Benefits and Risks of the Technological Creep of LED Light Technologies Applied to the Purse Seine Fishery
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Features of LED Lighting Systems and the Incandescent Lamp
2.3. Experimental Survey, Data Collection, and Treatment
2.4. Catch Efficiency of LED Lamps
2.5. Energy Consumption and CO2 Emissions
3. Results
3.1. Catch Efficiency of LED Lamps
3.2. Energy Consumption and CO2 Emissions
4. Discussion
4.1. Catch Efficiency of LED Lamps and Biological Aspects
4.2. Energy Consumption and CO2 Emissions: Benefits and Critical Points
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Tr. | Date | Lat | Long | Depth (m) | R. Start Time | F. Start Time | F. End Time | TA LWH (h.m) | TA LBLU (h.m) | TA INC (h.m) | TA PULSE (h.m) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 06/09/20 | 41°28,906 | 016°53,428 | 117 | 20:18 | 00:25 | 00:42 | 4.24 | 3.00 | ||
2 | 07/09/20 | 41°29,160 | 017°01,140 | 143 | 20:23 | 23:06 | 23:24 | 3.01 | 2.00 | ||
3 | 10/09/20 | 42°62,104 | 014°51,525 | 110 | 00:05 | 03:25 | 03:47 | 3.42 | 2.15 | ||
4 | 14/09/20 | 43°02,843 | 014°50,629 | 114 | 20:13 | 21:08 | 21:23 | 1.00 | 0.30 | ||
5 | 14/09/20 | 43°01,701 | 014°49,559 | 110 | 01:20 | 02:08 | 02:26 | 0.38 | 0.19 | ||
6 | 15/09/20 | 43°05,115 | 014°43,587 | 515 | 20:45 | 03:41 | 03:58 | 6.32 | 5.38 | 5.25 | |
7 | 15/09/20 | 43°05,120 | 014°43,590 | 115 | 04:20 | 04:55 | 05:20 | 0.39 | 0.36 | 0.35 | |
8 | 16/09/20 | 42°47,711 | 014°29,308 | 123 | 20:51 | 01:58 | 02:14 | 4.39 | 4.50 | 3.38 | |
9 | 17/09/20 | 42°46,102 | 014°29,301 | 121 | 02:25 | 03:30 | 03:55 | 1.55 | 1.08 | 0.31 | |
10 | 17/09/20 | 42°46,444 | 014°29,095 | 121 | 04:02 | 05:56 | 06:10 | 1.50 | 1.55 | 0.30 | |
11 | 20/09/20 | 42°43,946 | 014°35,706 | 149 | 21:17 | 02:35 | 02:52 | 5.35 | 4.56 | 4.11 | |
12 | 21/09/20 | 42°43,940 | 014°35,688 | 150 | 03:12 | 04:15 | 04:27 | 0.47 | 1.15 | 0.34 | |
13 | 21/09/20 | 42°43,830 | 014°35,522 | 148 | 04:45 | 06:12 | 06:25 | 1.22 | 1.24 | 0.50 | |
14 | 21/09/20 | 42°44,856 | 014°36,340 | 155 | 22:50 | 03:52 | 04:10 | 5.03 | 4.39 | 3.42 | |
15 | 22/09/20 | 42°44,558 | 014°36,470 | 149 | 04:30 | 06:20 | 06:34 | 1.43 | 1.56 | 1.13 | |
16 | 22/09/20 | 42°31,345 | 014°45,900 | 138 | 22:45 | 02:50 | 03:05 | 4.03 | 4.20 | 3.15 | |
17 | 22/09/20 | 42°27,316 | 014°46,533 | 117 | 04:15 | 05:45 | 06:02 | 0.56 | 1.47 | 0.40 | |
18 | 18/10/20 | 42°48,570 | 014°25,680 | 129 | 21:30 | 02:30 | 03:15 | 5.45 | 2.26 | 3.17 | |
19 | 18/10/20 | 42°50,105 | 014°28,503 | 114 | 04:15 | 05:30 | 06:45 | 7.50 | 3.11 | 4.36 | |
20 | 19/10/20 | 42°56,422 | 014°30,508 | 115 | 21:40 | 05:15 | 06:30 | 6.30 | 3.01 | 4.06 | |
21 | 20/10/20 | 42°35,507 | 014°38,600 | 107 | 21:30 | 02:30 | 03:30 | 4.50 | 3.02 | ||
22 | 21/10/20 | 43°09,930 | 014°40,745 | 97 | 23:10 | 03:40 | 04:00 | 1.50 | 1.50 |
Month | ANE | PIL | MAS | BFT | HMM | SWO | Fishing Days |
---|---|---|---|---|---|---|---|
January | 27,440 | 231 | 6 | ||||
February | 15,642 | 4 | |||||
March | 1084 | 1 | |||||
April | 49,875 | 1575 | 782 | 33 | 10 | ||
May | 25,900 | 40 | 5 | ||||
July | 38,534 | 924 | 11,134 | 14 | |||
August | 53,605 | 770 | 7861 | 64 | 16 | ||
September | 44,065 | 1264 | 11,515 | 12 | |||
October | 63,510 | 2310 | 33,080 | 85 | 18 | ||
November | 13,160 | 468 | 3360 | 2450 | 6 | ||
December | 20,090 | 1750 | 70 | 7 | |||
Total | 35,2905 | 9292 | 67,020 | 782 | 2450 | 222 | 99 |
TL | LWH | LBLU | INC |
---|---|---|---|
80 | 2 | 0 | 0 |
82 | 1 | 0 | 1 |
84 | 0 | 0 | 0 |
86 | 1 | 0 | 0 |
88 | 0 | 0 | 1 |
90 | 1 | 0 | 0 |
92 | 0 | 1 | 1 |
94 | 0 | 0 | 1 |
96 | 0 | 0 | 0 |
98 | 0 | 0 | 1 |
118 | 1 | 0 | 0 |
120 | 4 | 0 | 1 |
122 | 17 | 2 | 5 |
124 | 30 | 8 | 17 |
126 | 55 | 12 | 24 |
128 | 65 | 25 | 50 |
130 | 130 | 65 | 92 |
132 | 118 | 94 | 121 |
134 | 137 | 110 | 182 |
136 | 178 | 132 | 165 |
138 | 89 | 73 | 99 |
140 | 114 | 76 | 130 |
142 | 98 | 81 | 98 |
144 | 48 | 28 | 58 |
146 | 29 | 24 | 26 |
