Neuropsychological and Neurophysiological Mechanisms behind Flickering Light Stimulus Processing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Flickering Light
3. Visual System and Visual Information Processing
4. Colour Vision
5. Motion Processing
6. Flickering Light in Neuroimaging Studies
7. Visual Attention
8. Psychophysics of Stimuli Detection
9. Does the Flicker Test Examine Arousal?
10. Flickering Light, Headaches and Epilepsy
11. Future Directions
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abiyev, A.; Yakaryılmaz, F.D.; Öztürk, Z.A. A New Diagnostic Approach in Alzheimer’s Disease: The Critical Flicker Fusion Threshold. Dement. Neuropsychol. 2022, 16, 89–96. [Google Scholar] [CrossRef]
- Curran, S.; Wilson, S.; Musa, S.; Wattis, J. Critical Flicker Fusion Threshold in Patients with Alzheimer’s Disease and Vascular Dementia. Int. J. Geriatr. Psychiatry 2004, 19, 575–581. [Google Scholar] [CrossRef]
- Park, S.-S.; Park, H.-S.; Kim, C.-J.; Baek, S.-S.; Park, S.-Y.; Anderson, C.; Kim, M.-K.; Park, I.-R.; Kim, T.-W. Combined Effects of Aerobic Exercise and 40-Hz Light Flicker Exposure on Early Cognitive Impairments in Alzheimer’s Disease of 3×Tg Mice. J. Appl. Physiol. 2022, 132, 1054–1068. [Google Scholar] [CrossRef]
- Shankar, H.; Pesudovs, K. Critical Flicker Fusion Test of Potential Vision. J. Cataract Refract. Surg. 2007, 33, 232–239. [Google Scholar] [CrossRef]
- Casey, B.J.; Tottenham, N.; Liston, C.; Durston, S. Imaging the Developing Brain: What Have We Learned about Cognitive Development? Trends Cogn. Sci. 2005, 9, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Mewborn, C.; Renzi, L.M.; Hammond, B.R.; Stephen Miller, L. Critical Flicker Fusion Predicts Executive Function in Younger and Older Adults. Arch. Clin. Neuropsychol. 2015, 30, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Prabu Kumar, A.; Omprakash, A.; Kuppusamy, M.; Maruthy, K.N.; Sathiyasekaran, B.W.C.; Vijayaraghavan, P.V.; Padmavathi, R. How Does Cognitive Function Measured by the Reaction Time and Critical Flicker Fusion Frequency Correlate with the Academic Performance of Students? BMC Med. Educ. 2020, 20, 507. [Google Scholar] [CrossRef]
- Saint, S.E.; Hammond, B.R.; O’Brien, K.J.; Frick, J.E. Developmental Trends in Infant Temporal Processing Speed. Vis. Res. 2017, 138, 71–77. [Google Scholar] [CrossRef]
- Ardestani, B.S.; Balestra, C.; Bouzinova, E.V.; Loennechen, Ø.; Pedersen, M.; Berenji Ardestani, S.; Balestra, C.; Bouzinova, E.V.; Loennechen, Ø.; Pedersen, M.; et al. Evaluation of Divers’ Neuropsychometric Effectiveness and High-Pressure Neurological Syndrome via Computerized Test Battery Package and Questionnaires in Operational Setting. Front. Physiol. 2019, 10, 1386. [Google Scholar] [CrossRef] [Green Version]
- Balestra, C.; Lafere, P.; Germonpre, P. Persistence of Critical Flicker Fusion Frequency Impairment after a 33 Mfw SCUBA Dive: Evidence of Prolonged Nitrogen Narcosis? Eur. J. Appl. Physiol. 2012, 112, 4063–4068. [Google Scholar] [CrossRef]
- Balestra, C.; Machado, M.-L.L.; Theunissen, S.; Balestra, A.; Cialoni, D.; Clot, C.; Besnard, S.; Kammacher, L.; Delzenne, J.; Germonpré, P.; et al. Critical Flicker Fusion Frequency: A Marker of Cerebral Arousal during Modified Gravitational Conditions Related to Parabolic Flights. Front. Physiol. 2018, 9, 1403. [Google Scholar] [CrossRef] [PubMed]
- Lafère, P.; Balestra, C.; Hemelryck, W.; Donda, N.; Sakr, A.; Taher, A.; Marroni, S.; Germonpré, P. Evaluation of Critical Flicker Fusion Frequency and Perceived Fatigue in Divers after Air and Enriched Air Nitrox Diving. Diving Hyperb. Med. 2010, 40, 114–118. [Google Scholar]
- Piispanen, W.W.; Lundell, R.V.; Tuominen, L.J.; Räisänen-Sokolowski, A.K. Assessment of Alertness and Cognitive Performance of Closed Circuit Rebreather Divers With the Critical Flicker Fusion Frequency Test in Arctic Diving Conditions. Front. Physiol. 2021, 12, 722915. [Google Scholar] [CrossRef] [PubMed]
