Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = flashing blue light

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 90701 KiB  
Article
New Insights into Earthquake Light: Rayleigh Scattering as the Source of Blue Hue and a Novel Co-Seismic Cloud Phenomenon
by Neil Evan Whitehead and Ulku Ulusoy
Atmosphere 2025, 16(3), 277; https://doi.org/10.3390/atmos16030277 - 26 Feb 2025
Viewed by 1096
Abstract
The New Zealand Kaikoura Earthquake (Mw 7.8, 14 November 2016) produced co-seismic flashes of earthquake light near the ground at midnight, 230 km north of the epicentre. Mostly, there was a white hemisphere in the atmosphere just above the ground, up to [...] Read more.
The New Zealand Kaikoura Earthquake (Mw 7.8, 14 November 2016) produced co-seismic flashes of earthquake light near the ground at midnight, 230 km north of the epicentre. Mostly, there was a white hemisphere in the atmosphere just above the ground, up to 250 m radius, the colour becoming radially increasingly dark blue. Fifteen videos were available for analysis which led to the following new or reaffirmed conclusions: (i) the blue colour is due to Rayleigh Scattering (new explanation); (ii) the light also sometimes occurs within low clouds but not as lightning—this is a new classification of earthquake light; (iii) the lithology may be greywacke, broadening previous literature emphasis on igneous sources; (iv) the light is most probably explained in our study area by seismically pressured microscopic quartz producing electric fields emerging into the atmosphere and reacting with it—mechanisms relying on particle-grinding or creation of cracks in rock are unlikely in the study area; (v) within the Wellington study area, the light is mostly independent of faults or their movement and is caused by seismic impulses which have travelled hundreds of kilometres from the epicentre—this possible independence from faults has not been clearly emphasised previously; and (vi) electrical grid problems are not the explanation. Full article
Show Figures

Figure 1

21 pages, 9279 KiB  
Article
Performance Comparison of Various Tunnel Lighting Scenarios on Driver Lane-Changing Behaviours in a Driving Simulator
by Omer Faruk Ozturk, Yusuf Mazlum, Metin Mutlu Aydin, Emine Coruh and Halim Ferit Bayata
Appl. Sci. 2024, 14(23), 11319; https://doi.org/10.3390/app142311319 - 4 Dec 2024
Cited by 1 | Viewed by 1793
Abstract
Recent advances in tunnel infrastructure have emphasized safety, operational efficiency and low operating costs. Modern tunnels are equipped with systems to improve both safety and operational performance. This study investigates the effect of tunnel lighting and vehicle breakdown scenarios on driver lane changing [...] Read more.
Recent advances in tunnel infrastructure have emphasized safety, operational efficiency and low operating costs. Modern tunnels are equipped with systems to improve both safety and operational performance. This study investigates the effect of tunnel lighting and vehicle breakdown scenarios on driver lane changing behaviour (LCB) using a driving simulator modelled on the third longest twin-tube tunnel. Data were collected from 125 drivers considering various driver characteristics with different lighting conditions and the presence of a stopped vehicle in a lane. The results show that drivers tend to slow down and change lanes more safely in response to red and flashing lights. In contrast, blue sky lights, which are designed to reduce stress and compare with other dangerous scenarios, had no significant effect on LCB. In addition, demographic factors such as gender and previous simulator experience played a role in influencing LCB tendencies. Female drivers and those familiar with simulators showed more cautious behaviour. The findings showed valuable insights into how tunnel lighting systems can improve safety. Results highlighted the potential for dynamic lighting and targeted driver training programs to improve tunnel safety. All these findings may contribute to ongoing efforts to improve traffic management and reduce accidents in tunnel environments. Full article
(This article belongs to the Special Issue Traffic Safety Measures and Assessment)
Show Figures