148 | 3 | 5 | 6 |
150 | 9 | 3 | 6 |
152 | 3 | 1 | 5 |
154 | 0 | 1 | 3 |
156 | 0 | 0 | 1 |
174 | 0 | 1 | 0 |
Main statistics and TL outliers | |||
LWH | LBLU | INC | |
Total N. individuals | 1133 | 742 | 1094 |
Min | 80 | 93 | 83 |
Max | 153 | 175 | 156 |
Median | 136 | 136 | 136 |
I quartile | 131 | 133 | 133 |
III quartile | 140 | 140 | 140 |
IR | 9 | 7 | 7 |
Outliers upper limit (TL mm) | 159 | 154 | 154 |
Outliers lower limit (TL mm) | 114 | 119 | 119 |
AGE | LWH | LBLU | INC |
Age 0+ N. (%) | 5 (0.2%) | 1 (<0.1%) | 5 (0.2%) |
Age 1+ N. (%) | 985 (33.2%) | 641 (21.6%) | 929 (31.2%) |
Age 2+ N. (%) | 143 (4.8%) | 99 (3.3%) | 160 (5.4%) |
Age 3+ N. (%) | - | - | - |
Age 4+ N. (%) | - | 1(<0.1%) | - |
Normality Test: Shapiro–Wilk (W) | LWH | LBLU | INC | PULSE |
---|---|---|---|---|
N. samples | 20 | 12 | 18 | 5 |
CPUE Energy, W: | 0.507 | 0.403 | 0.483 | 0.846 |
p value | <0.001 | <0.01 | <0.001 | 0.1818 |
CPUE Fuel, W: | 0.511 | 0.439 | 0.485 | 0.846 |
p value | <0.001 | <0.01 | <0.001 | 0.1818 |
Electric Energy Consumption, W: | 0.905 | 0.8484 | 0.9419 | 0.9425 |
p value | 0.050 | <0.05 | 0.312 | 0.684 |
Hourly Fuel Consumption, W: | 0.926 | 0.431 | 0.697 | 0.943 |
p value | 0.1282 | 5.71E−03 | 7.42E−02 | 0.685 |
CO2 Emissions, W: | 0.911 | 0.877 | 0.789 | 0.942 |
p value | 0.066 | 0.081 | <0.01 | 0.682 |
Economic Costs, W: | 0.925 | 0.443 | 0.695 | 0.821 |
p value | 0.121 | <0.001 | <0.001 | 0.119 |
LFD | LWH | LBLU | INC | - |
N. samples | 1128 | 739 | 1086 | - |
LFD LWH sample, W | 0.9946 | 0.9931 | 0.9944 | - |
p value | <0.001 | <0.01 | <0.001 | - |
Energy Consumption (kWh) | Fuel Consumption (L) | Economic Costs (EUR h−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tr. | LWH | LBLU | INC | PULSE | LWH | LBLU | INC | PULSE | LWH | LBLU | INC | PULSE |
1 | 56.7 | 74.9 | 16.0 | 21.2 | 1.05 | 2.05 | ||||||
2 | 32.7 | 52.3 | 9.2 | 14.8 | 0.89 | 2.14 | ||||||
3 | 31.8 | 58.8 | 9.0 | 16.6 | 0.70 | 2.14 | ||||||
6 | 63.8 | 15.6 | 135.3 | 18.0 | 4.4 | 38.2 | 0.80 | 0.23 | 2.05 | |||
7 | 5.3 | 1.8 | 13.3 | 1.5 | 0.5 | 3.7 | 0.67 | 0.24 | 1.86 | |||
8 | 46.4 | 11.7 | 70.4 | 11.7 | 3.3 | 70.4 | 0.73 | 0.20 | 5.62 | |||
9 | 14.4 | 2.9 | 28.1 | 2.9 | 4.1 | 7.9 | 0.44 | 1.04 | 4.45 | |||
10 | 16.8 | 3.5 | 36.6 | 4.7 | 1.0 | 10.3 | 0.75 | 0.15 | 6.00 | |||
11 | 47.0 | 9.7 | 99.0 | 13.3 | 2.7 | 28.0 | 0.69 | 0.16 | 1.94 | |||
12 | 13.3 | 3.2 | 29.3 | 3.8 | 0.9 | 8.3 | 1.39 | 0.21 | 4.23 | |||
13 | 10.8 | 4.0 | 19.8 | 3.1 | 1.1 | 5.6 | 0.65 | 0.23 | 1.94 | |||
14 | 50.9 | 11.7 | 109.1 | 14.4 | 3.3 | 30.8 | 0.83 | 0.21 | 2.41 | |||
15 | 19.5 | 4.0 | 30.4 | 5.5 | 1.1 | 8.6 | 0.93 | 0.17 | 2.05 | |||
16 | 42.5 | 9.2 | 81.2 | 12.0 | 2.6 | 22.9 | 0.86 | 0.17 | 2.05 | |||
17 | 14.2 | 3.5 | 16.7 | 4.0 | 1.0 | 4.7 | 1.25 | 0.16 | 2.05 | |||
18 | 52.3 | 45.2 | 19.0 | 14.8 | 12.8 | 5.4 | 0.75 | 1.52 | 0.47 | |||
19 | 60.5 | 62.2 | 26.2 | 17.1 | 17.6 | 7.4 | 0.63 | 1.60 | 0.47 | |||
20 | 14.4 | 60.2 | 24.4 | 4.1 | 17.0 | 6.9 | 0.18 | 1.63 | 0.49 | |||
21 | 39.8 | 18.1 | 11.2 | 5.1 | 0.67 | 0.49 | ||||||
22 | 15.6 | 10.8 | 4.4 | 3.0 | 0.70 | 0.48 | ||||||
Median | 32.2 | 4.0 | 55.5 | 19.0 | 9.1 | 1.9 | 15.7 | 5.4 | 0.74 | 0.20 | 2.05 | 0.48 |
IR | 33.58 | 6.82 | 44.25 | 6.24 | 9.5 | 2.3 | 14.1 | 1.8 | ||||
Min | 5.3 | 1.8 | 13.3 | 10.8 | 1.5 | 0.5 | 3.7 | 3.0 | 0.18 | 0.15 | 1.52 | 0.47 |
Max | 63.8 | 15.6 | 135.3 | 26.2 | 18.0 | 4.4 | 70.4 | 7.4 | 1.39 | 1.04 | 6.00 | 0.49 |
Reduction costs vs. INC (median value) | −1.31 | −1.84 | - | −1.56 | ||||||||
Reduction costs vs. INC (%) | 64 | 90 | 76 |
U Test | |||||||||
---|---|---|---|---|---|---|---|---|---|
CPUE Energy Consumption | LWH | LBLU | INC | PULSE | CPUE Fuel Consumption | LWH | LBLU | INC | PULSE |
LWH | - | <0.001 | <0.05 | 0.194 | LWH | - | <0.01 | <0.01 | 0.194 |
LBLU | 19 | - | <0.001 | 1 | LBLU | 30 | - | <0.001 | 1 |
INC | 75 | 7 | - | <0.05 | INC | 70 | 9 | - | <0.05 |
PULSE | 18 | 22 | 3 | - | PULSE | 18 | 25 | 3 | - |
