Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = flavor organic molecules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5336 KiB  
Review
Advancements in the Research on the Preparation of Isoamyl Acetate Catalyzed by Immobilized Lipase
by Guoqiang Guan, Yuyang Zhang, Jingya Qian, Feng Wang, Liang Qu and Bin Zou
Materials 2025, 18(11), 2476; https://doi.org/10.3390/ma18112476 - 25 May 2025
Viewed by 845
Abstract
This study aims to delve into the application potential of immobilized lipases in the catalytic synthesis of isoamyl acetate. Through a comparative analysis of various immobilization methods, including physical adsorption, encapsulation, covalent binding, and crosslinking, along with the utilization of nanomaterials, such as [...] Read more.
This study aims to delve into the application potential of immobilized lipases in the catalytic synthesis of isoamyl acetate. Through a comparative analysis of various immobilization methods, including physical adsorption, encapsulation, covalent binding, and crosslinking, along with the utilization of nanomaterials, such as magnetic nanoparticles, mesoporous silica SBA-15, and covalent organic frameworks (COFs) as carriers, the study systematically evaluates their enhancing effects on lipase catalytic performance. Additionally, solvent engineering strategies, encompassing the introduction of organic solvents, supercritical fluids, ionic liquids, and deep eutectic solvents, are employed to intensify the enzymatic catalytic process. These approaches effectively improve mass transfer efficiency, activate enzyme molecules, and safeguard enzyme structural stability, thereby significantly elevating the synthesis efficiency and yield of isoamyl acetate. Consequently, this research provides solid scientific rationale and technical support for the industrial production of flavor ester compounds. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

16 pages, 6493 KiB  
Article
Degradation of Organic Matter in Sauce-Flavored Liquor Wastewater by Catalytic Oxidation Performance of Mn2Cu2Ox/Al2O3 Catalysts in Treatment and Mechanism Research
by Benfu Luo, Jie Yu, Weiwei Huang, Xuanyu Zhou, Jinyin Li, Yuhang Liu, Xi Yang, Xiang Zhou, Haiyan Ning, Yujing Yan and Haixing He
Molecules 2025, 30(6), 1242; https://doi.org/10.3390/molecules30061242 - 10 Mar 2025
Viewed by 636
Abstract
With the rapid growth of the sauce-flavored liquor industry, the treatment of wastewater has become an increasingly critical challenge. This study seeks to assess the catalytic oxidation efficacy of Mn2Cu2Ox/Al2O3 catalysts in the degradation [...] Read more.
With the rapid growth of the sauce-flavored liquor industry, the treatment of wastewater has become an increasingly critical challenge. This study seeks to assess the catalytic oxidation efficacy of Mn2Cu2Ox/Al2O3 catalysts in the degradation of organic pollutants present in sauce-flavored liquor wastewater, while also elucidating the mechanisms underpinning their performance. Mn2Cu2Ox/Al2O3 catalysts were synthesized, and their physicochemical properties were thoroughly characterized using advanced techniques such as Brunauer–Emmett–Teller (BET) analysis, N2 sorption isotherm analysis, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Moreover, the key active species involved in the catalytic oxidation process, including hydroxyl radicals (•OH) and superoxide anion radicals (•O2), were identified through hydroxyl radical quenching experiments employing tertiary butyl alcohol (TBA). The contribution of these free radicals to enhancing the ozone catalytic oxidation performance was also systematically evaluated. Based on both experimental data and theoretical analyses, the Mn2Cu2Ox/Al2O3 catalysts demonstrate remarkable catalytic activity and stability, significantly reducing chemical oxygen demand (COD) levels in wastewater. Furthermore, the catalysts are capable of activating oxygen molecules (O2) during the reaction, producing reactive oxygen species, such as •O2 and •OH, which are potent oxidizing agents that effectively decompose organic pollutants in wastewater. The proposed catalysts represent a highly promising solution for the treatment of sauce-flavored liquor wastewater and lays a solid foundation for its future industrial application. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

