Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = flexible mooring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3570 KiB  
Article
Performance Studies on a Scaled Model of Dual Oscillating-Buoys WEC with One Pneumatic PTO
by Peiyu Liu, Xiang Rao, Bijun Wu, Zhiwen Yuan and Fuming Zhang
Energies 2025, 18(15), 4151; https://doi.org/10.3390/en18154151 - 5 Aug 2025
Abstract
A hybrid wave energy conversion (WEC) system, integrating a backward bent duct buoy (BBDB) with an oscillating buoy (OB) via a flexible mooring chain, is introduced in this study. Unlike existing hybrid WECs, the proposed system dispenses with rigid mechanical linkages and enables [...] Read more.
A hybrid wave energy conversion (WEC) system, integrating a backward bent duct buoy (BBDB) with an oscillating buoy (OB) via a flexible mooring chain, is introduced in this study. Unlike existing hybrid WECs, the proposed system dispenses with rigid mechanical linkages and enables flexible offshore deployment. Flared BBDB and buoy models with spherical, cylindrical, and semi-capsule shapes are designed and tested experimentally in a wave flume using both regular and irregular wave conditions. The effects of nozzle ratio (NR), coupling distance, buoy draft, and buoy geometry are systematically examined to investigate the hydrodynamic performance and energy conversion characteristics. It is found that NR at 110 under unidirectional airflow produces an optimal balance between pressure response, free surface displacement, and energy conversion efficiency. Energy extraction is significantly influenced by the coupling distance, with the hybrid system achieving maximum performance at a specific normalized spacing. The semi-capsule buoy improves power extraction ability and expands effective bandwidth due to asymmetric shape and coupled motion. These findings provide valuable insights into the coupling mechanism and geometric optimization for hybrid WECs. Full article
Show Figures

Figure 1

21 pages, 1057 KiB  
Article
Hybrid Sensor Placement Framework Using Criterion-Guided Candidate Selection and Optimization
by Se-Hee Kim, JungHyun Kyung, Jae-Hyoung An and Hee-Chang Eun
Sensors 2025, 25(14), 4513; https://doi.org/10.3390/s25144513 - 21 Jul 2025
Viewed by 255
Abstract
This study presents a hybrid sensor placement methodology that combines criterion-based candidate selection with advanced optimization algorithms. Four established selection criteria—modal kinetic energy (MKE), modal strain energy (MSE), modal assurance criterion (MAC) sensitivity, and mutual information (MI)—are used to evaluate DOF sensitivity and [...] Read more.
This study presents a hybrid sensor placement methodology that combines criterion-based candidate selection with advanced optimization algorithms. Four established selection criteria—modal kinetic energy (MKE), modal strain energy (MSE), modal assurance criterion (MAC) sensitivity, and mutual information (MI)—are used to evaluate DOF sensitivity and generate candidate pools. These are followed by one of four optimization algorithms—greedy, genetic algorithm (GA), particle swarm optimization (PSO), or simulated annealing (SA)—to identify the optimal subset of sensor locations. A key feature of the proposed approach is the incorporation of constraint dynamics using the Udwadia–Kalaba (U–K) generalized inverse formulation, which enables the accurate expansion of structural responses from sparse sensor data. The framework assumes a noise-free environment during the initial sensor design phase, but robustness is verified through extensive Monte Carlo simulations under multiple noise levels in a numerical experiment. This combined methodology offers an effective and flexible solution for data-driven sensor deployment in structural health monitoring. To clarify the rationale for using the Udwadia–Kalaba (U–K) generalized inverse, we note that unlike conventional pseudo-inverses, the U–K method incorporates physical constraints derived from partial mode shapes. This allows a more accurate and physically consistent reconstruction of unmeasured responses, particularly under sparse sensing. To clarify the benefit of using the U–K generalized inverse over conventional pseudo-inverses, we emphasize that the U–K method allows the incorporation of physical constraints derived from partial mode shapes directly into the reconstruction process. This leads to a constrained dynamic solution that not only reflects the known structural behavior but also improves numerical conditioning, particularly in underdetermined or ill-posed cases. Unlike conventional Moore–Penrose pseudo-inverses, which yield purely algebraic solutions without physical insight, the U–K formulation ensures that reconstructed responses adhere to dynamic compatibility, thereby reducing artifacts caused by sparse measurements or noise. Compared to unconstrained least-squares solutions, the U–K approach improves stability and interpretability in practical SHM scenarios. Full article
Show Figures