Energy Consumption | LWH | LBLU | INC | PULSE | Hourly Fuel Consumption | LWH | LBLU | INC | PULSE |
LWH | - | <0.001 | 0.1207 | 1 | LWH | - | <0.01 | <0.001 | <0.05 |
LBLU | 12 | - | <0.001 | <0.05 | LBLU | 25.5 | - | <0.001 | 0.054 |
INC | 100 | 1 | - | 0.061 | INC | 0 | 0 | - | <0.01 |
PULSE | 35 | 3 | 10 | - | PULSE | 10 | 5 | 0 | - |
CO2 Emissions | LWH | LBLU | INC | PULSE | Economic Costs | LWH | LBLU | INC | PULSE |
LWH | - | <0.001 | 0.095 | 1.00 | LWH | <0.01 | <0.001 | <0.05 | |
LBLU | 20 | - | <0.05 | <0.05 | LBLU | 23 | <0.001 | 0.057 | |
INC | 97 | 2 | - | 0.061 | INC | 0 | 0 | <0.05 | |
PULSE | 36.5 | 4 | 10 | - | PULSE | 10 | 5 | 0 | |
D Test | |||||||||
LFD | LWH | LBLU | INC | ||||||
N. samples | 1128 | 739 | 1086 | ||||||
LWH | - | <0.001 | <0.001 | ||||||
LBLU | 0.116 | - | 0.869 | ||||||
INC | 0.094 | 0.032 | - |
LWH | LBLU | INC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Age 0+ | Age 1+ | Age 2+ | Age 0+ | Age 1+ | Age 2+ | Age 0+ | Age 1+ | Age 2+ | ||
LWH | Age 0+ | <0.001 | 0.870 | 1.000 | <0.001 | 1.000 | 1.000 | <0.001 | 0.870 | |
Age 1+ | 3350 | <0.001 | <0.001 | 1.000 | <0.001 | <0.001 | 1.000 | <0.001 | ||
Age 2+ | 4750 | 3600 | 0.870 | <0.05 | 1.000 | 0.870 | <0.001 | 1.000 | ||
LBLU | Age 0+ | 4750 | 3350 | 4750 | <0.001 | 1.000 | 1.000 | <0.001 | 0.870 | |
Age 1+ | 3900 | 4450 | 4150 | 3900 | <0.01 | <0.001 | 1.000 | <0.05 | ||
Age 2+ | 4850 | 3500 | 4900 | 4850 | 4050 | 1.000 | <0.001 | 1.000 | ||
INC | Age 0+ | 4850 | 3350 | 4750 | 4850 | 3900 | 4850 | <0.001 | 0.870 | |
Age 1+ | 3450 | 4900 | 3700 | 3450 | 4550 | 3600 | 3450 | <0.001 | ||
Age 2+ | 4750 | 3600 | 5000 | 4750 | 4150 | 4900 | 4750 | 3700 |
References
- Worm, B.; Hilborn, R.; Baum, J.K.; Branch, T.A.; Collie, J.S.; Costello, C.; Fogarty, M.J.; Fulton, E.A.; Hutchings, J.A.; Jennings, S.; et al. Rebuilding Global Fisheries. Science 2009, 325, 578–584. [Google Scholar] [CrossRef] [Green Version]
- Teh, L.C.L.; Sumaila, U.R. Contribution of marine fisheries to worldwide employment. Fish Fish. 2013, 14, 77–88. [Google Scholar] [CrossRef]
- Golden, C.D.; Allison, E.H.; Cheung, W.W.; Dey, M.M.; Halpern, B.S.; McCauley, D.J.; Smith, M.; Vaitla, B.; Zeller, D.; Myers, S.S. Nutrition: Fall in fish catch threatens human health. Nature 2016, 534, 317–320. [Google Scholar] [CrossRef]
- Stephenson, R.L.; Paul, S.; Wiber, M.; Angel, E.; Benson, A.J.; Charles, A.; Sumaila, U.R. Evaluating and implementing social–ecological systems: A comprehensive approach to sustainable fisheries. Fish Fish. 2018, 19, 853–873. [Google Scholar] [CrossRef]
- Duarte, C.M.; Agusti, S.; Barbier, E.; Britten, G.L.; Castilla, J.C.; Gattuso, J.-P.; Boris, W. Rebuilding marine life. Nature 2020, 580, 39–51. [Google Scholar] [CrossRef]
- Pikitch, E.K.; Santora, C.; Babcock, E.A.; Bakun, A.; Bonfil, R.; Conover, D.O.; Dayton, P.; Doukakis, P.; Fluharty, D.; Heneman, B.; et al. Ecosystem-Based Fishery Management. Science 2004, 305, 346–347. [Google Scholar] [CrossRef]
- Hornborg, S.; van Putten, I.; Novaglio, C.; Fulton, E.A.; Blanchard, J.L.; Plagányi, E.; Bulman, C.; Sainsbury, K. Ecosystem-based fisheries management requires broader performance indicators for the human dimension. Mar. Policy 2019, 108, 103639. [Google Scholar] [CrossRef]
- Eigaard, O.R.; Marchal, P.; Gislason, H.; Rijnsdorp, A.D. Technological Development and Fisheries Management. Rev. Fish. Sci. Aquac. 2014, 22, 156–174. [Google Scholar] [CrossRef]
- Palomares, M.L.D.; Pauly, D. On the creeping increase of vessels’ fishing power. Ecol. Soc. 2019, 24, 31. [Google Scholar] [CrossRef] [Green Version]
- Costello, C.; Ovando, D.; Clavelle, T.; Strauss, C.K.; Hilborn, R.; Melnychuk, M.C.; Branch, T.A.; Gaines, S.D.; Szuwalski, C.S.; Cabral, R.B.; et al. Global fishery prospects under contrasting management regimes. Proc. Natl. Acad. Sci. USA 2016, 113, 5125–5129. [Google Scholar] [CrossRef] [Green Version]
