical Diagnostics and Rehabilitation)
Show Figures

Graphical abstract

17 pages, 7597 KiB  
Article
Screen-Printed 1 × 4 Quasi-Yagi-Uda Antenna Array on Highly Flexible Transparent Substrate for the Emerging 5G Applications
by Matthieu Egels, Anton Venouil, Chaouki Hannachi, Philippe Pannier, Mohammed Benwadih and Christophe Serbutoviez
Electronics 2025, 14(14), 2850; https://doi.org/10.3390/electronics14142850 - 16 Jul 2025
Viewed by 253
Abstract
In the Internet of Things (IoT) era, the demand for cost-effective, flexible, wearable antennas and circuits has been growing. Accordingly, screen-printing techniques are becoming more popular due to their lower costs and high-volume manufacturing. This paper presents and investigates a full-screen-printed 1 × [...] Read more.
In the Internet of Things (IoT) era, the demand for cost-effective, flexible, wearable antennas and circuits has been growing. Accordingly, screen-printing techniques are becoming more popular due to their lower costs and high-volume manufacturing. This paper presents and investigates a full-screen-printed 1 × 4 Quasi-Yagi-Uda antenna array on a high-transparency flexible Zeonor thin-film substrate for emerging 26 GHz band (24.25–27.55 GHz) 5G applications. As part of this study, screen-printing implementation rules are developed by properly managing ink layer thickness on a transparent flexible Zeonor thin-film dielectric to achieve a decent antenna array performance. In addition, a screen-printing repeatability study has been carried out through a performance comparison of 24 antenna array samples manufactured by our research partner from CEA-Liten Grenoble. Despite the challenging antenna array screen printing at higher frequencies, the measured results show a good antenna performance as anticipated from the traditional subtractive printed circuit board (PCB) manufacturing process using standard substrates. It shows a wide-band matched input impedance from 22–28 GHz (i.e., 23% of relative band-width) and a maximum realized gain of 12.8 dB at 27 GHz. Full article
Show Figures

Figure 1

29 pages, 8416 KiB  
Article
WSN-Based Multi-Sensor System for Structural Health Monitoring
by Fatih Dagsever, Zahra Sharif Khodaei and M. H. Ferri Aliabadi
Sensors 2025, 25(14), 4407; https://doi.org/10.3390/s25144407 - 15 Jul 2025
Viewed by 813
Abstract
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. [...] Read more.
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. However, developing a miniaturized, cost-effective, and multi-sensor solution based on Wireless Sensor Networks (WSNs) remains a significant challenge, particularly for SHM applications in weight-sensitive aerospace structures. To address this, the present study introduces a novel WSN-based Multi-Sensor System (MSS) that integrates multiple sensing capabilities onto a 3 × 3 cm flexible Printed Circuit Board (PCB). The proposed system combines a Piezoelectric Transducer (PZT) for impact detection; a strain gauge for mechanical deformation monitoring; an accelerometer for capturing dynamic responses; and an environmental sensor measuring temperature, pressure, and humidity. This high level of functional integration, combined with real-time Data Acquisition (DAQ) and precise time synchronization via Bluetooth Low Energy (LE), distinguishes the proposed MSS from conventional SHM systems, which are typically constrained by bulky hardware, single sensing modalities, or dependence on wired communication. Experimental evaluations on composite panels and aluminum specimens demonstrate reliable high-fidelity recording of PZT signals, strain variations, and acceleration responses, matching the performance of commercial instruments. The proposed system offers a low-power, lightweight, and scalable platform, demonstrating strong potential for on-board SHM in aircraft applications. Full article
Show Figures