Figure 1

21 pages, 4484 KiB  
Article
Analytical and Experimental Investigation of a Three-Module VLFS Connector Based on an Elastic Beam Model
by Yongheng Wang, Xuefeng Wang, Shengwen Xu and Lei Wang
J. Mar. Sci. Eng. 2025, 13(6), 1148; https://doi.org/10.3390/jmse13061148 - 10 Jun 2025
Viewed by 347
Abstract
Very large floating structures (VLFSs) typically employ a modular design approach to mitigate significant hydroelastic loads. A mooring system is commonly employed to maintain the position and heading of a VLFS against the forces of waves, wind, and currents, while a connector is [...] Read more.
Very large floating structures (VLFSs) typically employ a modular design approach to mitigate significant hydroelastic loads. A mooring system is commonly employed to maintain the position and heading of a VLFS against the forces of waves, wind, and currents, while a connector is utilized to restrict the relative motion among the modules. In this paper, we propose a comprehensive connector model based on elastic beam theory. The aim is to establish a unified mathematical model that accommodates various types of flexible connectors by adjusting the specific stiffness and damping parameters. To assess the effectiveness of the model, numerical and experimental studies are conducted on a VLFS composed of three rigid bodies connected in a series by multiple flexible connectors. The results obtained demonstrate that the general connector model is reasonable and can be applied to different types of connectors, thereby facilitating an analysis of the influence of the mechanical properties of the connectors on the motion response of the VLFS. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 9843 KiB  
Article
Coupled Response of Flexible Multi-Buoy Offshore Floating Photovoltaic Array Under Waves and Currents
by Xing-Hua Shi, Yiming Wang, Jing Zhang, C. Guedes Soares, Honglong Li and Jia Yu
J. Mar. Sci. Eng. 2025, 13(5), 930; https://doi.org/10.3390/jmse13050930 - 9 May 2025
Viewed by 546
Abstract
To study the response of a flexible offshore floating photovoltaic (FPV) array under waves and a current, a numerical model is established using OrcaFlex. The effects of different waves and currents, as well as their coupled effects on the motion response of the [...] Read more.
To study the response of a flexible offshore floating photovoltaic (FPV) array under waves and a current, a numerical model is established using OrcaFlex. The effects of different waves and currents, as well as their coupled effects on the motion response of the offshore PFV array and the tension in the connectors and moorings under different static tensions, are investigated. Differences are illustrated between the responses of the buoys at different positions and under different moorings under the wave. With the relaxed moorings, the surge response of the buoy facing the wave increased by 159.3% compared with the buoy facing away from the wave. The current causes the overall drift of the array, which greatly influences the buoys facing the current. The mooring tension facing the wave restricts the motion of the buoys under the same direction as the wave and current, which shows that the trend of the buoys’ responses with the wave decreases with the increase in the current velocity, as the pitch reduces to 76.9% under relaxed moorings. There is a significant difference between the results obtained by the superposition summation wave and current loads and the ones of the combined wave–current. With the increase in the wave–current angle, the response is increased by 348.2% as the constraint of the moorings and the connectors is weakened. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
Show Figures