- Vrijdag, X.C.E.; van Waart, H.; Sleigh, J.W.; Balestra, C.; Mitchell, S.J. Investigating Critical Flicker Fusion Frequency for Monitoring Gas Narcosis in Divers. Diving Hyperb. Med. 2020, 50, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.M.; Karasev, V.I.; Banks, M.S. Temporal Presentation Protocols in Stereoscopic Displays: Flicker Visibility, Perceived Motion, and Perceived Depth. J. Soc. Inf. Disp. 2011, 19, 271–297. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.L. Display Interfaces: Fundamentals and Standards; John Wiley & Sons: Chichester, UK, 2002; ISBN 0-471-49946-3. [Google Scholar]
- Davis, J.; Hsieh, Y.-H.H.; Lee, H.-C.C. Humans Perceive Flicker Artifacts at 500 Hz. Sci. Rep. 2015, 5, 7861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deubel, H.; Elsner, T. Threshold Perception and Saccadic Eye Movements. Biol. Cybern. 1986, 54, 351–358. [Google Scholar] [CrossRef]
- Watson, A.B. High Frame Rates and Human Vision: A View through the Window of Visibility. SMPTE Motion Imaging J. 2013, 122, 18–32. [Google Scholar] [CrossRef] [Green Version]
- Baccino, T.; Jaschinski, W.; Bussolon, J. The Influence of Bright Background Flicker during Different Saccade Periods on Saccadic Performance. Vis. Res. 2001, 41, 3909–3916. [Google Scholar] [CrossRef] [Green Version]
- Mankowska, N.D.; Marcinkowska, A.B.; Waskow, M.; Sharma, R.I.; Kot, J.; Winklewski, P.J. Critical Flicker Fusion Frequency: A Narrative Review. Medicina 2021, 57, 1096. [Google Scholar] [CrossRef]
- Bullough, J.D.; Sweater Hickcox, K.; Klein, T.R.; Narendran, N. Effects of Flicker Characteristics from Solid-State Lighting on Detection, Acceptability and Comfort. Light. Res. Technol. 2011, 43, 337–348. [Google Scholar] [CrossRef]
- Bullough, J.D.; Hickcox, K.S.; Klein, T.R.; Lok, A.; Narendran, N. Detection and Acceptability of Stroboscopic Effects from Flicker. Light. Res. Technol. 2012, 44, 477–483. [Google Scholar] [CrossRef]
- Roberts, J.E.; Wilkins, A.J. Flicker Can Be Perceived during Saccades at Frequencies in Excess of 1 KHz. Light. Res. Technol. 2013, 45, 124–132. [Google Scholar] [CrossRef]
- Rider, A.T.; Henning, G.B.; Stockman, A. A Reinterpretation of Critical Flicker-Frequency (CFF) Data Reveals Key Details about Light Adaptation and Normal and Abnormal Visual Processing. Prog. Retin. Eye Res. 2022, 87, 101001. [Google Scholar] [CrossRef]
- Donner, K. Temporal Vision: Measures, Mechanisms and Meaning. J. Exp. Biol. 2021, 224, jeb222679. [Google Scholar] [CrossRef] [PubMed]
- Grondin, S. Psychology of Perception; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783319317915. [Google Scholar]
- Imamoto, Y.; Shichida, Y. Cone Visual Pigments. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2014, 1837, 664–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahabadi, N.; Al Khalili, Y. Neuroanatomy, Retina; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Hartline, H.K. The Receptive Fields of Optic Nerve Fibers. Am. J. Physiol. 1940, 130, 690–699. [Google Scholar] [CrossRef]
- Kuffler, S.W. Discharge Patterns and Functional Organization of Mammalian Retina. J. Neurophysiol. 1953, 16, 37–68. [Google Scholar] [CrossRef] [Green Version]
- Callaway, E.M. Structure and Function of Parallel Pathways in the Primate Early Visual System. J. Physiol. 2005, 566, 13–19. [Google Scholar] [CrossRef]
- Goodale, M.A.; Milner, A.D. Separate Visual Pathways for Perception and Action. Trends Neurosci. 1992, 15, 20–25. [Google Scholar] [CrossRef]
- Snowden, R.; Snowden, R.J.; Thompson, P.; Troscianko, T. Basic Vision: An Introduction to Visual Perception; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Bernal, B.; Perdomo, J. Brodmann’s Interactive Atlas 1. Available online: https://www.fmriconsulting.com/brodmann/Introduction.html (accessed on 12 April 2022).