Figure 1

11 pages, 2285 KiB  
Article
Ultrasound Flow Imaging Study on Rat Brain with Ultrasound and Light Stimulations
by Junhang Zhang, Chen Gong, Zihan Yang, Fan Wei, Xin Sun, Jie Ji, Yushun Zeng, Chi-feng Chang, Xunan Liu, Deepthi S. Rajendran Nair, Biju B. Thomas and Qifa Zhou
Bioengineering 2024, 11(2), 174; https://doi.org/10.3390/bioengineering11020174 - 10 Feb 2024
Cited by 1 | Viewed by 2975
Abstract
Functional ultrasound (fUS) flow imaging provides a non-invasive method for the in vivo study of cerebral blood flow and neural activity. This study used functional flow imaging to investigate rat brain’s response to ultrasound and colored-light stimuli. Male Long-Evan rats were exposed to [...] Read more.
Functional ultrasound (fUS) flow imaging provides a non-invasive method for the in vivo study of cerebral blood flow and neural activity. This study used functional flow imaging to investigate rat brain’s response to ultrasound and colored-light stimuli. Male Long-Evan rats were exposed to direct full-field strobe flashes light and ultrasound stimulation to their retinas, while brain activity was measured using high-frequency ultrasound imaging. Our study found that light stimuli, particularly blue light, elicited strong responses in the visual cortex and lateral geniculate nucleus (LGN), as evidenced by changes in cerebral blood volume (CBV). In contrast, ultrasound stimulation elicited responses undetectable with fUS flow imaging, although these were observable when directly measuring the brain’s electrical signals. These findings suggest that fUS flow imaging can effectively differentiate neural responses to visual stimuli, with potential applications in understanding visual processing and developing new diagnostic tools. Full article
(This article belongs to the Special Issue Biomedical Imaging and Analysis of the Eye: Second Edition)
Show Figures

Figure 1

17 pages, 3922 KiB  
Communication
5-Chlorocoumaranone-Conjugates as Chemiluminescent Protecting Groups (CLPG) and Precursors to Fluorescent Protecting Groups (FPG)
by Tim Lippold, Axel G. Griesbeck, Robert Herzhoff, Mathias S. Wickleder, Laura Straub and Niko T. Flosbach
Photochem 2023, 3(3), 373-389; https://doi.org/10.3390/photochem3030023 - 7 Sep 2023
Cited by 2 | Viewed by 2060
Abstract
The introduction and cleavage of protecting groups and the subsequent release of protected molecules is an important tool in synthetic organic chemistry. When polyfunctionalized substrates are involved, the reactivity of similar functional groups must be differentiated and selectively switched on and off. A [...] Read more.
The introduction and cleavage of protecting groups and the subsequent release of protected molecules is an important tool in synthetic organic chemistry. When polyfunctionalized substrates are involved, the reactivity of similar functional groups must be differentiated and selectively switched on and off. A very useful switching agent is visible or UV-light in photoremovable protecting groups (PRPG), allowing the PG release upon interaction with electromagnetic radiation. The reverse principle is the release of a protected molecule, which is accompanied by emission of light, i.e., chemiluminescent protecting groups (CLPG). This principle is proposed and investigated for phenylalanine (using ureido carboxylic acid 2 and its methyl ester derivative 3) and the carbamate derivatives of paracetamol 4 and L-menthol 7, protected as the corresponding urea-/carbamate-coumaranones 5A, 5E, 6 and 8, respectively. While the carbamate derivative 6 released the protected substrate with a short and strong emission of blue light when treated with a base under atmospheric oxygen, 8 had to be treated additionally with potassium hydroxide in boiling ethanol to completely cleave the PG. Both urea-coumaranone derivatives 5A/5E had a flash-like CL without release of the protected amino acid and, thus, were converted into a fluorescent protecting group (FPG). Full article
Show Figures