Figure 1

37 pages, 31679 KiB  
Article
Mooring Failure Analysis of Semisubmersible Floating Offshore Wind Turbines Considering Mooring Redundancy at Each Azimuth Angle
by Shuai Hao, Xuning Zhang, Yang Yu, Bin Wang and Xingdao Bo
J. Mar. Sci. Eng. 2025, 13(2), 360; https://doi.org/10.3390/jmse13020360 - 15 Feb 2025
Viewed by 1226
Abstract
Semisubmersible floating structures are becoming the predominant understructure type for floating offshore wind turbines (FOWTs) worldwide. As FOWTs are erected far away from land and in deep seas, they inevitably suffer violent and complicated sea conditions, including extreme waves and winds. Mooring lines [...] Read more.
Semisubmersible floating structures are becoming the predominant understructure type for floating offshore wind turbines (FOWTs) worldwide. As FOWTs are erected far away from land and in deep seas, they inevitably suffer violent and complicated sea conditions, including extreme waves and winds. Mooring lines are the representative flexible members of the whole structure and are likely to incur damage due to years of impact, corrosion, or fatigue. To improve mooring redundancy at each azimuth angle around a wind turbine, a group of mooring lines are configured in the same direction instead of just one mooring line. This study focuses on the mooring failure problems that would probably occur in a realistic redundant mooring system of a semisubmersible FOWT, and the worst residual mooring layout is considered. An FOWT numerical model with a 3 × 3 mooring system is established in terms of 3D potential flow and BEM (blade element momentum) theories, and aero-hydro floating-body mooring coupled analyses are performed to discuss the subsequent time histories of dynamic responses after different types of mooring failure. As under extreme failure conditions, the final horizontal offsets of the structure and the layout of the residual mooring system are evaluated under still water, design, and extreme environmental conditions. The results show that the transient tension in up-wave mooring lines can reach more than 12,000 kN under extreme environmental conditions, inducing further failure of the whole chain group. Then, a deflection angle of 60° may occur on the residual laid chain, which may bring about dangerous anchor dragging. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 7294 KiB  
Article
A Study on the Hydrodynamic Response Characteristics of Vessel-Shaped Cages Based on the Smoothed Particle Hydrodynamics Method
by Yue Zhuo, Junhua Chen, Lingjie Bao, Hao Li, Fangping Huang and Chuhua Jiang
J. Mar. Sci. Eng. 2024, 12(12), 2199; https://doi.org/10.3390/jmse12122199 - 1 Dec 2024
Cited by 1 | Viewed by 999
Abstract
Due to the limitations of farming space, fish cage aquaculture is gradually expanding into offshore deep-sea areas, where the environmental conditions surrounding deep-sea fish cages are more complex and harsher compared to those in shallower offshore locations. Conventional multi-point moored gravity flexible fish [...] Read more.
Due to the limitations of farming space, fish cage aquaculture is gradually expanding into offshore deep-sea areas, where the environmental conditions surrounding deep-sea fish cages are more complex and harsher compared to those in shallower offshore locations. Conventional multi-point moored gravity flexible fish cages are prone to damage in the more hostile environments of the deep sea. In this paper, we present a design for a single-point mooring vessel-shaped fish cage that can quickly adjust its bow direction when subjected to waves from various angles. This design ensures that the floating frame consistently responds effectively to wave impacts, thereby reducing the wave forces experienced. The dynamic response of the floating frame and the mooring forces were simulated by coupling the Smoothed Particle Hydrodynamics method with the Moordyn numerical model for mooring analysis. The three degrees of freedom (heave, surge, and pitch) and the mooring forces of a scaled-down vessel-type ship cage model under wave conditions were investigated both numerically and experimentally. The results indicate that the error between the simulation data and the experimental results is maintained within 6%. Building on this foundation, the motion response and mooring force of a full-sized ship-shaped net box under wave conditions off the southeast coast of China were simulated. This study examined the effects of varying mooring lengths and buoy configurations on the motion response and mooring force of the fish cage. Finally, we constructed the fish cage and tested it under the influence of a typhoon. The results demonstrate that the fish cage could operate stably without structural damage, such as mooring failure or floating frame breakage, despite the significant deformation of the floating frame. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 8443 KiB  
Review
A Review of the Hydroelastic Theoretical Models of Floating Porous Nets and Floaters for Offshore Aquaculture
by Sarat Chandra Mohapatra and C. Guedes Soares
J. Mar. Sci. Eng. 2024, 12(10), 1699; https://doi.org/10.3390/jmse12101699 - 25 Sep 2024
Cited by 11 | Viewed by 2065
Abstract
The present review focuses on the theoretical model developments made in floating flexible net fish cages and the floating bodies application to offshore aquaculture. A brief discussion of the essential mathematical equations related to various theoretical models of flexible net cages in the [...] Read more.
The present review focuses on the theoretical model developments made in floating flexible net fish cages and the floating bodies application to offshore aquaculture. A brief discussion of the essential mathematical equations related to various theoretical models of flexible net cages in the frequency domain is presented. The single and array of floating or submerged flexible net cages connected with or without mooring lines are discussed. Further, as the combined effect of the hydroelastic behaviour of floaters and the flexible behaviour of fish cages are necessary to assess their efficiency and survivability from structural damages, the issues and the knowledge gap between the recent and future models are also discussed. In conclusion, the practical suggestions concerning advancements in future research and directions within floating flexible net cages and the hydroelastic response of elastic floaters are highlighted. Full article
(This article belongs to the Special Issue Hydroelastic Behaviour of Floating Offshore Structures)
Show Figures