16 pages, 4985 KiB  
Article
Flavor, Lipid, and Transcriptomic Profiles of Chinese Wagyu Beef Cuts: Insights into Meat Quality Differences
by Tianliu Zhang, Tingting Wang, Yanhao Gao, Jiashun Sheng, Hossam E. Rushdi, Wentao Li, Yu Sun, Tong Fu, Feng Lin, Tengyun Gao and Shenhe Liu
Foods 2025, 14(5), 716; https://doi.org/10.3390/foods14050716 - 20 Feb 2025
Viewed by 753
Abstract
This study aimed to investigate the flavor formation and meat quality differences among different beef cuts in Chinese Wagyu cattle. The metabolites and gene expression profiles of chuck, neck, rump, tenderloin, and longissimus lumborum cuts were analyzed. The results revealed that a total [...] Read more.
This study aimed to investigate the flavor formation and meat quality differences among different beef cuts in Chinese Wagyu cattle. The metabolites and gene expression profiles of chuck, neck, rump, tenderloin, and longissimus lumborum cuts were analyzed. The results revealed that a total of 240 volatile organic compounds and 779 lipid molecules were detected among the beef cuts, with hydrocarbons (accounting for 29.71%) and triglycerides (representing 41.21%) emerging as the most prominent compounds, respectively. The sensory-directed analysis highlighted the significance of sweet and fruity aroma compounds, which contributed to the distinct aroma profiles among different beef cuts. Additionally, a total of 60 key lipid molecular markers, including FA(18:1), PC(40:5), TG(18:0_16:1_18:1), and TG(36:0_18:1), etc., were identified as playing crucial roles in the generation of essential lipid compounds across five different beef cuts. Integrative analysis of multi-omics data pinpointed a cluster of differentially expressed genes (e.g., DLD, ACADM, PCCA, SCD), which were involved in the regulation of valine, leucine, and isoleucine degradation pathways and lipid metabolism. Taken together, this study has identified key metabolites and candidate genes influencing meat quality across different beef cuts, providing a valuable resource for the molecular breeding of high-quality traits in beef cattle. Full article
(This article belongs to the Section Foodomics)
Show Figures

Graphical abstract

18 pages, 2383 KiB  
Article
Authentic Aroma and Compound-Specific Isotope Ratios (δ13C, δ2H) Profiles of Vanilla Pods (V. planifolia and V. tahitensis)
by Long Chen, Purna Kumar Khatri, Mauro Paolini, Tiziana Nardin, Alberto Roncone, Roberto Larcher, Luca Ziller and Luana Bontempo
Molecules 2025, 30(4), 825; https://doi.org/10.3390/molecules30040825 - 11 Feb 2025
Cited by 1 | Viewed by 1205
Abstract
Stable isotope ratio analysis of carbon (δ13C) and hydrogen (δ2H) in vanillin has become a valuable tool for differentiating natural vanilla from synthetic or biosynthetic alternatives and for tracing its geographical origins. However, increasingly sophisticated fraud techniques [...] Read more.
Stable isotope ratio analysis of carbon (δ13C) and hydrogen (δ2H) in vanillin has become a valuable tool for differentiating natural vanilla from synthetic or biosynthetic alternatives and for tracing its geographical origins. However, increasingly sophisticated fraud techniques necessitate ongoing refinement of analytical methods to ensure accurate detection. This study advanced the field by investigating minor volatile organic compounds as potential biomarkers for identifying botanical and geographical origins of vanilla products. Vanilla pods from the two main vanilla species, V. planifolia and V. tahitensis, were investigated using GC-MS/MS to analyze their aromatic profile and GC-C/Py-IRMS to determine compound-specific isotope ratios, providing, for the first time, detailed and authentic isotopic and aromatic profiles. Additionally, the potential natural presence of ethyl vanillin and its corresponding glucoside precursors—molecules commonly used as synthetic vanilla-scented fragrance agents in various foods and industrial products—was explored using UHPLC-HRMS. These findings contribute to robust methods for verifying vanilla authenticity, addressing flavor complexity and isotopic composition, and enhancing the detection of adulteration in vanilla-flavored products. Full article
Show Figures