- Pauly, D.; Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 2016, 7, 10244. [Google Scholar] [CrossRef]
- Hilborn, R.; Amoroso, R.O.; Anderson, C.M.; Baum, J.K.; Branch, T.A.; Costello, C.; De Moor, C.L.; Faraj, A.; Hively, D.; Jensen, O.P.; et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl. Acad. Sci. USA 2020, 117, 2218–2224. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, K.; Galbraith, E. Regulation strength and technology creep play key roles in global long-term projections of wild capture fisheries. ICES J. Mar. Sci. 2020, 77, 2518–2528. [Google Scholar] [CrossRef]
- Driscoll, J.; Tyedmers, P. Fuel use and greenhouse gas emission implications of fisheries management: The case of the new England Atlantic herring fishery. Mar. Policy 2010, 34, 353–359. [Google Scholar] [CrossRef]
- Chassot, E.; Antoine, S.; Guillotreau, P.; Lucas, J.; Assan, C.; Marguerite, M.; Bodin, M.N. Fuel consumption and air emissions in one of the world’s largest commercial fisheries. Environ. Pollut. 2021, 273, 116454. [Google Scholar] [CrossRef]
- Ben-Yami, M. The Role of Small-Scale Fishing Gear and Techniques in Development: Challenges Towards the Year 2000. In Proceedings of the World Symposium on Fishing Gear and Fishing Vessel Design, St. John’s, NL, Canada, 20–24 November 1988; Marine Institute: St. John’s, NL, Canada, 1989; pp. 449–453. [Google Scholar]
- Nguyen, K.Q.; Winger, P.D. Artificial Light in Commercial Industrialized Fishing Applications: A Review. Rev. Fish. Sci. Aquac. 2019, 27, 106–126. [Google Scholar] [CrossRef]
- Ben-Yami, M. Fishing with Light-FAO fishing manuals, Farnham, Surrey, England. Int. Rev. Entire Hydrobiol. Hydrogr. 1978, 63, 585. [Google Scholar] [CrossRef]
- Ben-Yami, M. Purse Seining Manual. In FAO Fishing Manual; Fishing News Book: Oxford, UK, 1990. [Google Scholar]
- Sofijanto, M.A.; Arfiati, D.; Lelono, T.D.; Muntaha, A. Efficiency comparison of LED and MH lamps in purse seine fisheries. Turk. J. Fish. Aquat. Sci. 2019, 19, 41–49. [Google Scholar] [CrossRef]
- Thuy, P.T.T.; Flaaten, O.; Anh, N.T.K. Remuneration System and Economic Performance: Theory and the Vietnamese Small Scale Fisheries. Mar. Resour. Econ. J. 2013, 28, 19–41. [Google Scholar]
- Nguyen, K.Q.; Tran, P.D. Benefits of using LED light for purse seine fisheries: A case study in Ninhthuan province, Vietnam. Fish People 2015, 13, 30–36. [Google Scholar]
- An, H.C. Research on Artificial Light Sources for Light Fishing, with a Focus on Squid Jigging. In Proceedings of the Symposium on the Light Session and the Topic Group Lights: ICES-FAO Working Group on Fishing Technology and Fish, Bangkok, Thailand, 6–10 May 2013; FAO: Rome, Italy, 2015; pp. 49–50. [Google Scholar]
- Okamoto, K. Intelligent non-conventional applications of LEDs. J. Japan Inst. Electron. Packag. 2010, 3, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Mills, E.; Gengnagel, T.; Wollburg, P. Solar-LED alternatives to fuel-based lighting for night fishing. Energy Sustain. Dev. 2014, 21, 30–41. [Google Scholar] [CrossRef]
- An, Y.I.; He, P.; Arimoto, T.; Jang, U.J. Catch performance and fuel consumption of LED fishing lamps in the Korea hairtail angling fishery. Fish. Sci. 2017, 83, 343–352. [Google Scholar] [CrossRef]
- Yamashita, Y.; Matsushita, Y.; Azuno, T. Catch performance of coastal squid jigging boats using LED panels in combination with metal halide lamps. Fish. Res. 2012, 113, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Weyl, O.; Kazembe, J.; Booth, A.; Mandere, D. An assessment of a light-attraction fishery in southern Lake Malawi. Afr. J. Aquat. Sci. 2004, 29, 1–11. [Google Scholar] [CrossRef]
- Mgana, H.; Kraemer, B.M.; O’Reilly, C.M.; Staehr, P.A.; Kimirei, I.A.; Apse, C.; Leisher, C.; Ngoile, M.; McIntyre, P.B. Adoption and consequences of new light-fishing technology (LEDs) on Lake Tanganyika, East Africa. PLoS ONE 2019, 14, e0216580. [Google Scholar] [CrossRef] [Green Version]