Figure 1

20 pages, 7676 KiB  
Article
Study on the Dynamic Response of Mooring System of Multiple Fish Cages under the Combined Effects of Waves and Currents
by Fuxiang Liu, Zhentao Jiang, Tianhu Cheng, Yuwang Xu, Haitao Zhu, Gang Wang, Guoqing Sun and Yuqin Zhang
J. Mar. Sci. Eng. 2024, 12(9), 1648; https://doi.org/10.3390/jmse12091648 - 14 Sep 2024
Viewed by 1217
Abstract
Deep-sea aquaculture can alleviate the spatial and environmental pressure of near-shore aquaculture and produce higher quality aquatic products, which is the main development direction of global aquaculture. The coastline of China is relatively flat, with aquaculture operations typically operating in sea areas with [...] Read more.
Deep-sea aquaculture can alleviate the spatial and environmental pressure of near-shore aquaculture and produce higher quality aquatic products, which is the main development direction of global aquaculture. The coastline of China is relatively flat, with aquaculture operations typically operating in sea areas with water depths of approximately 30–50 m. However, with frequent typhoons and poor sea conditions, the design of mooring system has always been a difficult problem. This paper investigated the multiple cages, considering two layouts of 1 × 4 and 2 × 2, and proposed three different mooring system design schemes. The mooring line tension of the mooring systems under the self-storage condition was compared, and it was observed whether the mooring line accumulation and the contact between the mooring line and the steel structure occurred on the leeward side. Additionally, flexible net models were compared with rigid net models to evaluate the impact of net deformation on cage movement and mooring line tension. Finally, based on the optimal mooring design, the dynamic response of the mooring system under irregular wave conditions was analyzed and studied, providing important reference for the safety and economic design of the mooring system of multiple fish cages. Full article
(This article belongs to the Special Issue New Techniques and Equipment in Large Offshore Aquaculture Platform)
Show Figures