Figure 1

21 pages, 4352 KiB  
Review
Single- and Multi-Network Hydrogels for Soft Electronics—A Review
by Md Murshed Bhuyan, Nahid Hasan and Jae-Ho Jeong
Gels 2025, 11(7), 480; https://doi.org/10.3390/gels11070480 - 21 Jun 2025
Viewed by 463
Abstract
Soft or flexible electronics is a rapidly growing and pioneering research field, as it makes devices comfortable to use, especially in biomedical engineering. Both single- and multi-network hydrogels have diverse applications where the most significant one is in the building of soft electronics, [...] Read more.
Soft or flexible electronics is a rapidly growing and pioneering research field, as it makes devices comfortable to use, especially in biomedical engineering. Both single- and multi-network hydrogels have diverse applications where the most significant one is in the building of soft electronics, including soft circuits, displays, sensors, batteries, and supercapacitors, electronic storage, electric skin, health monitoring devices, soft robots, and automotive. Three-dimensional printing of conductive gels/hydrogels facilitates the construction of soft electronics. This review illustrates the design, mechanism, and application of hydrogel in soft electronics. The current progress, scope of improvement, and future prospects of hydrogel-based soft electronics are also discussed. This review will provide a clear concept of the topic to researchers. Full article
(This article belongs to the Special Issue Functional Hydrogels for Soft Electronics and Robotic Applications)
Show Figures

Graphical abstract

17 pages, 1672 KiB  
Review
Three-Dimensional Prototyping with PLA for the Electrical Sector: Perspectives and Challenges in Material Development
by Diana Aline Gomes, Luís Fernando Cusioli, Daniel Mantovani, Angelo Marcelo Tusset, Silvio Miguel Parmegiani Marcucci, Giane Gonçalves Lenzi, Antonio Benjamim Mapossa and Rosângela Bergamasco
Energies 2025, 18(11), 2844; https://doi.org/10.3390/en18112844 - 29 May 2025
Viewed by 380
Abstract
Additive manufacturing with polylactic acid (PLA) presents significant potential for the electrical sector, especially in rapid prototyping and customized component fabrication. While PLA is valued for its biodegradability and ease of processing, its limited thermal stability and poor electrical conductivity restrict its use [...] Read more.
Additive manufacturing with polylactic acid (PLA) presents significant potential for the electrical sector, especially in rapid prototyping and customized component fabrication. While PLA is valued for its biodegradability and ease of processing, its limited thermal stability and poor electrical conductivity restrict its use in high-performance applications. This study investigates the enhancement of PLA through the incorporation of conductive and thermally resistant fillers, aiming to expand its functional properties. Advances in multimaterial and 4D printing are also explored as strategies to increase the applicability of PLA in the production of sensors, flexible circuits, and tailored electrical devices. The findings support PLA’s potential as a sustainable, high-value material for next-generation electrical manufacturing. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

44 pages, 16366 KiB  
Review
Recent Advances in Paper-Based Electronics: Emphasis on Field-Effect Transistors and Sensors
by Dimitris Barmpakos, Apostolos Apostolakis, Fadi Jaber, Konstantinos Aidinis and Grigoris Kaltsas
Biosensors 2025, 15(5), 324; https://doi.org/10.3390/bios15050324 - 19 May 2025
Viewed by 1297
Abstract
Paper-based electronics have emerged as a sustainable, low-cost, and flexible alternative to traditional substrates for electronics, particularly for disposable and wearable applications. This review outlines recent developments in paper-based devices, focusing on sensors and paper-based field-effect transistors (PFETs). Key fabrication techniques such as [...] Read more.
Paper-based electronics have emerged as a sustainable, low-cost, and flexible alternative to traditional substrates for electronics, particularly for disposable and wearable applications. This review outlines recent developments in paper-based devices, focusing on sensors and paper-based field-effect transistors (PFETs). Key fabrication techniques such as laser-induced graphene, inkjet printing, and screen printing have enabled the creation of highly sensitive and selective devices on various paper substrates. Material innovations, especially the integration of graphene, carbon-based materials, conductive polymers, and other novel micro- and nano-enabled materials, have significantly enhanced device performance. This review discusses modern applications of paper-based electronics, with a particular emphasis on biosensors, electrochemical and physical sensors, and PFETs designed for flexibility, low power, and high sensitivity. Advances in PFET architectures have further enabled the development of logic gates and memory systems on paper, highlighting the potential for fully integrated circuits. Despite challenges in durability and performance consistency, the field is rapidly evolving, driven by the demand for green electronics and the need for decentralized, point-of-care diagnostic tools. This paper also identifies detection strategies used in paper-based sensors, reviews limitations in the current fabrication methods, and outlines opportunities for the scalable production of multifunctional paper-based systems. This review addresses a critical gap in the literature by linking device-level innovation with real-world sensor applications on paper substrates. Full article
(This article belongs to the Special Issue Biosensing and Diagnosis—2nd Edition)
Show Figures