Figure 1

20 pages, 1692 KiB  
Review
The Organic-Functionalized Silica Nanoparticles as Lipase Carriers for Biocatalytic Application: Future Perspective in Biodegradation
by Jelena Milovanović, Katarina Banjanac, Jasmina Nikolić, Jasmina Nikodinović-Runić and Nevena Ž. Prlainović
Catalysts 2025, 15(1), 54; https://doi.org/10.3390/catal15010054 - 9 Jan 2025
Cited by 3 | Viewed by 1655
Abstract
Over the past three decades, organic reactions catalyzed by lipase have been extensively studied. To overcome the drawbacks of free enzymes and develop new and sustainable biocatalysts, various insoluble forms of lipases were examined. Especially interesting are lipases immobilized on silica nanoparticles (SiNPs) [...] Read more.
Over the past three decades, organic reactions catalyzed by lipase have been extensively studied. To overcome the drawbacks of free enzymes and develop new and sustainable biocatalysts, various insoluble forms of lipases were examined. Especially interesting are lipases immobilized on silica nanoparticles (SiNPs) due to their promising unique and advantageous physicochemical properties. Therefore, the present paper presents an overview of different organic functionalization methods of SiNP surfaces to create a more favorable microenvironment for lipase molecules. Given the high commercial value of lipases in biotechnological applications, the second part of this paper highlights the key industrial sectors utilizing these nanobiocatalysts. This review discusses the key industrial applications of silica-based lipase nanobiocatalysts, including biodiesel production, flavor ester synthesis, and pharmaceutical applications such as racemization. Special attention is given to emerging technologies, particularly the use of immobilized lipases in polymer biodegradation and polymerization reactions. These advances have paved the way for innovative solutions, such as self-degrading bioplastics, which hold significant promise for sustainable materials and environmental protection. This comprehensive overview underscores the transformative potential of lipase–SiNP nanobiocatalysts in both industrial and environmental contexts. Full article
(This article belongs to the Special Issue Feature Review Papers in Biocatalysis and Enzyme Engineering)
Show Figures

Figure 1

14 pages, 3089 KiB  
Article
Characterization of Meat Metabolites and Lipids in Shanghai Local Pig Breeds Revealed by LC–MS-Based Method
by Jun Gao, Lingwei Sun, Weilong Tu, Mengqian Cao, Shushan Zhang, Jiehuan Xu, Mengqian He, Defu Zhang, Jianjun Dai, Xiao Wu and Caifeng Wu
Foods 2024, 13(15), 2327; https://doi.org/10.3390/foods13152327 - 24 Jul 2024
Cited by 5 | Viewed by 1822
Abstract
The meat of local livestock breeds often has unique qualities and flavors. In this study, three Shanghai native pig breeds (MSZ, SWT, and SHB) exhibited better meat quality traits than globalized commercial pig breeds (DLY). Subsequently, metabolomic and lipidomic differences in the longissimus [...] Read more.
The meat of local livestock breeds often has unique qualities and flavors. In this study, three Shanghai native pig breeds (MSZ, SWT, and SHB) exhibited better meat quality traits than globalized commercial pig breeds (DLY). Subsequently, metabolomic and lipidomic differences in the longissimus dorsi (L) and gluteus (T) muscles of the Shanghai native pig breeds and DLY pig breed were compared using liquid chromatography–mass spectrometry (LC–MS). The results demonstrated that the metabolites mainly consisted of (28.16%) lipids and lipid-like molecules, and (25.87%) organic acids and their derivatives were the two most dominant groups. Hundreds of differential expression metabolites were identified in every compared group, respectively. One-way ANOVA was applied to test the significance between multiple groups. Among the 20 most abundant differential metabolites, L-carnitine was significantly different in the muscles of the four pig breeds (p-value = 7.322 × 10−11). It was significantly higher in the L and T muscles of the two indigenous black pig breeds (MSZ and SWT) than in the DLY pigs (p-value < 0.001). Similarly, lipidomic analysis revealed the PA (18:0/18:2) was significantly more abundant in the muscle of these two black breeds than that in the DLY breed (p-value < 0.001). These specific metabolites and lipids might influence the meat quality and taste properties and lead to customer preferences. Therefore, this study provided insights into the characterization of meat metabolites and lipids in Shanghai native pig breeds. Full article
Show Figures

