Ultrasound Flow Imaging Study on Rat Brain with Ultrasound and Light Stimulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Preparation
2.2. Transducer Design and Acoustic Field
2.3. Electrophysiological Signal Acquisition
2.4. Light and Ultrasound Stimulation Protocols
2.5. Ultrasound Flow Imaging Sequence
2.6. Ultrasound Flow Imaging Data Analysis
3. Results
3.1. EEG Measurements of Visual Cortex
3.2. Response of Visual Areas of the Brain to White Light Stimulation
3.3. Brain Response to Different Colors and Ultrasound Stimuli in Visual Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shatz, C. Emergence of Order in Visual System Development. J. Physiol. 1996, 90, 141–150. [Google Scholar] [CrossRef]
- Tzekov, R.; Arden, G.B. The Electroretinogram in Diabetic Retinopathy. Surv. Ophthalmol. 1999, 44, 53–60. [Google Scholar] [CrossRef]
- Geng, Y.; Dubra, A.; Yin, L.; Merigan, W.H.; Sharma, R.; Libby, R.T.; Williams, D.R. Adaptive Optics Retinal Imaging in the Living Mouse Eye. Biomed. Opt. Express 2012, 3, 715. [Google Scholar] [CrossRef]
- Feng, G.; Joseph, A.; Dholakia, K.; Shang, F.; Pfeifer, C.W.; Power, D.; Padmanabhan, K.; Schallek, J. High-Resolution Structural and Functional Retinal Imaging in the Awake Behaving Mouse. Commun. Biol. 2023, 6, 572. [Google Scholar] [CrossRef]
- Yao, X.; Kim, T.-H. Fast Intrinsic Optical Signal Correlates with Activation Phase of Phototransduction in Retinal Photoreceptors. Exp. Biol. Med. 2020, 245, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [PubMed]
- La Garza, B.H.D.; Muir, E.R.; Li, G.; Shih, Y.I.; Duong, T.Q. Blood Oxygenation Level-dependent (BOLD) Functional MRI of Visual Stimulation in the Rat Retina at 11.7 T. NMR Biomed. 2011, 24, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Van Zijl, P.C.M.; Eleff, S.M.; Ulatowski, J.A.; Oja, J.M.E.; Uluǧ, A.M.; Traystman, R.J.; Kauppinen, R.A. Quantitative Assessment of Blood Flow, Blood Volume and Blood Oxygenation Effects in Functional Magnetic Resonance Imaging. Nat. Med. 1998, 4, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Tanter, M.; Fink, M. Ultrafast Imaging in Biomedical Ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 102–119. [Google Scholar] [CrossRef]
- Zhang, J.; Murgoitio-Esandi, J.; Qian, X.; Li, R.; Gong, C.; Nankali, A.; Hao, L.; Xu, B.Y.; Kirk Shung, K.; Oberai, A.; et al. High-Frequency Ultrasound Elastography to Assess the Nonlinear Elastic Properties of the Cornea and Ciliary Body. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 2621–2629. [Google Scholar] [CrossRef] [PubMed]
- Rayes, A.; Zhang, J.; Lu, G.; Qian, X.; Schroff, S.T.; Ryu, R.; Jiang, X.; Zhou, Q. Estimating Thrombus Elasticity by Shear Wave Elastography to Evaluate Ultrasound Thrombolysis for Thrombus with Different Stiffness. IEEE Trans. Biomed. Eng. 2023, 70, 135–143. [Google Scholar] [CrossRef]