Figure 1

17 pages, 14203 KiB  
Article
Low-Profile Omnidirectional and Wide-Angle Beam Scanning Antenna Array Based on Epsilon-Near-Zero and Fabry–Perot Co-Resonance
by Jiaxin Li, Lin Zhao, Dan Long and Hui Xie
Electronics 2025, 14(10), 2012; https://doi.org/10.3390/electronics14102012 - 15 May 2025
Viewed by 777
Abstract
To address the inherent contradiction between low-profile design and high gain in traditional omnidirectional antennas, as well as the narrow bandwidth constraints of ENZ antennas, this study presents a dual-mode ENZ-FP collaborative resonant antenna array design utilizing a substrate-integrated waveguide (SIW). Through systematic [...] Read more.
To address the inherent contradiction between low-profile design and high gain in traditional omnidirectional antennas, as well as the narrow bandwidth constraints of ENZ antennas, this study presents a dual-mode ENZ-FP collaborative resonant antenna array design utilizing a substrate-integrated waveguide (SIW). Through systematic analysis of ENZ media’s quasi-static field distribution, we innovatively integrated it with Fabry–Perot (F–P) resonance, achieving unprecedented dual-band omnidirectional radiation at 5.18 GHz and 5.72 GHz within a single ENZ antenna configuration for the first time. The directivity of both frequencies reached 12.0 dBi, with a remarkably low profile of only 0.018λ. We then extended this design to an ENZ-FP dual-mode beam-scanning array. By incorporating phase control technology, we achieved wide-angle scanning despite low-profile constraints. The measured 3 dB beam coverage angles at the dual frequencies were ±63° and ±65°, respectively. Moreover, by loading the impedance matching network, the −10 dB impedance bandwidth of the antenna array was further extended to 2.4% and 2.7%, respectively, thus overcoming the narrowband limitations of the ENZ antenna and enhancing practical applicability. The antennas were manufactured using PCB (Printed Circuit Board) technology, offering high integration and cost efficiency. This provides a new paradigm for UAV (Unmanned Aerial Vehicle) communication and radar detection systems featuring multi-band operation, a low-profile design, and flexible beam control capabilities. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