Figure 1

22 pages, 1371 KiB  
Article
Observational Implications of OJ 287’s Predicted 2022 Disk Impact in the Black Hole Binary Model
by Mauri J. Valtonen, Lankeswar Dey, Achamveedu Gopakumar, Staszek Zola, Anne Lähteenmäki, Merja Tornikoski, Alok C. Gupta, Tapio Pursimo, Emil Knudstrup, Jose L. Gomez, Rene Hudec, Martin Jelínek, Jan Štrobl, Andrei V. Berdyugin, Stefano Ciprini, Daniel E. Reichart, Vladimir V. Kouprianov, Katsura Matsumoto, Marek Drozdz, Markus Mugrauer, Alberto Sadun, Michal Zejmo, Aimo Sillanpää, Harry J. Lehto, Kari Nilsson, Ryo Imazawa and Makoto Uemuraadd Show full author list remove Hide full author list
Galaxies 2023, 11(4), 82; https://doi.org/10.3390/galaxies11040082 - 3 Jul 2023
Cited by 7 | Viewed by 1883
Abstract
We present a summary of the results of the OJ 287 observational campaign, which was carried out during the 2021/2022 observational season. This season is special in the binary model because the major axis of the precessing binary happens to lie almost exactly [...] Read more.
We present a summary of the results of the OJ 287 observational campaign, which was carried out during the 2021/2022 observational season. This season is special in the binary model because the major axis of the precessing binary happens to lie almost exactly in the plane of the accretion disc of the primary. This leads to pairs of almost identical impacts between the secondary black hole and the accretion disk in 2005 and 2022. In 2005, a special flare called “blue flash” was observed 35 days after the disk impact, which should have also been verifiable in 2022. We did observe a similar flash and were able to obtain more details of its properties. We describe this in the framework of expanding cloud models. In addition, we were able to identify the flare arising exactly at the time of the disc crossing from its photo-polarimetric and gamma-ray properties. This is an important identification, as it directly confirms the orbit model. Moreover, we saw a huge flare that lasted only one day. We may understand this as the lighting up of the jet of the secondary black hole when its Roche lobe is suddenly flooded by the gas from the primary disk. Therefore, this may be the first time we directly observed the secondary black hole in the OJ 287 binary system. Full article
(This article belongs to the Special Issue Distant Glowing Objects: Quest for Quasars)
Show Figures

Figure 1

13 pages, 3326 KiB  
Article
Thin Luminous Tracks of Particles Released from Electrodes with A Small Radius of Curvature in Pulsed Nanosecond Discharges in Air and Argon
by Victor F. Tarasenko, Dmitry V. Beloplotov, Alexei N. Panchenko and Dmitry A. Sorokin
Surfaces 2023, 6(2), 214-226; https://doi.org/10.3390/surfaces6020014 - 14 Jun 2023
Cited by 6 | Viewed by 2151
Abstract
Features of the nanosecond discharge development in a non-uniform electric field are studied experimentally. High spatial resolution imaging showed that thin luminous tracks of great length with a cross-section of a few microns are observed against the background of discharge glow in air [...] Read more.
Features of the nanosecond discharge development in a non-uniform electric field are studied experimentally. High spatial resolution imaging showed that thin luminous tracks of great length with a cross-section of a few microns are observed against the background of discharge glow in air and argon. It has been established that the detected tracks are adjacent to brightly luminous white spots on the electrodes or in the vicinity of these spots, and are associated with the flight of small particles. It is shown that the tracks have various shapes and change from pulse to pulse. The particle tracks may look like curvy or straight lines. In some photos, they can change their direction of movement to the opposite. It was found that the particle’s track abruptly breaks and a bright flash is visible at the break point. The color of the tracks differs from that of the spark leaders, while the bands of the second positive nitrogen system dominate in the plasma emission spectra during the existence of a diffuse discharge. Areas of blue light are visible near the electrodes as well. The development of glow and thin luminous tracks in the gap during its breakdown is revealed using an ICCD camera. Physical reasons for the observed phenomena are discussed. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Figure 1