- Kadakia, A.; Zhang, J.; Yao, X.; Zhou, Q.; Heiferman, M.J. Ultrasound in Ocular Oncology: Technical Advances, Clinical Applications, and Limitations. Exp. Biol. Med. 2023, 248, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Wodnicki, R.; Zhang, J.; Zhou, Q.; Foiret, J.; Notard, C.; Ferrara, K.W. Electronically Scanned Large Apertures for Interventional and Diagnostic Liver. In Proceedings of the 2023 IEEE International Ultrasonics Symposium (IUS), Montreal, QC, Canada, 3–7 September 2023; pp. 1–4. [Google Scholar]
- Zhu, Y.; Shi, J.; Alvarez-arenas, T.E.G.; Li, C.; Wang, H.; Cai, H.; Zhang, D.; He, X.; Wu, X. Supershear Rayleigh Wave Imaging for Quantitative Assessment of Biomechanical Properties of Brain Using Air-Coupled Optical Coherence Elastography. APL Bioeng. 2023, 7, 046107. [Google Scholar] [CrossRef]
- Zhu, Y.; Shi, J.; Alvarez-Arenas, T.E.G.; Li, C.; Wang, H.; Zhang, D.; He, X.; Wu, X. Noncontact Longitudinal Shear Wave Imaging for the Evaluation of Heterogeneous Porcine Brain Biomechanical Properties Using Optical Coherence Elastography. Biomed. Opt. Express 2023, 14, 5113. [Google Scholar] [CrossRef]
- Oelze, M.L.; Kou, Z. Resolution and Contrast Improved Ultrafast Power Doppler Microvessel Imaging with Null Subtraction Imaging. J. Acoust. Soc. Am. 2023, 153, A30. [Google Scholar] [CrossRef]
- Song, P.; Cuellar, C.A.; Tang, S.; Islam, R.; Wen, H.; Huang, C.; Manduca, A.; Trzasko, J.D.; Knudsen, B.E.; Lee, K.H.; et al. Functional Ultrasound Imaging of Spinal Cord Hemodynamic Responses to Epidural Electrical Stimulation: A Feasibility Study. Front. Neurol. 2019, 10, 279. [Google Scholar] [CrossRef]
- Gesnik, M.; Blaize, K.; Deffieux, T.; Gennisson, J.-L.; Sahel, J.-A.; Fink, M.; Picaud, S.; Tanter, M. 3D Functional Ultrasound Imaging of the Cerebral Visual System in Rodents. NeuroImage 2017, 149, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Urban, A.; Dussaux, C.; Martel, G.; Brunner, C.; Mace, E.; Montaldo, G. Real-Time Imaging of Brain Activity in Freely Moving Rats Using Functional Ultrasound. Nat. Methods 2015, 12, 873–878. [Google Scholar] [CrossRef]
- Qian, X.; Lu, G.; Thomas, B.B.; Li, R.; Chen, X.; Shung, K.K.; Humayun, M.; Zhou, Q. Noninvasive Ultrasound Retinal Stimulation for Vision Restoration at High Spatiotemporal Resolution. BME Front. 2022, 2022, 9829316. [Google Scholar] [CrossRef]
- Tyler, W.J.; Lani, S.W.; Hwang, G.M. Ultrasonic Modulation of Neural Circuit Activity. Curr. Opin. Neurobiol. 2018, 50, 222–231. [Google Scholar] [CrossRef]
- Gong, C.; Li, R.; Lu, G.; Ji, J.; Zeng, Y.; Chen, J.; Chang, C.; Zhang, J.; Xia, L.; Nair, D.S.R.; et al. Non-Invasive Hybrid Ultrasound Stimulation of Visual Cortex In Vivo. Bioengineering 2023, 10, 577. [Google Scholar] [CrossRef]
- Lozano, D.C.; Twa, M.D. Development of a Rat Schematic Eye From In Vivo Biometry and the Correction of Lateral Magnification in SD-OCT Imaging. Investig. Opthalmol. Vis. Sci. 2013, 54, 6446. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Academic Press: San Diego, CA, USA, 2007. [Google Scholar]