20 pages, 9601 KiB  
Article
Design, Simulation and Experimental Validation of a Pneumatic Actuation Method for Automating Manual Pipetting Devices
by Valentin Ciupe, Erwin-Christian Lovasz, Robert Kristof, Melania-Olivia Sandu and Carmen Sticlaru
Machines 2025, 13(5), 389; https://doi.org/10.3390/machines13050389 - 7 May 2025
Viewed by 509
Abstract
This study provides a set of designs, simulations and experiments for developing an actuating method for manual pipettes. The goal is to enable robotic manipulation and automatic pipetting, while using manual pipetting devices. This automation is designed to be used as a flexible [...] Read more.
This study provides a set of designs, simulations and experiments for developing an actuating method for manual pipettes. The goal is to enable robotic manipulation and automatic pipetting, while using manual pipetting devices. This automation is designed to be used as a flexible alternative tool in small and medium-sized biochemistry laboratories that do not possess proper automated pipetting technology, in order to relieve the lab technicians from the tedious, repetitive and error-prone process of manual pipetting needed for the preparation of biological samples. The selected approach is to use a set of pressure-controlled pneumatic cylinders in order to control the actuation and force of the pipettes’ manual buttons. This paper presents a mechanical design, analysis, pneumatic simulation and functional robotic simulation of the developed device, and a comparison of possible pneumatic solutions is presented to explain the selected actuation method. Remote pneumatic pressure sensing is employed in order to avoid electrical sensors, connectors and wires in the area of the actuators, thus expanding the possibility of working in some electromagnetic-compatible environments and to simplify the connecting and cleaning process of the entire device. A functional simulation is conducted using a combination of software packages: Fluidsim for pneumatic simulation, URSim for robot programming and CoppeliaSim for application integration and visualization. Experimental validation is conducted using off-the-shelf pneumatic components, assembled with 3D-printed parts and mounted onto an existing pneumatic gripper. This complete assembly is attached to an industrial collaborative robot, as an end effector, and a program is written to test and validate the functions of the complete device. The in-process actuators’ working pressure is recorded and analyzed to determine the suitability of the proposed method and pipetting ability. Supplemental digital data are provided in the form of pneumatic circuit diagrams, a robot program, simulation scene and recorded values, to facilitate experimental replication and further development. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

12 pages, 3129 KiB  
Article
Development of Low-Dielectric Modified Polyimide with Low-Temperature Radical Curing for High-Frequency Flexible Printed Circuit Boards
by Seonwoo Kim, Suin Chae, Mirae Seo, Yubin Kim, Soobin Park, Sehoon Park and Hyunjin Nam
Micro 2025, 5(2), 23; https://doi.org/10.3390/micro5020023 - 3 May 2025
Viewed by 867
Abstract
This study presents the development of a modified polyimide (MPI) with low dielectric properties and low-temperature curing capability for high-frequency flexible printed circuit boards (FPCBs). MPI was cured using dicumyl peroxide (DCP) at 80–140 °C through a radical process optimized via DSC analysis, [...] Read more.
This study presents the development of a modified polyimide (MPI) with low dielectric properties and low-temperature curing capability for high-frequency flexible printed circuit boards (FPCBs). MPI was cured using dicumyl peroxide (DCP) at 80–140 °C through a radical process optimized via DSC analysis, while Fourier-transform infrared (FT-IR) confirmed the elimination of C=C bonds and the formation of imide structures. The MPI film exhibited low dielectric constants (Dk) of 1.759 at 20 GHz and 1.734 at 28 GHz, with ultra-low dissipation factors (Df) of 0.00165 and 0.00157. High-frequency S-parameter evaluations showed an excellent performance, with S11 of −32.92 dB and S21 of approximately −1 dB. Mechanical reliability tests demonstrated a strong peel strength of 0.8–1.2 kgf/mm (IPC TM-650 2.4.8 standard) and stable electrical resistance during bending to ~6 mm radius, with full recovery after severe deformation. These results highlight MPI’s potential as a high-performance dielectric material for next-generation FPCBs, combining superior electrical performance, mechanical flexibility, and compatibility with low-temperature processing. Full article
(This article belongs to the Section Microscale Engineering)
Show Figures