- Mtui, E.; Gruener, G.; Dockery, P. Fitzgerald’s Clinical Neuroanatomy and Neuroscience, 7th ed.; Elsevier Health Sciences: Philadelphia, PA, USA, 2015. [Google Scholar]
- Felten, D.L.; O’Banion, M.K.; Maida, M.S. Netter’s Atlas of Neuroscience, 4th ed.; Elsevier Health Sciences: Philadelphia, PA, USA, 2021; ISBN 978-0-323-75654-9. [Google Scholar]
- Khan, A.Z.; Pisella, L.; Vighetto, A.; Cotton, F.; Luauté, J.; Boisson, D.; Salemme, R.; Crawford, J.D.; Rossetti, Y. Optic Ataxia Errors Depend on Remapped, Not Viewed, Target Location. Nat. Neurosci. 2005, 8, 418–420. [Google Scholar] [CrossRef] [PubMed]
- Brannan, J.R.; Williams, M.C. The Effects of Age and Reading Ability on Flicker Threshold. Clin. Vis. Sci. 1988, 3, 137–142. [Google Scholar]
- Stein, J. Visual Motion Sensitivity and Reading. Neuropsychologia 2003, 41, 1785–1793. [Google Scholar] [CrossRef]
- Graves, R.E.; Frerichs, R.J.; Cook, J.A. Visual Localization in Dyslexia. Neuropsychology 1999, 13, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.L.; Bavin, E.L.; Brown, A.; Crewther, D.P.; Crewther, S.G. Flicker Fusion Thresholds as a Clinical Identifier of a Magnocellular-Deficit Dyslexic Subgroup. Sci. Rep. 2020, 10, 21638. [Google Scholar] [CrossRef]
- Foxe, J.J.; Strugstad, E.C.; Sehatpour, P.; Molholm, S.; Pasieka, W.; Schroeder, C.E.; McCourt, M.E. Parvocellular and Magnocellular Contributions to the Initial Generators of the Visual Evoked Potential: High-Density Electrical Mapping of the “C1” Component. Brain Topogr. 2008, 21, 11–21. [Google Scholar] [CrossRef]
- Luo, A.; Sajda, P. Using Single-Trial EEG to Estimate the Timing of Target Onset during Rapid Serial Visual Presentation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006. [Google Scholar]
- Pollen, D.A. Some Perceptual Effects of Electrical Stimulation of the Visual Cortex in Man. Nerv. Syst. 1975, 2, 519–528. [Google Scholar]
- Berryhill, M.E.; Olson, I.R. Is the Posterior Parietal Lobe Involved in Working Memory Retrieval? Evidence from Patients with Bilateral Parietal Lobe Damage. Neuropsychologia 2008, 46, 1775–1786. [Google Scholar] [CrossRef] [Green Version]
- Berryhill, M.E.; Olson, I.R. The Right Parietal Lobe Is Critical for Visual Working Memory. Neuropsychologia 2008, 46, 1767–1774. [Google Scholar] [CrossRef] [Green Version]
- Marshuetz, C. Order Information in Working Memory: An Integrative Review of Evidence from Brain and Behavior. Psychol. Bull. 2005, 131, 323–339. [Google Scholar] [CrossRef]
- Marshuetz, C.; Smith, E.E.; Jonides, J.; DeGutis, J.; Chenevert, T.L. Order Information in Working Memory: FMRI Evidence for Parietal and Prefrontal Mechanisms. J. Cogn. Neurosci. 2000, 12, 130–144. [Google Scholar] [CrossRef]
- Gonzalez, C.C.; Burke, M.R. Motor Sequence Learning in the Brain: The Long and Short of It. Neuroscience 2018, 389, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Sliney, D.H. What Is Light? The Visible Spectrum and Beyond. Eye 2016, 30, 222–229. [Google Scholar] [CrossRef]
- Eysenck, M.; Keane, M. Cognitive Psychology: A Student’s Handbook, 8th ed.; Psychology Press: London, UK, 2020; ISBN 9781138482234. [Google Scholar]