- Demene, C.; Deffieux, T.; Pernot, M.; Osmanski, B.-F.; Biran, V.; Gennisson, J.-L.; Sieu, L.-A.; Bergel, A.; Franqui, S.; Correas, J.-M.; et al. Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity. IEEE Trans. Med. Imaging 2015, 34, 2271–2285. [Google Scholar] [CrossRef]
- Macé, E.; Montaldo, G.; Cohen, I.; Baulac, M.; Fink, M.; Tanter, M. Functional Ultrasound Imaging of the Brain. Nat. Methods 2011, 8, 662–664. [Google Scholar] [CrossRef] [PubMed]
- Hübener, M. Mouse Visual Cortex. Curr. Opin. Neurobiol. 2003, 13, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.M.; Aitchison, R.T.; Tawse, M.; Simmers, A.J.; Shahani, U. Reduced Haemodynamic Response in the Ageing Visual Cortex Measured by Absolute fNIRS. PLoS ONE 2015, 10, e0125012. [Google Scholar] [CrossRef] [PubMed]
- Bi, R.; Du, Y.; Singh, G.; Ho, J.-H.; Zhang, S.; Ebrahim Attia, A.B.; Li, X.; Olivo, M.C. Fast Pulsatile Blood Flow Measurement in Deep Tissue through a Multimode Detection Fiber. J. Biomed. Opt. 2020, 25, 1. [Google Scholar] [CrossRef] [PubMed]
- Breuninger, T.; Puller, C.; Haverkamp, S.; Euler, T. Chromatic Bipolar Cell Pathways in the Mouse Retina. J. Neurosci. 2011, 31, 6504–6517. [Google Scholar] [CrossRef] [PubMed]
- Denman, D.J.; Siegle, J.H.; Koch, C.; Reid, R.C.; Blanche, T.J. Spatial Organization of Chromatic Pathways in the Mouse Dorsal Lateral Geniculate Nucleus. J. Neurosci. 2017, 37, 1102–1116. [Google Scholar] [CrossRef] [PubMed]
- Denman, D.J.; Luviano, J.A.; Ollerenshaw, D.R.; Cross, S.; Williams, D.; Buice, M.A.; Olsen, S.R.; Reid, R.C. Mouse Color and Wavelength-Specific Luminance Contrast Sensitivity Are Non-Uniform across Visual Space. eLife 2018, 7, e31209. [Google Scholar] [CrossRef]
- Jeczmien-Lazur, J.S.; Orlowska-Feuer, P.; Kustron, A.; Lewandowski, M.H. Short Wavelengths Contribution to Light-Induced Responses and Irradiance Coding in the Rat Dorsal Lateral Geniculate Nucleus—An In Vivo Electrophysiological Approach. Neuroscience 2021, 468, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Menz, M.D.; Oralkan, Ö.; Khuri-Yakub, P.T.; Baccus, S.A. Precise Neural Stimulation in the Retina Using Focused Ultrasound. J. Neurosci. 2013, 33, 4550–4560. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Qian, X.; Gong, C.; Ji, J.; Thomas, B.B.; Humayun, M.S.; Zhou, Q. Ultrasound Retinal Stimulation: A Mini-Review of Recent Developments. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 3224–3231. [Google Scholar] [CrossRef] [PubMed]
- Vivier, D.; Bennis, K.; Lesage, F.; Ducki, S. Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K+ Channel 1). A Novel Therapeutic Target?: Miniperspective. J. Med. Chem. 2016, 59, 5149–5157. [Google Scholar] [CrossRef]
- Lamas, J.A.; Rueda-Ruzafa, L.; Herrera-Pérez, S. Ion Channels and Thermosensitivity: TRP, TREK, or Both? Int. J. Mol. Sci. 2019, 20, 2371. [Google Scholar] [CrossRef]
- Murthy, S.E.; Dubin, A.E.; Patapoutian, A. Piezos Thrive under Pressure: Mechanically Activated Ion Channels in Health and Disease. Nat. Rev. Mol. Cell Biol. 2017, 18, 771–783. [Google Scholar] [CrossRef]