Figure 1

27 pages, 15843 KiB  
Article
Numerical Simulation and On-Site Measurement of Dynamic Response of Flexible Marine Aquaculture Cages
by Xiaoying Zhang, Fei Fu, Jun Guo, Hao Qin, Qian Sun and Zhe Hu
J. Mar. Sci. Eng. 2024, 12(9), 1625; https://doi.org/10.3390/jmse12091625 - 12 Sep 2024
Cited by 2 | Viewed by 1016
Abstract
Flexible cages are widely used in marine aquaculture, yet their mechanical features in extreme seas are still unclear. This study proposes a numerical algorithm to solve the coupled response of the multiple cage systems. The net and mooring lines are modeled using the [...] Read more.
Flexible cages are widely used in marine aquaculture, yet their mechanical features in extreme seas are still unclear. This study proposes a numerical algorithm to solve the coupled response of the multiple cage systems. The net and mooring lines are modeled using the lumped-mass model, while the flexible floating collar system is assessed with the large-deformation FEM model, and the two models are coupled through an iterative scheme. Sea trials are conducted, and the motion of the cage is obtained using an image processing technique, which validates the numerical algorithm. Using the proposed numerical algorithm, a series of simulations are performed to investigate the response of flexible cages in extreme seas. Motions, line tensions, and structural sectional forces are studied, and the effects of factors such as the wavelength of incident waves and the diameter of collar pipes are investigated. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 4456 KiB  
Article
Preparation of High-Performance Transparent Al2O3 Dielectric Films via Self-Exothermic Reaction Based on Solution Method and Applications
by Xuecong Fang, Honglong Ning, Zihan Zhang, Rihui Yao, Yucheng Huang, Yonglin Yang, Weixin Cheng, Shaojie Jin, Dongxiang Luo and Junbiao Peng
Micromachines 2024, 15(9), 1140; https://doi.org/10.3390/mi15091140 - 11 Sep 2024
Cited by 2 | Viewed by 1710
Abstract
As the competition intensifies in enhancing the integration and performance of integrated circuits, in accordance with the famous Moore’s Law, higher performance and smaller size requirements are imposed on the dielectric layers in electronic devices. Compared to vacuum methods, the production cost of [...] Read more.
As the competition intensifies in enhancing the integration and performance of integrated circuits, in accordance with the famous Moore’s Law, higher performance and smaller size requirements are imposed on the dielectric layers in electronic devices. Compared to vacuum methods, the production cost of preparing dielectric layers via solution methods is lower, and the preparation cycle is shorter. This paper utilizes a low-temperature self-exothermic reaction based on the solution method to prepare high-performance Al2O3 dielectric thin films that are compatible with flexible substrates. In this paper, we first established two non-self-exothermic systems: one with pure aluminum nitrate and one with pure aluminum acetylacetonate. Additionally, we set up one self-exothermic system where aluminum nitrate and aluminum acetylacetonate were mixed in a 1:1 ratio. Tests revealed that the leakage current density and dielectric constant of the self-exothermic system devices were significantly optimized compared to the two non-self-exothermic system devices, indicating that the self-exothermic reaction can effectively improve the quality of the dielectric film. This paper further established two self-exothermic systems with aluminum nitrate and aluminum acetylacetonate mixed in 2:1 and 1:2 ratios, respectively, for comparison. The results indicate that as the proportion of aluminum nitrate increases, the overall dielectric performance of the devices improves. The best overall performance occurs when aluminum nitrate and aluminum acetylacetonate are mixed in a ratio of 2:1: The film surface is smooth without cracks; the surface roughness is 0.747 ± 0.045 nm; the visible light transmittance reaches up to 98%; on the basis of this film, MIM devices were fabricated, with tested leakage current density as low as 1.08 × 10−8 A/cm2 @1 MV and a relative dielectric constant as high as 8.61 ± 0.06, demonstrating excellent electrical performance. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits)
Show Figures

Figure 1

22 pages, 8510 KiB  
Article
Current Loads on a Horizontal Floating Flexible Membrane in a 3D Channel
by Sarat Chandra Mohapatra, C. Guedes Soares and Kostas Belibassakis
J. Mar. Sci. Eng. 2024, 12(9), 1583; https://doi.org/10.3390/jmse12091583 - 7 Sep 2024
Cited by 8 | Viewed by 1646
Abstract
A 3D analytical model is formulated based on linearised small-amplitude wave theory to analyse the behaviour of a horizontal, flexible membrane subject to wave–current interaction. The membrane is connected to spring moorings for stability. Green’s function approach is used to obtain the dispersion [...] Read more.
A 3D analytical model is formulated based on linearised small-amplitude wave theory to analyse the behaviour of a horizontal, flexible membrane subject to wave–current interaction. The membrane is connected to spring moorings for stability. Green’s function approach is used to obtain the dispersion relation and is utilised in the solution by applying the velocity decomposition method. On the other hand, a brief description of the experiment is presented. The accuracy level of the analytical results is checked by comparing the results of reflection and the transmission coefficients against experimental data sets. Several numerical results on the displacements of the membrane and the vertical forces are studied thoroughly to examine the impact of current loads, spring stiffness, membrane tension, modes of oscillations, and water depths. It is observed that as the value of the current speed (CS) rises, the deflection also increases, whereas it declines in deeper water. On the other hand, the spring stiffness has minimal effect on the vibrations of the flexible membrane. When vertical force is considered, higher oscillation modes increase the vertical loads on the membrane, and for a mid-range wavelength, the vertical wave loads on the membrane grow as the CS increases. Further, the influence of the phase and group velocities are presented. The influences of CS and comparisons between them in terms of water depth are presented and analysed. This analysis will inform the design of membrane-based wave energy converters and breakwaters by clarifying how current loads affect the dynamics of floating membranes at various water depths. Full article
Show Figures