- Zeki, S.; Watson, J.D.G.; Lueck, C.J.; Friston, K.J.; Kennard, C.; Frackowiak, R.S.J. A Direct Demonstration of Functional Specialization in Human Visual Cortex. J. Neurosci. 1991, 11, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.J.; Holliday, I.E.; Singh, K.D.; Harding, G.F.A. Localization and Functional Analysis of Human Cortical Area V5 Using Magneto-Encephalography. Proc. R. Soc. B Biol. Sci. 1996, 263, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Tootell, R.B.H.; Reppas, J.B.; Kwong, K.K.; Malach, R.; Born, R.T.; Brady, T.J.; Rosen, B.R.; Belliveau, J.W. Functional Analysis of Human MT and Related Visual Cortical Areas Using Magnetic Resonance Imaging. J. Neurosci. 1995, 15, 3215–3230. [Google Scholar] [CrossRef]
- Tootell, R.B.H.; Reppas, J.B.; Dale, A.M.; Look, R.B.; Sereno, M.I.; Malach, R.; Brady, T.J.; Rosen, B.R. Visual Motion Aftereffect in Human Cortical Area MT Revealed by Functional Magnetic Resonance Imaging. Nature 1995, 375, 139–141. [Google Scholar] [CrossRef]
- Beckers, G.; Zeki, S. The Consequences of Inactivating Areas V1 and V5 on Visual Motion Perception. Brain 1995, 118, 49–60. [Google Scholar] [CrossRef]
- Zihl, J.; von Cramon, D.; Mai, N. Selective Disturbance of Movement Vision after Bilateral Brain Damage. Brain 1983, 106, 313–340. [Google Scholar] [CrossRef]
- Shipp, S.; Jong, B.M.D.; Zihl, J.; Frackowiak, R.S.J.; Zeki, S. The Brain Activity Related to Residual Motion Vision in a Patient with Bilateral Lesions of V5. Brain 1994, 117, 1023–1038. [Google Scholar] [CrossRef] [Green Version]
- van Essen, D.C.; Gallant, J.L. Neural Mechanisms of Form and Motion Processing in the Primate Visual System. Neuron 1994, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ashida, H.; Osaka, N. Motion Aftereffect with Flickering Test Stimuli Depends on Adapting Velocity. Vis. Res. 1995, 35, 1825–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mecarelli, O. (Ed.) Clinical Electroencephalography; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Gray, M.J.; Emmanouil, T.A. Individual Alpha Frequency Increases during a Task but Is Unchanged by Alpha-Band Flicker. Psychophysiology 2020, 57, e13480. [Google Scholar] [CrossRef] [PubMed]
- Spaak, E.; de Lange, F.P.; Jensen, O. Local Entrainment of Alpha Oscillations by Visual Stimuli Causes Cyclic Modulation of Perception. J. Neurosci. 2014, 34, 3536–3544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, C.S. Human EEG Responses to 1–100 Hz Flicker: Resonance Phenomena in Visual Cortex and Their Potential Correlation to Cognitive Phenomena. Exp. Brain Res. 2001, 137, 346–353. [Google Scholar] [CrossRef]
- Salmi, T. Critical Flicker Frequencies in MS Patients with Normal or Abnormal Pattern VEP. Acta Neurol. Scand. 1985, 71, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Daley, M.L.; Swank, R.L.; Ellison, C.M. Flicker Fusion Thresholds in Multiple Sclerosis: A Functional Measure of Neurological Damage. Arch. Neurol. 1979, 36, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Chiappa, K.H. Pattern Shift Visual, Brainstem Auditory, and Short-latency Somatosensory Evoked Potentials in Multiple Sclerosis. Neurology 1980, 30, 110–123. [Google Scholar] [CrossRef]