- Papaconstantinou, C.; Farrugio, H. Fisheries in the Mediterranean. Mediterr. Mar. Sci. 2000, 1, 5–18. [Google Scholar] [CrossRef]
- Tsitsika, E.V.; Maravelias, C.D. Fishing strategy choices of purse seines in the Mediterranean: Implications for management. Fish. Sci. 2008, 74, 19–27. [Google Scholar] [CrossRef]
- Tsagarakis, K.; Vassilopoulou, V.; Kallianiotis, A.; Machias, A. Discards of the purse seine fishery targeting small pelagic fish in the eastern Mediterranean Sea. Sci. Mar. 2012, 76, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Cingolani, N.; Giannetti, G.; Arneri, E. Anchovyfisheries in the Adriatic Sea. Sci. Mar. 1996, 60, 269–277. [Google Scholar]
- Santojanni, A.; Arneri, E.; Barry, C.; Belardinelli, A.; Cingolani, N.; Giannetti, G.; Kirkwood, G. Trends of anchovy (Engraulisencrasicolus L.) biomass in the northern and central Adriatic Sea. Sci. Mar. 2003, 67, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Carpi, P.; Santojanni, A.; Donato, F.; Colella, S.; ČikešKeč, V.; Zorica, B.; Leonori, I.; De Felice, A.; Tičina, V.; Modic, T.; et al. A joint stock assessment for the anchovy stock of the northern and central Adriatic Sea: Comparison of two catch-at-age models. Sci. Mar. 2015, 79, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Farrugio, H.; Soldo, A.; Cebrian, D.; Requena, S. Adriatic Sea: Status and Conservation of Fisheries; RAC/SPA: Tunis, Tunisia, 2015; p. 58. [Google Scholar]
- Virgili, M.; Vasapollo, C.; Lucchetti, A. Can ultraviolet illumination reduce sea turtle bycatch in Mediterranean set net fisheries? Fish. Res. 2018, 199, 1–7. [Google Scholar] [CrossRef]
- Lucchetti, A.; Bargione, G.; Petetta, A.; Vasapollo, C.; Virgili, M. Reducing Sea Turtle Bycatch in the Mediterranean Mixed Demersal Fisheries. Front. Mar. Sci. 2019, 6, 387. [Google Scholar] [CrossRef] [Green Version]
- Kehayias, G.; Bouliopoulos, D.; Chiotis, N.; Koutra, P. A photovoltaic-battery-LED lamp raft design for purse seine fishery: Application in a large Mediterranean lake. Fish. Res. 2016, 177, 18–23. [Google Scholar] [CrossRef]
- Marini, M.; Russo, A.; Paschini, E.; Grilli, F.; Campanelli, A. Short-term physical and chemical variations in the bottom water Middle Adriatic depressions. Clim. Res. 2006, 31, 227–237. [Google Scholar] [CrossRef]
- Zavatarelli, M.; Raicich, F.; Bregant, D.; Russo, A.; Artegiani, A. Climatological biogeochemical characteristic of the Adriatic Sea. J. Mar. Syst. 1998, 18, 227–263. [Google Scholar] [CrossRef]
- Vrgoc, N.; Arneri, E.; Jukic-Peladic, S.; Krstulovic-Sifner, S.; Mannini, P.; Marceta, B.; Osmani, K.; Piccinetti, C.; Ungaro, N. Review of Current Knowledge on Shared Demersal Stocks of the Adriatic Sea. ADRIAMED Tech. Doc. 2004, 12, 91. [Google Scholar]
- Lleonart, J.; Maynou, F. Fish stock assessments in the Mediterranean: State of the art. Sci. Mar. 2003, 67, 37–49. [Google Scholar] [CrossRef] [Green Version]
- European Comission. Facts and Figures on the Common Fishery Policy; Publication Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Marano, G. Small Pelagic stock assessment (1984–1996). In Proceedings of the Working Group on the Definition of Priority Topics Related to Shared Small Pelagic Fishery Resources of the Adriatic Sea 1st Meeting, (Adriatic Sea Shared Stocks), Split, Croatia, 12–13 October 2000. ADRIAMED Tech. Doc. 2001, 3, 66–77. [Google Scholar]
- Palomera, I.; Olivar, M.; Salat, J.; Sabatés, A.; Coll, M.; García, A.; Morales-Nin, B. Small pelagic fish in the NW Mediterranean Sea: An ecological review. Prog. Oceanogr. 2007, 74, 377–396. [Google Scholar]
- Zorica, B.; Vilibić, I.; Keč, V.C.; Šepić, J. Environmental conditions conducive to anchovy (Engraulisencrasicolus) spawning in the Adriatic Sea. Fish. Oceanogr. 2013, 22, 32–40. [Google Scholar] [CrossRef]
- Grbec, B.; Jakov, D.; Morović, M. Long-term changes in landings of small pelagic fish in the eastern Adriatic—Possible influence of climate oscillations over the Northern Hemisphere. Clim. Res. 2002, 20, 241–252. [Google Scholar] [CrossRef]