16 pages, 1771 KiB  
Article
Mass Cultivation of Microalgae: II. A Large Species Pulsing Blue Light Concept
by Hans Chr. Eilertsen, Jo Strømholt, John-Steinar Bergum, Gunilla Kristina Eriksen and Richard Ingebrigtsen
BioTech 2023, 12(2), 40; https://doi.org/10.3390/biotech12020040 - 17 May 2023
Cited by 6 | Viewed by 3515
Abstract
If mass cultivation of photoautotrophic microalgae is to gain momentum and find its place in the new “green future”, exceptional optimizations to reduce production costs must be implemented. Issues related to illumination should therefore constitute the main focus, since it is the availability [...] Read more.
If mass cultivation of photoautotrophic microalgae is to gain momentum and find its place in the new “green future”, exceptional optimizations to reduce production costs must be implemented. Issues related to illumination should therefore constitute the main focus, since it is the availability of photons in time and space that drives synthesis of biomass. Further, artificial illumination (e.g., LEDs) is needed to transport enough photons into dense algae cultures contained in large photobioreactors. In the present research project, we employed short-term O2 production and 7-day batch cultivation experiments to evaluate the potential to reduce illumination light energy by applying blue flashing light to cultures of large and small diatoms. Our results show that large diatom cells allow more light penetration for growth compared to smaller cells. PAR (400–700 nm) scans yielded twice as much biovolume-specific absorbance for small biovolume (avg. 7070 μm3) than for large biovolume (avg. 18,703 μm3) cells. The dry weight (DW) to biovolume ratio was 17% lower for large than small cells, resulting in a DW specific absorbance that was 1.75 times higher for small cells compared to large cells. Blue 100 Hz square flashing light yielded the same biovolume production as blue linear light in both the O2 production and batch experiments at the same maximum light intensities. We therefore suggest that, in the future, more focus should be placed on researching optical issues in photobioreactors, and that cell size and flashing blue light should be central in this. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

19 pages, 1726 KiB  
Review
Neuropsychological and Neurophysiological Mechanisms behind Flickering Light Stimulus Processing
by Natalia D. Mankowska, Malgorzata Grzywinska, Pawel J. Winklewski and Anna B. Marcinkowska
Biology 2022, 11(12), 1720; https://doi.org/10.3390/biology11121720 - 28 Nov 2022
Cited by 10 | Viewed by 6764
Abstract
The aim of this review is to summarise current knowledge about flickering light and the underlying processes that occur during its processing in the brain. Despite the growing interest in the topic of flickering light, its clinical applications are still not well understood. [...] Read more.
The aim of this review is to summarise current knowledge about flickering light and the underlying processes that occur during its processing in the brain. Despite the growing interest in the topic of flickering light, its clinical applications are still not well understood. Studies using EEG indicate an appearing synchronisation of brain wave frequencies with the frequency of flickering light, and hopefully, it could be used in memory therapy, among other applications. Some researchers have focused on using the flicker test as an indicator of arousal, which may be useful in clinical studies if the background for such a relationship is described. Since flicker testing has a risk of inducing epileptic seizures, however, every effort must be made to avoid high-risk combinations, which include, for example, red-blue light flashing at 15 Hz. Future research should focus on the usage of neuroimaging methods to describe the specific neuropsychological and neurophysiological processes occurring in the brain during the processing of flickering light so that its clinical utility can be preliminarily determined and randomised clinical trials can be initiated to test existing reports. Full article
(This article belongs to the Special Issue Neurobiology and Biophysics of Sensory Systems)
Show Figures