- Halliday, A.M.; Mcdonald, W.I.; Mushin, J. Delayed Visual Evoked Response in Optic Neuritis. Lancet 1972, 299, 982–985. [Google Scholar] [CrossRef]
- Trojaborg, W.; Böttcher, J.; Saxtrup, O. Evoked Potentials and Immunoglobulin Abnormalities in Multiple Sclerosis. Neurology 1981, 31, 866. [Google Scholar] [CrossRef]
- Glover, G.H. Overview of Functional Magnetic Resonance Imaging. Neurosurg. Clin. N. Am. 2011, 22, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmel, D.; Lavie, N.; Rees, G. Conscious Awareness of Flicker in Humans Involves Frontal and Parietal Cortex. Curr. Biol. 2006, 16, 907–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafiris, O.; Kircheis, G.; Rood, H.A.; Boers, F.; Häussinger, D.; Zilles, K. Neural Mechanism Underlying Impaired Visual Judgement in the Dysmetabolic Brain: An FMRI Study. Neuroimage 2004, 22, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, R.F. Metabolic Encephalopathies. In Basic Neurochemistry: Molecular, Cellular and Medical Aspects; Siegiel, G.J., Ed.; Lippincott-Raven: Philadelphia, PA, USA, 1999; pp. 316–333. [Google Scholar]
- Mullinger, K.J.; Cherukara, M.T.; Buxton, R.B.; Francis, S.T.; Mayhew, S.D. Post-Stimulus FMRI and EEG Responses: Evidence for a Neuronal Origin Hypothesised to Be Inhibitory. Neuroimage 2017, 157, 388–399. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, K.; He, S. Human Visual Cortex Responds to Invisible Chromatic Flicker. Nat. Neurosci. 2007, 10, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Desimone, R.; Duncan, J. Neural Mechanisms of Selective Visual Attention. Annu. Rev. Neurosci. 1995, 18, 193–222. [Google Scholar] [CrossRef]
- Fuchs, S.; Andersen, S.K.; Gruber, T.; Müller, M.M. Attentional Bias of Competitive Interactions in Neuronal Networks of Early Visual Processing in the Human Brain. Neuroimage 2008, 41, 1086–1101. [Google Scholar] [CrossRef]
- Morgan, S.T.; Hansen, J.C.; Hillyard, S.A. Selective Attention to Stimulus Location Modulates the Steady-State Visual Evoked Potential. Proc. Natl. Acad. Sci. USA 1996, 93, 4770–4774. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.M.; Malinowski, P.; Gruber, T.; Hillyard, S.A. Sustained Division of the Attentional Spotlight. Nature 2003, 424, 309–312. [Google Scholar] [CrossRef]
- Müller, M.M.; Picton, T.W.; Valdes-Sosa, P.; Riera, J.; Teder-Sälejärvi, W.A.; Hillyard, S.A. Effects of Spatial Selective Attention on the Steady-State Visual Evoked Potential in the 20–28 Hz Range. Cogn. Brain Res. 1998, 6, 249–261. [Google Scholar] [CrossRef]
- Keitel, C.; Andersen, S.K.; Müller, M.M. Competitive Effects on Steady-State Visual Evoked Potentials with Frequencies in- and Outside the Alpha Band. Exp. Brain Res. 2010, 205, 489–495. [Google Scholar] [CrossRef]
- de Lissa, P.; Caldara, R.; Nicholls, V.; Miellet, S. In Pursuit of Visual Attention: SSVEP Frequency-Tagging Moving Targets. PLoS ONE 2020, 15, e0236967. [Google Scholar] [CrossRef]
- Egeth, H.; Kahneman, D. Attention and Effort. Am. J. Psychol. 1975, 88, 339. [Google Scholar] [CrossRef]
- Lavie, N.; Hirst, A.; de Fockert, J.W.; Viding, E. Load Theory of Selective Attention and Cognitive Control. J. Exp. Psychol. Gen. 2004, 133, 339–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbetta, M.; Shulman, G.L. Control of Goal-Directed and Stimulus-Driven Attention in the Brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef]