Figure 1

15 pages, 5712 KiB  
Article
Widely Targeted Metabolomic Analysis Revealed the Diversity in Milk from Goats, Sheep, Cows, and Buffaloes and Its Association with Flavor Profiles
by Fuhong Zhang, Yaling Wang, Baolong Liu, Ping Gong, Chenbo Shi, Lu Zhu, Jianqing Zhao, Weiwei Yao, Qingqing Liu and Jun Luo
Foods 2024, 13(9), 1365; https://doi.org/10.3390/foods13091365 - 28 Apr 2024
Cited by 4 | Viewed by 2408
Abstract
The milk flavor can be attributed to the presence of numerous flavor molecules and precursors. In this study, we employed widely targeted metabolomic analysis techniques to analyze the metabolic profiles of various milk samples obtained from goats, sheep, dairy cows, and buffaloes. A [...] Read more.
The milk flavor can be attributed to the presence of numerous flavor molecules and precursors. In this study, we employed widely targeted metabolomic analysis techniques to analyze the metabolic profiles of various milk samples obtained from goats, sheep, dairy cows, and buffaloes. A total of 631 metabolites were identified in the milk samples, which were further categorized into 16 distinct classes. Principal component analysis (PCA) suggested that the metabolite profiles of samples from the same species exhibit clustering, while separated patterns of metabolite profiles are observed across goat, sheep, cow, and buffalo species. The differential metabolites between the groups of each species were screened based on fold change and variable importance in projection (VIP) values. Five core differential metabolites were subsequently identified, including 3-(3-hydroxyphenyl)-3-hydroxypropanoic acid, inosine 5′-triphosphate, methylcysteine, N-cinnamylglycine, and small peptide (L-tyrosine–L-aspartate). Through multiple comparisons, we also screened biomarkers of each type of milk. Our metabolomic data showed significant inter-species differences in the composition and concentration of some compounds, such as organic acids, amino acids, sugars, nucleotides, and their derivatives, which may affect the overall flavor properties of the milk sample. These findings provided insights into the molecular basis underlying inter-species variations in milk flavor. Full article
(This article belongs to the Special Issue Metabolomics in Food)
Show Figures

Figure 1

24 pages, 1580 KiB  
Review
The Potential of Wood Vinegar to Replace Antimicrobials Used in Animal Husbandry—A Review
by Gil Sander Próspero Gama, Alexandre Santos Pimenta, Francisco Marlon Carneiro Feijó, Tatiane Kelly Barbosa de Azevedo, Rafael Rodolfo de Melo and Gabriel Siqueira de Andrade
Animals 2024, 14(3), 381; https://doi.org/10.3390/ani14030381 - 25 Jan 2024
Cited by 5 | Viewed by 5535
Abstract
The indiscriminate use of antimicrobials in animal husbandry can result in various types of environmental contamination. Part of the dose of these products is excreted, still active, in the animals’ feces and urine. These excreta are widely used as organic fertilizers, which results [...] Read more.
The indiscriminate use of antimicrobials in animal husbandry can result in various types of environmental contamination. Part of the dose of these products is excreted, still active, in the animals’ feces and urine. These excreta are widely used as organic fertilizers, which results in contamination with antimicrobial molecules. The impacts can occur in several compartments, such as soil, groundwater, and surface watercourses. Also, contamination by antimicrobials fed or administrated to pigs, chickens, and cattle can reach the meat, milk, and other animal products, which calls into question the sustainability of using these products as part of eco-friendly practices. Therefore, a search for alternative natural products is required to replace the conventional antimicrobials currently used in animal husbandry, aiming to mitigate environmental contamination. We thus carried out a review addressing this issue, highlighting wood vinegar (WV), also known as pyroligneous acid, as an alternative antimicrobial with good potential to replace conventional products. In this regard, many studies have demonstrated that WV is a promising product. WV is a nontoxic additive widely employed in the food industry to impart a smoked flavor to foods. Studies have shown that, depending on the WV concentration, good results can be achieved using it as an antimicrobial against pathogenic bacteria and fungi and a valuable growth promoter for poultry and pigs. Full article
(This article belongs to the Special Issue Antimicrobial Use and Resistance in Livestock and Food Animals)
Show Figures