- Santojanni, A.; Arneri, E.; Bernardini, V.; Cingolani, N.; Marco, M.; Russo, A. Effects of environmental variables on recruitment of anchovy in the Adriatic Sea. Clim. Res. 2006, 31, 181–193. [Google Scholar] [CrossRef]
- Carpi, P.; Scarcella, G.; Cardinale, M. The Saga of the Management of Fisheries in the Adriatic Sea: History, Flaws, Difficulties, and Successes toward the Application of the Common Fisheries Policy in the Mediterranean. Front. Mar. Sci. 2017, 4, 423. [Google Scholar] [CrossRef]
- SA-GFCM. Stock Assessment on Small Pelagics in GSA 17.18; Report 2021; General Fisheries Commission for the Mediterranean (GFCM): Rome, Italy, 2021; p. 6. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992; pp. 623–626. [Google Scholar]
- McDonald, J.H. Handbook of Biological Statistics, 3rd ed.; Sparky House Publishing: Baltimore, MD, USA, 2014. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 4–9. [Google Scholar]
- EPA, United States Environmental Protection Agency. Available online: https://www.epa.gov/ (accessed on 4 October 2021).
- ISO 3675. Available online: https://www.iso.org/standard/23626.html (accessed on 4 October 2021).
- BMTI, Borsa Merci Telematica Italiana. Analisi Trimestrale sui Prezzi e Sul Mercato dei Prodotti della Pesca e Dell’acquacoltura. MiPAAF. 2021. Available online: https://ittico.bmti.it/Prezzi/pages/Archivio?tipo=trimestrale&anno=2021 (accessed on 14 December 2021).
- FAO. Report of the Symposium on Impacts of Fishing on the Environment ICES-FAO Working Group on Fishing Technology and Fish Behaviors; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Sakamoto, M.; Fujimori, Y.; Matsubara, N.; Yasuma, H.; Shimizu, S.; Katakura, S. Fish attracting effects of led light of different colours. Contributions on the Theory of Fishing Gears and Related Marine Systems. In Proceedings of the 13th International Workshop on Methods for the Development and Evaluation of Maritime Technologies, Sapporo, Japan, 2–4 October 2017. [Google Scholar]
- Nguyen, Q.K.; Winger, P.D.; Morris, C.; Grant, S.M. Artificial lights improve the catchability of snow crab (Chionoecetesopilio) traps. Aquac. Fish. 2017, 2, 124–133. [Google Scholar] [CrossRef]
- Giannoulaki, M.; Iglesias, M.; Tugores, M.P.; Bonanno, A.; Patti, B.; De Felice, A.; Leonori, I.; Bigot, J.L.; Tičina, V.; Pyrounaki, M.M.; et al. Characterizing the potential habitat of European anchovy Engraulisencrasicolus in the Mediterranean Sea, at different life stages. Fish. Oceanogr. 2013, 22, 69–89. [Google Scholar] [CrossRef]
- Boyra, G.; Peña, M.; Cotano, U.; Irigoien, X.; Rubio, A.; Nogueira, E. Spatial dynamics of juvenile anchovy in the Bay of Biscay. Fish. Oceanogr. 2016, 25, 529–543. [Google Scholar] [CrossRef]
- O’Boyle, R.; Dean, M.; Legault, C.M. The influence of seasonal migrations on fishery selectivity. ICES J. Mar. Sci. 2016, 73, 1774–1787. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Corredor, E.; Albo-Puigserver, M.; Pennino, M.G.; Bellido, J.M.; Coll, M. Influence of environmental factors on different life stages of European anchovy (Engraulisencrasicolus) and European sardine (Sardinapilchardus) from the Mediterranean Sea. Reg. Stud. Mar. Sci. 2021, 41, 101606. [Google Scholar] [CrossRef]
- Parker, R.W.R.; Blanchard, J.L.; Gardner, C.; Green, B.S.; Hartmann, K.; Tyedmers, P.H.; Watson, R.A. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 2018, 8, 333–337. [Google Scholar] [CrossRef]
- Nguyen, K.Q.; Tran, P.D.; Nguyen, L.T.; To, P.V.; Morris, C.J. Use of light-emitting diode (LED) lamps in combination with metal halide (MH) lamps reduce fuel consumption in the Vietnamese purse seine fishery. Aquac. Fish. 2021, 6, 432–440. [Google Scholar] [CrossRef]
- Order Arm/2529/2011, of 21 September, Which Regulates Fishing with Purse Seines in the Mediterranean Fishery Arts. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2011-15094 (accessed on 14 December 2021).