- Yoo, S.; Mittelstein, D.R.; Hurt, R.C.; Lacroix, J.; Shapiro, M.G. Focused Ultrasound Excites Cortical Neurons via Mechanosensitive Calcium Accumulation and Ion Channel Amplification. Nat. Commun. 2022, 13, 493. [Google Scholar] [CrossRef]
- Demeulenaere, O.; Bertolo, A.; Pezet, S.; Ialy-Radio, N.; Osmanski, B.; Papadacci, C.; Tanter, M.; Deffieux, T.; Pernot, M. In Vivo Whole Brain Microvascular Imaging in Mice Using Transcranial 3D Ultrasound Localization Microscopy. EBioMedicine 2022, 79, 103995. [Google Scholar] [CrossRef]
- Chavignon, A.; Hingot, V.; Orset, C.; Vivien, D.; Couture, O. 3D Transcranial Ultrasound Localization Microscopy for Discrimination between Ischemic and Hemorrhagic Stroke in Early Phase. Sci. Rep. 2022, 12, 14607. [Google Scholar] [CrossRef]
- Lin, F.; Shelton, S.E.; Espíndola, D.; Rojas, J.D.; Pinton, G.; Dayton, P.A. 3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution beyond the Diffraction Limit of Conventional Ultrasound. Theranostics 2017, 7, 196–204. [Google Scholar] [CrossRef]
- Macé, É.; Montaldo, G.; Trenholm, S.; Cowan, C.; Brignall, A.; Urban, A.; Roska, B. Whole-Brain Functional Ultrasound Imaging Reveals Brain Modules for Visuomotor Integration. Neuron 2018, 100, 1241–1251.e7. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhu, S.; Briggs, F.; Doyley, M.M. Functional Ultrasound Imaging Reveals 3D Structure of Orientation Domains in Ferret Primary Visual Cortex. NeuroImage 2023, 268, 119889. [Google Scholar] [CrossRef] [PubMed]
- Nouhoum, M.; Ferrier, J.; Osmanski, B.-F.; Ialy-Radio, N.; Pezet, S.; Tanter, M.; Deffieux, T. A Functional Ultrasound Brain GPS for Automatic Vascular-Based Neuronavigation. Sci. Rep. 2021, 11, 15197. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Gong, C.; Yang, Z.; Wei, F.; Sun, X.; Ji, J.; Zeng, Y.; Chang, C.-f.; Liu, X.; Nair, D.S.R.; et al. Ultrasound Flow Imaging Study on Rat Brain with Ultrasound and Light Stimulations. Bioengineering 2024, 11, 174. https://doi.org/10.3390/bioengineering11020174
Zhang J, Gong C, Yang Z, Wei F, Sun X, Ji J, Zeng Y, Chang C-f, Liu X, Nair DSR, et al. Ultrasound Flow Imaging Study on Rat Brain with Ultrasound and Light Stimulations. Bioengineering. 2024; 11(2):174. https://doi.org/10.3390/bioengineering11020174
Chicago/Turabian StyleZhang, Junhang, Chen Gong, Zihan Yang, Fan Wei, Xin Sun, Jie Ji, Yushun Zeng, Chi-feng Chang, Xunan Liu, Deepthi S. Rajendran Nair, and et al. 2024. "Ultrasound Flow Imaging Study on Rat Brain with Ultrasound and Light Stimulations" Bioengineering 11, no. 2: 174. https://doi.org/10.3390/bioengineering11020174
APA StyleZhang, J., Gong, C., Yang, Z., Wei, F., Sun, X., Ji, J., Zeng, Y., Chang, C. -f., Liu, X., Nair, D. S. R., Thomas, B. B., & Zhou, Q. (2024). Ultrasound Flow Imaging Study on Rat Brain with Ultrasound and Light Stimulations. Bioengineering, 11(2), 174. https://doi.org/10.3390/bioengineering11020174