Figure 1

22 pages, 6893 KiB  
Article
Dynamic Characteristic Analysis of Underwater Suspended Docking Station for Resident UUVs
by Jingqian Guo, Lingshuai Meng, Mengmeng Feng, Jun Liu, Zheng Peng, Wei Feng and Jun-Hong Cui
J. Mar. Sci. Eng. 2024, 12(9), 1493; https://doi.org/10.3390/jmse12091493 - 29 Aug 2024
Cited by 1 | Viewed by 1829
Abstract
The widespread use of Unmanned Underwater Vehicles (UUVs) in seafloor observatory networks highlights the need for docking stations to facilitate rapid recharging and effective data transfer. Floating docks are promising due to their flexibility, ease of deployment, and recoverability. To enhance understanding and [...] Read more.
The widespread use of Unmanned Underwater Vehicles (UUVs) in seafloor observatory networks highlights the need for docking stations to facilitate rapid recharging and effective data transfer. Floating docks are promising due to their flexibility, ease of deployment, and recoverability. To enhance understanding and optimize UUV docking with floating docks, we employ dynamic fluid body interaction (DFBI) to construct a seabed moored suspended dock (SMSD) model that features a guiding funnel, a suspended body, and a catenary of a mooring chain. This model simulates SMSD equilibrium stabilization in various ocean currents. Then, a UUV docking model with contact coupling is developed from the SMSD model to simulate the dynamic contact response during docking. The accuracy of the docking model was validated using previous experimental data. Through investigation of the UUV docking response results, sensitivity studies relating to volume, moment of inertia, mass, and catenary stiffness were conducted, thereby guiding SMSD optimization. Finally, sea tests demonstrated that the SMSD maintained stability before docking. During docking, the SMSD’s rotation facilitated smooth UUV entry. After the UUV docked, the SMSD was restored to its original azimuth, confirming its adaptability, stability, and reliability. Full article
Show Figures

Figure 1

29 pages, 6220 KiB  
Article
A Coupled, Global/Local Finite Element Methodology to Evaluate the Fatigue Life of Flexible Risers Attached to Floating Platforms for Deepwater Offshore Oil Production
by Monique de Carvalho Alves, Fabrício Nogueira Corrêa, José Renato Mendes de Sousa and Breno Pinheiro Jacob
Mathematics 2024, 12(8), 1231; https://doi.org/10.3390/math12081231 - 19 Apr 2024
Cited by 2 | Viewed by 1586
Abstract
This study introduces a Finite Element (FE) hybrid methodology for analyzing deepwater offshore oil and gas floating production systems. In these systems, flexible risers convey the production and are connected to a balcony on one side of the platform. The proposed methodology couples, [...] Read more.
This study introduces a Finite Element (FE) hybrid methodology for analyzing deepwater offshore oil and gas floating production systems. In these systems, flexible risers convey the production and are connected to a balcony on one side of the platform. The proposed methodology couples, in a cost-effective manner, the hydrodynamic model of the platform with the FE model that represents the risers and the mooring lines, considering all nonlinear dynamic interactions. The results obtained and the associated computational performance are then compared with those from traditional uncoupled analyses, which may present inaccurate results for deepwater scenarios, and from fully coupled analyses that may demand high computational costs. Moreover, particular attention is dedicated to integrating global and local stress analyses to calculate the fatigue resistance of the flexible riser. The results demonstrate that the coupled global analyses adequately capture the asymmetric behavior due to all risers being connected to one of the sides of the platform, thus resulting in a more accurate distribution of fatigue damage when compared to the uncoupled methodology. Also, fatigue life is significantly affected by adequately considering the coupling effects. Full article
Show Figures