- Fiorentino, F.; Vitale, S. How Can We Reduce the Overexploitation of the Mediterranean Resources? Front. Mar. Sci. 2021, 8, 674633. [Google Scholar] [CrossRef]
- Squires, D.; Vestergaard, N. Technical change in fisheries. Mar. Policy 2013, 42, 286–292. [Google Scholar] [CrossRef]
Tr. | Species | LWH | LBLU | INC | Tr. | Species | LWH | LBLU | INC | PULSE |
---|---|---|---|---|---|---|---|---|---|---|
1 | ANE | 474 | 316 | 15 | ANE | 586 | 654 | 559 | ||
1 | MAS | 129 | 87 | 15 | MAS | 6 | 7 | 5 | ||
1 | SQM | 3 | 3 | 15 | PIL | 6 | 6 | 6 | ||
2 | MAS | 112 | 73 | 15 | SQM | 6 | 6 | 5 | ||
2 | ANE | 434 | 252 | 16 | ANE | 700 | 1681 | 420 | ||
2 | SQM | 14 | 7 | 16 | MAS | 17 | 41 | 10 | ||
3 | ANE | 755 | 247 | 16 | SQM | 2 | 4 | 1 | ||
3 | MAS | 7 | 2 | 17 | ANE | 283 | 420 | 274 | ||
3 | SQM | 7 | 3 | 17 | MAS | 7 | 9 | 6 | ||
4 | MAS | 13928 | 13,321 | 18 | ANE | 2100 | 560 | 1400 | ||
5 | MAS | 5438 | 5185 | 18 | MAS | 7 | 2 | 2 | ||
6 | ANE | 6478 | 3239 | 3220 | 18 | SQM | 7 | 2 | 2 | |
6 | SWO | 73 | 19 | ANE | 5250 | 1960 | 8400 | |||
7 | ANE | 3543 | 2814 | 2716 | 19 | SQM | 7 | 3 | 11 | |
8 | ANE | 1910 | 1751 | 1645 | 20 | ANE | 2002 | 3003 | 2695 | |
8 | MAS | 41.1 | 37.6 | 35.4 | 21 | ANE | 1600 | 1700 | ||
8 | PIL | 3.9 | 3.7 | 3.4 | 21 | MAS | 280 | 284 | ||
8 | HMM | 0.261 | 0.237 | 0.27 | 22 | ANE | 2880 | 2800 | ||
8 | BON | 0.012 | 22 | MAS | 115 | 119 | ||||
9 | ANE | 654 | 598 | 617 | ||||||
10 | ANE | 732 | 520 | 674 | Total Catch (kg) | 59,382.3 | 17,145.5 | 40,987.1 | 17,413.0 | |
11 | ANE | 5240 | 2096 | 3144 | Catch (%) | 44 | 13 | 30 | 13 | |
12 | ANE | 786 | 687 | 491 | Mean | 1263.5 | 714.4 | 999.7 | 1741.3 | |
13 | ANE | 901 | 501 | 582 | Stand. Error | 365.39 | 201.38 | 359.96 | 818.45 | |
14 | ANE | 1798 | 1995 | 1495 | ANE Tot. Catch (kg) | 39,106 | 16,956 | 22,175 | 16,975 | |
14 | MAS | 27 | 31 | 23 | ANE Tot. Catch (%) | 98 | 99 | 99 | 98 | |
14 | PIL | 17 | 23 | 17 | ||||||
14 | SQM | 16 | 21 | 12 |
CPUE Energy | CPUE Fuel | CO2 Emissions | Hourly Fuel Consumption | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tr. | LWH | LBLU | INC | PULSE | LWH | LBLU | INC | PULSE | LWH | LBLU | INC | PULSE | LWH | LBLU | INC | PULSE |
1 | 8.37 | 4.22 | 29.63 | 14.93 | 42.2 | 55.9 | 3.6 | 7.1 | ||||||||
2 | 13.28 | 4.82 | 47.02 | 17.07 | 24.4 | 39.0 | 3.1 | 7.4 | ||||||||
3 | 23.73 | 4.20 | 83.98 | 14.88 | 23.7 | 43.8 | 2.4 | 7.4 | ||||||||
6 | 101.47 | 207.88 | 23.80 | 359.38 | 736.24 | 84.28 | 47.6 | 11.6 | 100.9 | 2.8 | 0.8 | 7.1 | ||||
7 | 662.41 | 1573.73 | 204.56 | 2346.36 | 5573.61 | 724.48 | 4.0 | 1.3 | 9.9 | 2.3 | 0.8 | 6.4 | ||||
8 | 41.19 | 149.58 | 23.37 | 163.16 | 529.75 | 23.37 | 30.9 | 8.7 | 185.9 | 2.5 | 0.7 | 19.4 | ||||
9 | 45.39 | 204.68 | 21.97 | 223.84 | 146.98 | 77.81 | 7.7 | 10.7 | 20.9 | 1.5 | 3.6 | 15.3 | ||||