Figure 1

30 pages, 5989 KiB  
Article
Genome-Wide Identification and Expression Analysis of Catalase Gene Families in Triticeae
by Mouna Ghorbel, Ikram Zribi, Najla Haddaji, Arif Jamal Siddiqui, Nouha Bouali and Faiçal Brini
Plants 2024, 13(1), 11; https://doi.org/10.3390/plants13010011 - 19 Dec 2023
Cited by 3 | Viewed by 2226
Abstract
Aerobic metabolism in plants results in the production of hydrogen peroxide (H2O2), a significant and comparatively stable non-radical reactive oxygen species (ROS). H2O2 is a signaling molecule that regulates particular physiological and biological processes (the cell [...] Read more.
Aerobic metabolism in plants results in the production of hydrogen peroxide (H2O2), a significant and comparatively stable non-radical reactive oxygen species (ROS). H2O2 is a signaling molecule that regulates particular physiological and biological processes (the cell cycle, photosynthesis, plant growth and development, and plant responses to environmental challenges) at low concentrations. Plants may experience oxidative stress and ultimately die from cell death if excess H2O2 builds up. Triticum dicoccoides, Triticum urartu, and Triticum spelta are different ancient wheat species that present different interesting characteristics, and their importance is becoming more and more clear. In fact, due to their interesting nutritive health, flavor, and nutritional values, as well as their resistance to different parasites, the cultivation of these species is increasingly important. Thus, it is important to understand the mechanisms of plant tolerance to different biotic and abiotic stresses by studying different stress-induced gene families such as catalases (CAT), which are important H2O2-metabolizing enzymes found in plants. Here, we identified seven CAT-encoding genes (TdCATs) in Triticum dicoccoides, four genes in Triticum urartu (TuCATs), and eight genes in Triticum spelta (TsCATs). The accuracy of the newly identified wheat CAT gene members in different wheat genomes is confirmed by the gene structures, phylogenetic relationships, protein domains, and subcellular location analyses discussed in this article. In fact, our analysis showed that the identified genes harbor the following two conserved domains: a catalase domain (pfam00199) and a catalase-related domain (pfam06628). Phylogenetic analyses showed that the identified wheat CAT proteins were present in an analogous form in durum wheat and bread wheat. Moreover, the identified CAT proteins were located essentially in the peroxisome, as revealed by in silico analyses. Interestingly, analyses of CAT promoters in those species revealed the presence of different cis elements related to plant development, maturation, and plant responses to different environmental stresses. According to RT-qPCR, Triticum CAT genes showed distinctive expression designs in the studied organs and in response to different treatments (salt, heat, cold, mannitol, and ABA). This study completed a thorough analysis of the CAT genes in Triticeae, which advances our knowledge of CAT genes and establishes a framework for further functional analyses of the wheat gene family. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Resources and Omics)
Show Figures

Figure 1

16 pages, 1637 KiB  
Article
Phenolic Content, Amino Acids, Volatile Compounds, Antioxidant Capacity, and Their Relationship in Wild Garlic (A. ursinum L.)
by Tvrtko Karlo Kovačević, Nikola Major, Marta Sivec, Dijana Horvat, Marina Krpan, Mirjana Hruškar, Dean Ban, Nina Išić and Smiljana Goreta Ban
Foods 2023, 12(11), 2110; https://doi.org/10.3390/foods12112110 - 24 May 2023
Cited by 10 | Viewed by 2829
Abstract
Allium ursinum L. is a wild relative of garlic, and it is abundant in many antioxidant compounds. Sulfur compounds, primarily cysteine sulfoxides (CSOs), are converted through several reactions into various volatile molecules, which are considered the principal flavor compounds of Alliums. In addition [...] Read more.
Allium ursinum L. is a wild relative of garlic, and it is abundant in many antioxidant compounds. Sulfur compounds, primarily cysteine sulfoxides (CSOs), are converted through several reactions into various volatile molecules, which are considered the principal flavor compounds of Alliums. In addition to secondary metabolites, wild garlic is abundant in primary compounds, such as amino acids, which serve not only as building blocks for the health-promoting sulfur compounds but also as antioxidants. The aim of this study was to investigate the link between individual amino acid contents, the total phenolic content, and the profile of volatile compounds as well as their influence on the antioxidant capacity of both the leaves and bulbs of wild garlic populations in Croatia. Both univariate and multivariate methods were used to study the differences in the phytochemical compositions among the wild garlic plant organs and the link between individual compounds and antioxidant capacity. Both the plant organ and location, as well as their interaction, have a significant impact on the content of total phenolic content, amino acids, volatile organic compounds, and the antioxidant capacity of wild garlic. Full article
(This article belongs to the Special Issue Volatiles in Foods—Its Importance on Consumer Acceptance Volume II)
Show Figures