Figure 1

25 pages, 14574 KiB  
Article
Coupled Dynamic Characteristics of a Spar-Type Offshore Floating Two-Bladed Wind Turbine with a Flexible Hub Connection
by Zonghao Wu, Kai Wang, Tianyu Jie and Xiaodi Wu
J. Mar. Sci. Eng. 2024, 12(4), 547; https://doi.org/10.3390/jmse12040547 - 25 Mar 2024
Cited by 2 | Viewed by 1851
Abstract
To reduce manufacturing, transportation, lifting and maintenance costs of increasingly larger and larger floating wind turbines, a Spar-type floating two-bladed wind turbine based on the 5 MW OC3-Hywind floating wind turbine model from the National Renewable Energy Laboratory (NREL) is studied in this [...] Read more.
To reduce manufacturing, transportation, lifting and maintenance costs of increasingly larger and larger floating wind turbines, a Spar-type floating two-bladed wind turbine based on the 5 MW OC3-Hywind floating wind turbine model from the National Renewable Energy Laboratory (NREL) is studied in this paper. The two-bladed wind turbine can cause serious problems with large dynamic loads, so a flexible hub connection was introduced between the hub mount and nacelle carrier to alleviate the dynamic effect. The paper focuses on studying the dynamic responses of the proposed Spar-type floating two-bladed wind turbine with a flexible hub connection at rated and extreme environmental conditions. Fully coupled time-domain simulations are carried out by integrating aerodynamic loads on blades, hydrodynamic loads on the spar, structural dynamics of the tower, blades and mooring lines, control system and flexible hub connection. The analysis results show that the application of a flexible hub connection between the hub mount and nacelle carrier can make a contribution to enable the Spar-type floating two-bladed wind turbine to effectively dampen the motion of the floating platform, while significantly reducing the tower load and blade deflection. Full article
(This article belongs to the Special Issue Innovative Development of Offshore Wind Technology)
Show Figures

Figure 1

19 pages, 2853 KiB  
Article
Modal Analysis of 15 MW Semi-Submersible Floating Wind Turbine: Investigation on the Main Influences in Natural Vibration
by Arthur Harger, Lucas H. S. Carmo, Alfredo Gay Neto, Alexandre N. Simos, Guilherme R. Franzini and Guilherme Henrique Rossi Vieira
Wind 2023, 3(4), 548-566; https://doi.org/10.3390/wind3040031 - 11 Dec 2023
Cited by 2 | Viewed by 3784
Abstract
One of the sources of sustainable energy with great, still untapped potential is wind power. One way to harness such potential is to develop technology for offshore use, more specifically at high depths with floating turbines. It is always critical that their structural [...] Read more.
One of the sources of sustainable energy with great, still untapped potential is wind power. One way to harness such potential is to develop technology for offshore use, more specifically at high depths with floating turbines. It is always critical that their structural designs guarantee that their natural frequencies of vibration do not match the frequencies of the most important oscillatory loads to which they will be subjected. This avoids resonance and its excessive undesired oscillatory responses. Based on that, a 3D finite element model of a 15 MW semi-submersible floating offshore wind turbine was developed in the commercial software ANSYS Mechanical ® to study its dynamic behavior and contribute to the in-depth analysis of structural modeling of FOWTs. A tower and floating platform were individually modeled and coupled together. The natural frequencies and modes of vibration of the coupled system and of its components were obtained by modal analysis, not only to verify the resonance, but also to investigate the determinant factors affecting such behaviors, which are not extensively discussed in literature. It was found that there is strong coupling between the components and that the tower affects the system as a result of its stiffness, and the floater as a result of its rotational inertia. The platform’s inertia comes mainly from the ballast and the effects of added mass, which was considered to be a literal increase in mass and was modeled in two manners: first, it was approximately calculated and distributed along the submerged flexible platform members and then as a nodal inertial element with the floater being considered as a rigid body. The second approach allowed an iterative analysis for non-zero frequencies of vibration, which showed that a first approximation with an infinite period is sufficiently accurate. Furthermore, the effects of the mooring lines was studied based on a linear model, which showed that they do not affect the boundary conditions at the bottom of the tower in a significant way. Full article
(This article belongs to the Special Issue Floating Wind Energy Advances)
Show Figures

Figure 1

Back to TopTop