Figure 1

15 pages, 1313 KiB  
Article
mTanh: A Low-Cost Inkjet-Printed Vanishing Gradient Tolerant Activation Function
by Shahrin Akter and Mohammad Rafiqul Haider
J. Low Power Electron. Appl. 2025, 15(2), 27; https://doi.org/10.3390/jlpea15020027 - 2 May 2025
Viewed by 745
Abstract
Inkjet-printed circuits on flexible substrates are rapidly emerging as a key technology in flexible electronics, driven by their minimal fabrication process, cost-effectiveness, and environmental sustainability. Recent advancements in inkjet-printed devices and circuits have broadened their applications in both sensing and computing. Building on [...] Read more.
Inkjet-printed circuits on flexible substrates are rapidly emerging as a key technology in flexible electronics, driven by their minimal fabrication process, cost-effectiveness, and environmental sustainability. Recent advancements in inkjet-printed devices and circuits have broadened their applications in both sensing and computing. Building on this progress, this work has developed a nonlinear computational element coined as mTanh to serve as an activation function in neural networks. Activation functions are essential in neural networks as they introduce nonlinearity, enabling machine learning models to capture complex patterns. However, widely used functions such as Tanh and sigmoid often suffer from the vanishing gradient problem, limiting the depth of neural networks. To address this, alternative functions like ReLU and Leaky ReLU have been explored, yet these also introduce challenges such as the dying ReLU issue, bias shifting, and noise sensitivity. The proposed mTanh activation function effectively mitigates the vanishing gradient problem, allowing for the development of deeper neural network architectures without compromising training efficiency. This study demonstrates the feasibility of mTanh as an activation function by integrating it into an Echo State Network to predict the Mackey–Glass time series signal. The results show that mTanh performs comparably to Tanh, ReLU, and Leaky ReLU in this task. Additionally, the vanishing gradient resistance of the mTanh function was evaluated by implementing it in a deep multi-layer perceptron model for Fashion MNIST image classification. The study indicates that mTanh enables the addition of 3–5 extra layers compared to Tanh and sigmoid, while exhibiting vanishing gradient resistance similar to ReLU. These results highlight the potential of mTanh as a promising activation function for deep learning models, particularly in flexible electronics applications. Full article
Show Figures

Graphical abstract

19 pages, 6105 KiB  
Article
Polylactic Acid and Polyhydroxybutyrate as Printed Circuit Board Substrates: A Novel Approach
by Zahra Fazlali, David Schaubroeck, Maarten Cauwe, Ludwig Cardon, Pieter Bauwens and Jan Vanfleteren
Processes 2025, 13(5), 1360; https://doi.org/10.3390/pr13051360 - 29 Apr 2025
Cited by 1 | Viewed by 893
Abstract
This study presents a novel approach to manufacture a rigid printed circuit board (PCB) using sustainable polymers. Current PCBs use a fossil-fuel-based substrate, like FR4. This presents recycling challenges due to its composite nature. Replacing the substrate with an environmentally friendly alternative leads [...] Read more.
This study presents a novel approach to manufacture a rigid printed circuit board (PCB) using sustainable polymers. Current PCBs use a fossil-fuel-based substrate, like FR4. This presents recycling challenges due to its composite nature. Replacing the substrate with an environmentally friendly alternative leads to a reduction in negative impacts. Polylactic acid (PLA) and Polyhydroxybutyrate (PHB) biopolymers are used in this study. These two biopolymers have low melting points (130–180 °C, and 170–180 °C, respectively) and cannot withstand the high temperature soldering process (up to 260 °C for standard SAC (SnAgCu, tin/silver/copper) lead free solder processes). Our approach for replacing the PCB substrate is applying the PLA/PHB carrier substrate at the end of the PCB manufacturing process using injection molding technology. This approach involves all the standard PCB processes, including wet etching of the Cu conductors, and component assembly with SAC solder on a thin flexible polyimide (PI) foil with patterned Cu conductors and then overmolding the biopolymer onto the foil to create a rigid base. This study demonstrates the functionality of two test circuits fabricated using this method. In addition, we evaluated the adhesion between the biopolymer and PI to achieve a durable PCB. Moreover, we performed two different end-of-life approaches (debonding and composting) as a part of the end-of-life consideration. By incorporating biodegradable materials into PCB standard manufacturing, the CO2 emissions and energy consumption are significantly reduced, and installation costs are lowered. Full article
Show Figures