Figure 1

17 pages, 1069 KiB  
Review
A Comprehensive Review on Pharmacological Activities of Pachypodol: A Bioactive Compound of an Aromatic Medicinal Plant Pogostemon Cablin Benth
by Sehrish Fatima, Iqra Farzeen, Asma Ashraf, Bilal Aslam, Muhammad Umar Ijaz, Sumreen Hayat, Muhammad Hassan Sarfraz, Saima Zafar, Nimrah Zafar, Jeremiah Oshiomame Unuofin, Sogolo Lucky Lebelo and Saima Muzammil
Molecules 2023, 28(8), 3469; https://doi.org/10.3390/molecules28083469 - 14 Apr 2023
Cited by 25 | Viewed by 5019
Abstract
As is well known, plant products have been increasingly utilized in the pharmaceutical industry in recent years. By combining conventional techniques and modern methodology, the future of phytomedicines appears promising. Pogostemon Cablin (patchouli) is an important herb used frequently in the fragrance industries [...] Read more.
As is well known, plant products have been increasingly utilized in the pharmaceutical industry in recent years. By combining conventional techniques and modern methodology, the future of phytomedicines appears promising. Pogostemon Cablin (patchouli) is an important herb used frequently in the fragrance industries and has various therapeutic benefits. Traditional medicine has long used the essential oil of patchouli (P. cablin) as a flavoring agent recognized by the FDA. This is a gold mine for battling pathogens in China and India. In recent years, this plant has seen a significant surge in use, and approximately 90% of the world’s patchouli oil is produced by Indonesia. In traditional therapies, it is used for the treatment of colds, fever, vomiting, headaches, and stomachaches. Patchouli oil is used in curing many diseases and in aromatherapy to treat depression and stress, soothe nerves, regulate appetite, and enhance sexual attraction. More than 140 substances, including alcohols, terpenoids, flavonoids, organic acids, phytosterols, lignins, aldehydes, alkaloids, and glycosides, have been identified in P. cablin. Pachypodol (C18H16O7) is an important bioactive compound found in P. cablin. Pachypodol (C18H16O7) and many other biologically essential chemicals have been separated from the leaves of P. cablin and many other medicinally significant plants using repeated column chromatography on silica gel. Pachypodol’s bioactive potential has been shown by a variety of assays and methodologies. It has been found to have a number of biological activities, including anti-inflammatory, antioxidant, anti-mutagenic, antimicrobial, antidepressant, anticancer, antiemetic, antiviral, and cytotoxic ones. The current study, which is based on the currently available scientific literature, intends to close the knowledge gap regarding the pharmacological effects of patchouli essential oil and pachypodol, a key bioactive molecule found in this plant. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