Figure 1

18 pages, 5821 KiB  
Article
Magnetoreceptory Function of European Robin Retina: Electrophysiological and Morphological Non-Homogeneity
by Alexander Yu. Rotov, Arsenii A. Goriachenkov, Roman V. Cherbunin, Michael L. Firsov, Nikita Chernetsov and Luba A. Astakhova
Cells 2022, 11(19), 3056; https://doi.org/10.3390/cells11193056 - 29 Sep 2022
Cited by 7 | Viewed by 2846
Abstract
The avian magnetic compass allows orientation during migration and is shown to function properly under short-wavelength but not long-wavelength visible light. Therefore, the magnetoreceptive system is assumed to be light- and wavelength-dependent and localized in the retina of the eye. Putative candidates for [...] Read more.
The avian magnetic compass allows orientation during migration and is shown to function properly under short-wavelength but not long-wavelength visible light. Therefore, the magnetoreceptive system is assumed to be light- and wavelength-dependent and localized in the retina of the eye. Putative candidates for the role of primary magnetosensory molecules are the cryptochromes that are known to be expressed in the avian retina and must be able to interact with phototransduction proteins. Previously, we reported that in migratory birds change in magnetic field direction induces significant effects on electroretinogram amplitude in response to blue flashes, and such an effect was observed only in the nasal quadrant of the retina. Here, we report new electroretinographic, microscopic and microspectrophotometric data on European robins, confirming the magnetosensitivity of the retinal nasal quadrant after applying the background illumination. We hypothesized that magnetoreceptive distinction of this region may be related to its morphology and analyzed the retinal distribution and optical properties of oil droplets, the filtering structures within cones. We found that the nasal quadrant contains double cones with the most intensely colorized oil droplets compared to the rest of the retina, which may be related to its magnetosensory function. Full article
(This article belongs to the Collection Magnetic Fields and Cells)
Show Figures

Figure 1

22 pages, 2304 KiB  
Article
Benefits and Risks of the Technological Creep of LED Light Technologies Applied to the Purse Seine Fishery
by Pasquale Ricci, Nicola Trivellin, Daniela Cascione, Giulia Cipriano, Viviana Teresa Orlandi and Roberto Carlucci
Biology 2022, 11(1), 48; https://doi.org/10.3390/biology11010048 - 29 Dec 2021
Cited by 6 | Viewed by 3237
Abstract
This study is a first attempt to investigate the catch efficiency of LED light technology compared to the traditional incandescent lamp that is used in the purse seine fishery (PS) in the Central Adriatic Sea (Mediterranean Sea). Catches per unit effort were adopted [...] Read more.
This study is a first attempt to investigate the catch efficiency of LED light technology compared to the traditional incandescent lamp that is used in the purse seine fishery (PS) in the Central Adriatic Sea (Mediterranean Sea). Catches per unit effort were adopted to assess the performance of lighting systems, considering the electrical energy and the fuel consumption as effort units. Concerning the catch efficiency, the white LED, which emits the same light spectra as the incandescent lamp, increased the yield by over 2 times per consumption unit of energy and fuel. The yield efficiency increased up to approximately 6 and 9 times when adopting the pulsing white or blue LED, respectively. These increases were due to the energy savings resulting from the flashing of the white LED or by the greater water penetration of the blue LED. No significant difference in target species sizes was detected between the use of LEDs and the incandescent lamp. The results obtained from estimates of the hourly fuel consumption and CO2 emissions stress potential benefits in the reduction of the carbon footprint due to the use of LEDs within the PS fishery. Positive economic impacts were derived from the LED technology on the PS fishery, with the fuel cost-saving percentages all being higher than 60%. The LED technology clearly shows potential benefits at the economic level for the fishermen, and the possibility of mitigating indirect negative effects on the environment due to fuel combustion and greenhouse gas emissions. On the other hand, the application of new technology that improves the catch efficiency of fishing gears should be carefully considered. The lack of regulations controlling technological advancement could cause unwanted long-term effects. Full article
(This article belongs to the Special Issue Conservation of Marine Ecosystems: Selected Papers from MetroSea 2021)
Show Figures