10 | 43.66 | 150.29 | 18.40 | 154.62 | 532.29 | 65.15 | 12.5 | 2.6 | 27.3 | 2.6 | 0.5 | 20.7 | ||||
11 | 111.44 | 215.77 | 31.74 | 394.68 | 764.17 | 112.43 | 35.1 | 7.2 | 73.8 | 2.4 | 0.6 | 6.7 | ||||
12 | 58.96 | 215.22 | 16.78 | 208.86 | 763.33 | 59.44 | 9.9 | 2.4 | 21.8 | 4.8 | 0.7 | 14.6 | ||||
13 | 83.37 | 126.84 | 29.42 | 295.28 | 448.91 | 104.30 | 8.1 | 2.9 | 14.7 | 2.2 | 0.8 | 6.7 | ||||
14 | 35.31 | 170.08 | 13.71 | 125.06 | 602.35 | 48.54 | 38.0 | 8.7 | 81.3 | 2.8 | 0.7 | 8.3 | ||||
15 | 30.01 | 164.31 | 18.39 | 106.26 | 583.93 | 65.14 | 14.6 | 3.0 | 22.7 | 3.2 | 0.6 | 7.1 | ||||
16 | 16.47 | 183.61 | 5.17 | 58.34 | 650.30 | 18.32 | 31.7 | 6.8 | 60.5 | 3.0 | 0.6 | 7.1 | ||||
17 | 19.87 | 120.69 | 16.45 | 70.37 | 427.44 | 58.27 | 10.6 | 2.6 | 12.4 | 4.3 | 0.6 | 7.1 | ||||
18 | 40.14 | 12.39 | 73.61 | 142.15 | 43.88 | 260.69 | 39.0 | 33.7 | 14.2 | 2.6 | 5.2 | 1.64 | ||||
19 | 86.81 | 31.51 | 321.10 | 307.44 | 111.60 | 1137.23 | 45.1 | 46.4 | 19.5 | 2.2 | 5.5 | 1.60 | ||||
20 | 139.03 | 49.88 | 110.63 | 492.39 | 176.67 | 391.82 | 10.7 | 44.9 | 18.2 | 0.6 | 5.6 | 1.68 | ||||
21 | 40.16 | 93.82 | 142.24 | 332.28 | 29.7 | 13.5 | 2.3 | 1.69 | ||||||||
22 | 184.62 | 259.26 | 653.85 | 918.21 | 11.6 | 8.1 | 2.4 | 1.66 | ||||||||
Median | 42 | 177 | 18 | 111 | 159 | 593 | 62 | 392 | 29.1 | 5.9 | 50.0 | 17.1 | 2.9 | 0.7 | 7.7 | 1.7 |
IR | 62.04 | 59.60 | 15.30 | 165.44 | 219.73 | 233.48 | 70.80 | 585.93 | 38.41 | 8.94 | 59.75 | 12.21 | 0.81 | 0.18 | 4.50 | 0.00 |
Min | 8 | 121 | 4 | 74 | 30 | 147 | 15 | 261 | 12.9 | 3.1 | 26.6 | 16.3 | 0.6 | 0.6 | 5.6 | 1.7 |
Max | 662 | 1574 | 205 | 321 | 2346 | 5574 | 724 | 1137 | 57.5 | 14.0 | 224.6 | 23.6 | 8.0 | 3.8 | 34.5 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, P.; Trivellin, N.; Cascione, D.; Cipriano, G.; Orlandi, V.T.; Carlucci, R. Benefits and Risks of the Technological Creep of LED Light Technologies Applied to the Purse Seine Fishery. Biology 2022, 11, 48. https://doi.org/10.3390/biology11010048
Ricci P, Trivellin N, Cascione D, Cipriano G, Orlandi VT, Carlucci R. Benefits and Risks of the Technological Creep of LED Light Technologies Applied to the Purse Seine Fishery. Biology. 2022; 11(1):48. https://doi.org/10.3390/biology11010048
Chicago/Turabian StyleRicci, Pasquale, Nicola Trivellin, Daniela Cascione, Giulia Cipriano, Viviana Teresa Orlandi, and Roberto Carlucci. 2022. "Benefits and Risks of the Technological Creep of LED Light Technologies Applied to the Purse Seine Fishery" Biology 11, no. 1: 48. https://doi.org/10.3390/biology11010048
APA StyleRicci, P., Trivellin, N., Cascione, D., Cipriano, G., Orlandi, V. T., & Carlucci, R. (2022). Benefits and Risks of the Technological Creep of LED Light Technologies Applied to the Purse Seine Fishery. Biology, 11(1), 48. https://doi.org/10.3390/biology11010048