15 pages, 3742 KiB  
Article
Lipoxygenase (LOX) in Sweet and Hot Pepper (Capsicum annuum L.) Fruits during Ripening and under an Enriched Nitric Oxide (NO) Gas Atmosphere
by Salvador González-Gordo, Amanda Cañas, María A. Muñoz-Vargas, José M. Palma and Francisco J. Corpas
Int. J. Mol. Sci. 2022, 23(23), 15211; https://doi.org/10.3390/ijms232315211 - 2 Dec 2022
Cited by 13 | Viewed by 2505
Abstract
Lipoxygenases (LOXs) catalyze the insertion of molecular oxygen into polyunsaturated fatty acids (PUFA) such as linoleic and linolenic acids, being the first step in the biosynthesis of a large group of biologically active fatty acid (FA)-derived metabolites collectively named oxylipins. LOXs are involved [...] Read more.
Lipoxygenases (LOXs) catalyze the insertion of molecular oxygen into polyunsaturated fatty acids (PUFA) such as linoleic and linolenic acids, being the first step in the biosynthesis of a large group of biologically active fatty acid (FA)-derived metabolites collectively named oxylipins. LOXs are involved in multiple functions such as the biosynthesis of jasmonic acid (JA) and volatile molecules related to the aroma and flavor production of plant tissues, among others. Using sweet pepper (Capsicum annuum L.) plants as a model, LOX activity was assayed by non-denaturing polyacrylamide gel electrophoresis (PAGE) and specific in-gel activity staining. Thus, we identified a total of seven LOX isozymes (I to VII) distributed among the main plant organs (roots, stems, leaves, and fruits). Furthermore, we studied the FA profile and the LOX isozyme pattern in pepper fruits including a sweet variety (Melchor) and three autochthonous Spanish varieties that have different pungency levels (Piquillo, Padrón, and Alegría riojana). It was observed that the number of LOX isozymes increased as the capsaicin content increased in the fruits. On the other hand, a total of eight CaLOX genes were identified in sweet pepper fruits, and their expression was differentially regulated during ripening and by the treatment with nitric oxide (NO) gas. Finally, a deeper analysis of the LOX IV isoenzyme activity in the presence of nitrosocysteine (CysNO, a NO donor) suggests a regulatory mechanism via S-nitrosation. In summary, our data indicate that the different LOX isozymes are differentially regulated by the capsaicin content, fruit ripening, and NO. Full article
(This article belongs to the Special Issue Nitrogen with Plant Growth and Development)
Show Figures

Figure 1

17 pages, 1341 KiB  
Review
The Role and Significance of Bacillus and Lactobacillus Species in Thai Fermented Foods
by Bhagavathi Sundaram Sivamaruthi, Karthikeyan Alagarsamy, Natarajan Suganthy, Subramanian Thangaleela, Periyanaina Kesika and Chaiyavat Chaiyasut
Fermentation 2022, 8(11), 635; https://doi.org/10.3390/fermentation8110635 - 12 Nov 2022
Cited by 11 | Viewed by 6970
Abstract
Fermented foods (FFs) are prepared through controlled or spontaneous microbial growth, promoting the conversion of complex food components by microbial enzymatic action. FFs are common in the cuisine of Southeast Asian countries. Furthermore, FFs have recently become popular worldwide, due to their proposed [...] Read more.
Fermented foods (FFs) are prepared through controlled or spontaneous microbial growth, promoting the conversion of complex food components by microbial enzymatic action. FFs are common in the cuisine of Southeast Asian countries. Furthermore, FFs have recently become popular worldwide, due to their proposed and proven beneficial health effects. The microbes present in FFs affect the quality, taste, and flavor of the food. Thailand is famous for its versatile range of foods, especially FFs. Fermented beans, fish, meat, sausages, vegetables, and fruits are commonly consumed in Thailand. Thai fermented foods (TFFs) are a key source of bioactive micro-organisms and molecules, and several studies have detailed the isolation, identification, and characterization of potent microbial strains from TFFs; however, a detailed literature review of Bacillus and Lactobacillus species in TFFs is not available. Therefore, in this review, we summarize the available information on representative TFFs, as well as Bacillus and Lactobacillus species in TFFs and their bioactive properties. Full article
(This article belongs to the Special Issue Bacillus Species and Enzymes)
Show Figures