Figure 1

15 pages, 4498 KiB  
Article
Effect of Rare-Earth Ions on the Optical and PL Properties of Novel Borosilicate Glass Developed from Agricultural Waste
by Aiyeshah Alhodaib, Omnia Ibrahim, Suzy Abd El All and Fatthy Ezzeldin
Materials 2021, 14(19), 5607; https://doi.org/10.3390/ma14195607 - 27 Sep 2021
Cited by 8 | Viewed by 2315
Abstract
There is considerable attention devoted to the use of agricultural waste as a raw material substitute for commercial silica in the development of borosilicate glasses doped with rare earth oxides. Here, we present a novel structure for borosilicate glasses made from rice husk [...] Read more.
There is considerable attention devoted to the use of agricultural waste as a raw material substitute for commercial silica in the development of borosilicate glasses doped with rare earth oxides. Here, we present a novel structure for borosilicate glasses made from rice husk ash with a 25% molar ratio of extracted SiO2 and doped with neodymium (GRN) or dysprosium (GRD). Adding rare earth oxides to borosilicate glasses by the melt quenching method enhanced optical transmission due to the presence of their tetrahedral geometries. GRN samples showed few bands near zero, which constitutes good utility for band rejection filters in image devices, and the samples exhibited energy values ranging from 3.03 to 3.00 eV before and after gamma irradiation. Optical transmissions of GRD samples showed peaks at 25,974, 22,172, 13,333, 11,273, 9302, 7987, and 6042 cm−1. Deterioration in transmittance was observed when the investigated samples were exposed to irradiation doses of 20 and 50 kGy in the wavenumber range of 12,500 to 50,000 cm−1; however, different behaviors after irradiation with 50 kGy caused an increase in transparency in comparison to 20 kGy irradiation, which was pronounced for higher wavenumbers (greater than 12,500 cm−1). Photoluminescence emission and excitation spectra of the glass-doped Nd3+ (GRN) and glass-doped Dy3+ (GRD) samples were determined. GRD exhibited emission in the blue and yellow regions of the visible spectrum, which gave a white flash of light. Chromaticity coordinate (CIE) measurements of GRD samples indicated the origin of its luminous color relative to the standard white light region. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

15 pages, 3061 KiB  
Article
Dynamic Phase Measuring Profilometry Based on Tricolor Binary Fringe Encoding Combined Time-Division Multiplexing
by Guangkai Fu, Yiping Cao, Yapin Wang, Yingying Wan, Lu Wang and Chengmeng Li
Appl. Sci. 2019, 9(4), 813; https://doi.org/10.3390/app9040813 - 25 Feb 2019
Cited by 13 | Viewed by 5186
Abstract
A dynamic phase measuring profilometry (PMP) based on tricolor binary fringe combined time-division multiplexing principle is proposed. Only one tricolor binary fringe combined by red (R), green (G), and blue (B) binary fringes with the same fringe width but without any color overlapping [...] Read more.
A dynamic phase measuring profilometry (PMP) based on tricolor binary fringe combined time-division multiplexing principle is proposed. Only one tricolor binary fringe combined by red (R), green (G), and blue (B) binary fringes with the same fringe width but without any color overlapping one another is needed and sent into the flash memory of a high-speed digital light projector (HDLP) in advance. A specialized time-division multiplexing timing sequence is designed to control the HDLP to project the tricolor binary fringe saved in the flash memory onto the measured dynamic object separately and sequentially at 234 fps, at the same time, the projected light source mode is set as monochrome mode which means that all the RGB LEDs remain lighting. Meanwhile, it also triggers a high frame rate monochrome camera synchronized with the HDLP to capture the corresponding deformed patterns in R, G and B channels. By filtering, the nearly unbroken phase-shifting sinusoidal deformed patterns for three-step PMP can be extracted from the captured deformed patterns. It is equivalent to the three-dimensional (3D) shape reconstruction of the measured dynamic object at 78 fps. Experimental results verify the feasibility and the validity of the proposed method. It is effective for measuring the dynamic object and can avoid the color cross-talk effectively. Full article
(This article belongs to the Special Issue High-speed Optical 3D Shape and Deformation Measurement)
Show Figures

Figure 1

Back to TopTop