Figure 1

9 pages, 2086 KiB  
Article
Effective Enhancement for Printed Circuit Board Imaging in Near-Field Scanning Microwave Microscopy
by Tao Zhou, Quanxin Zhou, Hao Liu, Haoyun Liu, Zhe Wu, Jianlong Liu, Yubin Gong and Baoqing Zeng
Symmetry 2025, 17(4), 561; https://doi.org/10.3390/sym17040561 - 8 Apr 2025
Viewed by 492
Abstract
Near-field microwave microscopy (NSMM) is a promising technique for the non-destructive, high-resolution imaging of electrical and dielectric properties at the microscale. However, its performance is highly sensitive to the probe-to-sample distance, often requiring extremely close proximity, which limits its practical application in device [...] Read more.
Near-field microwave microscopy (NSMM) is a promising technique for the non-destructive, high-resolution imaging of electrical and dielectric properties at the microscale. However, its performance is highly sensitive to the probe-to-sample distance, often requiring extremely close proximity, which limits its practical application in device manufacturing, especially in scenarios involving coatings and packaging. In this study, we propose a distance inversion method based on a dual-port symmetrical microwave probe to improve imaging performance at larger, safer scanning distances. This method utilizes the correlation between probe height and resonant frequency to compensate for distance-induced signal distortions. The experimental results demonstrate that even at a probe–sample distance of 80 µm, clear and distinguishable NSMM images of printed circuit boards (PCBs) can be obtained. The imaging resolution reached 13 µm. The defect structure with dimensions of 130 × 130 µm2 on the PCB was successfully identified. The signal-to-noise ratio was significantly enhanced after applying the correction method. This approach not only improves the robustness and flexibility of NSMM in industrial scenarios but also extends its applicability to packaged or coated electronic devices, offering a valuable tool for advanced non-destructive testing. Full article
Show Figures

Figure 1

16 pages, 6568 KiB  
Article
Rapid Mental Stress Evaluation Based on Non-Invasive, Wearable Cortisol Detection with the Self-Assembly of Nanomagnetic Beads
by Junjie Li, Qian Chen, Weixia Li, Shuang Li, Cherie S. Tan, Shuai Ma, Shike Hou, Bin Fan and Zetao Chen
Biosensors 2025, 15(3), 140; https://doi.org/10.3390/bios15030140 - 23 Feb 2025
Viewed by 1298
Abstract
The rapid and timely evaluation of the mental health of emergency rescuers can effectively improve the quality of emergency rescues. However, biosensors for mental health evaluation are now facing challenges, such as the rapid and portable detection of multiple mental biomarkers. In this [...] Read more.
The rapid and timely evaluation of the mental health of emergency rescuers can effectively improve the quality of emergency rescues. However, biosensors for mental health evaluation are now facing challenges, such as the rapid and portable detection of multiple mental biomarkers. In this study, a non-invasive, flexible, wearable electrochemical biosensor was constructed based on the self-assembly of nanomagnetic beads for the rapid detection of cortisol in interstitial fluid (ISF) to assess the mental stress of emergency rescuers. Based on a one-step reduction, gold nanoparticles (AuNPs) were functionally modified on a screen-printed electrode to improve the detection of electrochemical properties. Afterwards, nanocomposites of MXene and multi-wall carbon nanotubes were coated onto the AuNPs layer through a physical deposition to enhance the electron transfer rate. The carboxylated nanomagnetic beads immobilized with a cortisol antibody were treated as sensing elements for the specific recognition of the mental stress marker, cortisol. With the rapid attraction of magnets to nanomagnetic beads, the sensing element can be rapidly replaced on the electrode uniformly, which can lead to extreme improvements in detection efficiency. The detected linear response to cortisol was 0–32 ng/mL. With the integrated reverse iontophoresis technique on a flexible printed circuit board, the ISF can be extracted non-invasively for wearable cortisol detection. The stimulating current was set to be under 1 mA for the extraction, which was within the safe and acceptable range for human bodies. Therefore, based on the positive correlation between cortisol concentration and mental stress, the mental stress of emergency rescuers can be evaluated, which will provide feedback on the psychological statuses of rescuers and effectively improve rescuer safety and rescue efficiency. Full article
Show Figures