Figure 1

19 pages, 2203 KiB  
Review
Anti-Inflammatory and Active Biological Properties of the Plant-Derived Bioactive Compounds Luteolin and Luteolin 7-Glucoside
by Sabrina Caporali, Alessandro De Stefano, Cinzia Calabrese, Alfredo Giovannelli, Massimo Pieri, Isabella Savini, Manfredi Tesauro, Sergio Bernardini, Marilena Minieri and Alessandro Terrinoni
Nutrients 2022, 14(6), 1155; https://doi.org/10.3390/nu14061155 - 9 Mar 2022
Cited by 155 | Viewed by 16834
Abstract
Flavonoids are interesting molecules synthetized by plants. They can be found abundantly in seeds and fruits, determining the color, flavor, and other organoleptic characteristics, as well as contributing to important nutritional aspects. Beyond these characteristics, due to their biochemical properties and characteristics, they [...] Read more.
Flavonoids are interesting molecules synthetized by plants. They can be found abundantly in seeds and fruits, determining the color, flavor, and other organoleptic characteristics, as well as contributing to important nutritional aspects. Beyond these characteristics, due to their biochemical properties and characteristics, they can be considered bioactive compounds. Several interesting studies have demonstrated their biological activity in different cellular and physiological processes in high-order organisms including humans. The flavonoid molecular structure confers the capability of reacting with and neutralizing reactive oxygen species (ROS), behaving as scavengers in all processes generating this class of molecules, such as UV irradiation, a process widely present in plant physiology. Importantly, the recent scientific literature has demonstrated that flavonoids, in human physiology, are active compounds acting not only as scavengers but also with the important role of counteracting the inflammation process. Among the wide variety of flavonoid molecules, significant results have been shown by investigating the role of the flavones luteolin and luteolin-7-O-glucoside (LUT-7G). For these compounds, experimental results demonstrated an interesting anti-inflammatory action, both in vitro and in vivo, in the interaction with JAK/STAT3, NF-κB, and other pathways described in this review. We also describe the effects in metabolic pathways connected with inflammation, such as cellular glycolysis, diabetes, lipid peroxidation, and effects in cancer cells. Moreover, the inhibition of inflammatory pathway in endothelial tissue, as well as the NLRP3 inflammasome assembly, demonstrates a key role in the progression of such phenomena. Since these micronutrient molecules can be obtained from food, their biochemical properties open new perspectives with respect to the long-term health status of healthy individuals, as well as their use as a coadjutant treatment in specific diseases. Full article
Show Figures

Figure 1

13 pages, 3878 KiB  
Perspective
Horizons in Asymmetric Organocatalysis: En Route to the Sustainability and New Applications
by Sandra Ardevines, Eugenia Marqués-López and Raquel P. Herrera
Catalysts 2022, 12(1), 101; https://doi.org/10.3390/catal12010101 - 16 Jan 2022
Cited by 16 | Viewed by 5076
Abstract
Nowadays, the development of new enantioselective processes is highly relevant in chemistry due to the relevance of chiral compounds in biomedicine (mainly drugs) and in other fields, such as agrochemistry, animal feed, and flavorings. Among them, organocatalytic methods have become an efficient and [...] Read more.
Nowadays, the development of new enantioselective processes is highly relevant in chemistry due to the relevance of chiral compounds in biomedicine (mainly drugs) and in other fields, such as agrochemistry, animal feed, and flavorings. Among them, organocatalytic methods have become an efficient and sustainable alternative since List and MacMillan pioneering contributions were published in 2000. These works established the term asymmetric organocatalysis to label this area of research, which has grown exponentially over the last two decades. Since then, the scientific community has attended to the discovery of a plethora of organic reactions and transformations carried out with excellent results in terms of both reactivity and enantioselectivity. Looking back to earlier times, we can find in the literature a few examples where small organic molecules and some natural products could act as effective catalysts. However, with the birth of this type of catalysis, new chemical architectures based on amines, thioureas, squaramides, cinchona alkaloids, quaternary ammonium salts, carbenes, guanidines and phosphoric acids, among many others, have been developed. These organocatalysts have provided a broad range of activation modes that allow privileged interactions between catalysts and substrates for the preparation of compounds with high added value in an enantioselective way. Here, we briefly cover the history of this chemistry, from our point of view, including our beginnings, how the field has evolved during these years of research, and the road ahead. Full article
(This article belongs to the Special Issue Organocatalysis: Advances, Opportunity, and Challenges)
Show Figures

Figure 1

Back to TopTop