Figure 1

12 pages, 3243 KiB  
Article
Internal Integrated Temperature Sensor for Lithium-Ion Batteries
by Pengfei Yang, Kai Su, Shijie Weng, Jiang Han, Qian Zhang, Zhiqiang Li, Xiaoli Peng and Yong Xiang
Sensors 2025, 25(2), 511; https://doi.org/10.3390/s25020511 - 17 Jan 2025
Viewed by 3188
Abstract
Lithium-ion batteries represent a significant component of the field of energy storage, with a diverse range of applications in consumer electronics, portable devices, and numerous other fields. In view of the growing concerns about the safety of batteries, it is of the utmost [...] Read more.
Lithium-ion batteries represent a significant component of the field of energy storage, with a diverse range of applications in consumer electronics, portable devices, and numerous other fields. In view of the growing concerns about the safety of batteries, it is of the utmost importance to develop a sensor that is capable of accurately monitoring the internal temperature of lithium-ion batteries. External sensors are subject to the necessity for additional space and ancillary equipment. Moreover, external sensors cannot accurately measure internal battery temperature due to packaging material interference, causing a temperature discrepancy between the interior and surface. Consequently, this study presents an integrated temperature sensor within the battery, based on PT1000 resistance temperature detector (RTD). The sensor is integrated with the anode via a flexible printed circuit (FPC), simplifying the assembly process. The PT1000 RTD microsensor’s temperature is linearly related to resistance (R = 3.71T + 1003.86). It measures about 15 °C temperature difference inside/outside the battery. On short-circuit, the battery’s internal temperature rises to 27 °C in 10 s and 32 °C in 20 s, measured by the sensor. A battery with the PT1000 sensor retains 89.8% capacity under 2 C, similar to the normal battery. Furthermore, a PT1000 temperature array sensor was designed and employed to enable precise monitoring and localization of internal temperature variations. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

18 pages, 3238 KiB  
Article
Multilayer Printed Circuit Board Design Based on Copper Paste Sintering Technology for Satellite Communication Receiving Phased Array
by Sicheng Sun, Yijiu Zhao, Sitao Mei, Naixin Zhou and Yongling Ban
Electronics 2025, 14(2), 322; https://doi.org/10.3390/electronics14020322 - 15 Jan 2025
Viewed by 1139
Abstract
A 2048-element dual-polarized receive (RX) phased array for Ku-band (10.7–12.7 GHz) satellite communication (SATCOM) is presented in this paper. The design of the multilayer printed circuit board (PCB) it uses adopts a novel copper paste sintering interconnection technology that allows for [...] Read more.
A 2048-element dual-polarized receive (RX) phased array for Ku-band (10.7–12.7 GHz) satellite communication (SATCOM) is presented in this paper. The design of the multilayer printed circuit board (PCB) it uses adopts a novel copper paste sintering interconnection technology that allows for more flexibility in the design of vias and can reduce the PCB’s lamination number. This technology is more suitable for manufacturing multilayer and complex PCBs than traditional processes. The array is designed to consist of sixteen 8 × 16 element subarrays, each based on the silicon RX beamformer and multilayer PCB. Dual-polarized antenna elements are arranged in a regular rectangle with a spacing of 0.5 for a wavelength of 12.7 GHz, thus achieving a scanning range of ±70° in all planes. By adjusting the amplitude and phase of two line polarizations with cross-polarization levels better than −25 dB at boresight, the array can generate linear or circular polarization. Moreover, the antenna gain-to-noise temperature is above 12 dB/K (Tant = 20 K) at boresight. The aperture of the 2048-element RX phased array is 768 × 450 mm. With its low profile, the array is appropriate for usage in Ku-band SATCOM terminals. Full article
Show Figures

Figure 1

Back to TopTop