- Hautus, M.J.; Macmillan, N.A.; Creelman, C.D. (Eds.) Detection Theory, 3rd ed.; Routledge: New York, NY, USA, 2021; ISBN 9781003203636. [Google Scholar]
- Chang, T.T.L.; Ciuffreda, K.J.; Kapoor, N. Critical Flicker Frequency and Related Symptoms in Mild Traumatic Brain Injury. Brain Inj. 2007, 21, 1055–1062. [Google Scholar] [CrossRef]
- Clark, W.C.; Rutschmann, J.; Link, R.; Brown, J.C. Comparison of Flicker-Fusion Thresholds Obtained by the Methods of Forced-Choice and Limits on Psychiatric Patients. Percept. Mot. Ski. 1963, 16, 19–30. [Google Scholar] [CrossRef]
- Eisen-Enosh, A.; Farah, N.; Burgansky-Eliash, Z.; Polat, U.; Mandel, Y. Evaluation of Critical Flicker-Fusion Frequency Measurement Methods for the Investigation of Visual Temporal Resolution. Sci. Rep. 2017, 7, 15621. [Google Scholar] [CrossRef] [Green Version]
- Becker, D.; Creutzfeldt, O.D.; Schwibbe, M.; Wuttke, W. Changes in Physiological, EEG and Psychological Parameters in Women during the Spontaneous Menstrual Cycle and Following Oral Contraceptives. Psychoneuroendocrinology 1982, 7, 75–90. [Google Scholar] [CrossRef]
- Berka, C.; Levendowski, D.; Lumicao, M.; Yau, A.; Davis, G.; Zivkovic, V.; Olmstead, R.; Tremoulet, P.; Craven, P. EEG Correlates of Task Engagement and Mental Workload in Vigilance, Learning, and Memory Tasks. Aviat. Space Environ. Med. 2007, 78, B231–B244. [Google Scholar]
- Brown, B.B. Specificity of EEG Photic Flicker Responses To Color As Related To Visual Imagery Ability. Psychophysiology 1966, 2, 197–207. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Yotsumoto, Y. The Amount of Time Dilation for Visual Flickers Corresponds to the Amount of Neural Entrainments Measured by EEG. Front. Comput. Neurosci. 2018, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Küller, R.; Laike, T. The Impact of Flicker from Fluorescent Lighting on Well-Being, Performance and Physiological Arousal. Ergonomics 1998, 41, 433–447. [Google Scholar] [CrossRef]
- Ikegami, S.; Takano, K.; Wada, M.; Saeki, N.; Kansaku, K. Effect of the Green/Blue Flicker Matrix for P300-Based Brain-Computer Interface: An EEG-FMRI Study. Front. Neurol. 2012, 3, 113. [Google Scholar] [CrossRef]
- Schulz, H.; Wilde-Frenz, J. The Disturbance of Cognitive Processes in Narcolepsy. J. Sleep Res. 1995, 4, 10–14. [Google Scholar] [CrossRef]
- Ronzhina, M.; Bubnik, K.; Gajdos, M.; Kolarova, J.; Honzik, P.; Provaznik, I. Use of EEG for Validation of Flicker-Fusion Test. In Proceedings of the ISABEL ‘11: International Symposium on Applied Sciences in Biomedical and Communication Technologies, Barcelona, Spain, 26–29 October 2011. [Google Scholar] [CrossRef]
- Lecca, L.I.; Fadda, P.; Fancello, G.; Medda, A.; Meloni, M. Cardiac Autonomic Control and Neural Arousal as Indexes of Fatigue in Professional Bus Drivers. Saf. Health Work 2022, 13, 148–154. [Google Scholar] [CrossRef]
- Wilkins, A.J.; Nimmo-Smith, I.; Slater, A.I.; Bedocs, L. Fluorescent Lighting, Headaches and Eyestrain. Light. Res. Technol. 1989, 21, 11–18. [Google Scholar] [CrossRef]
- Chatrian, G.E.; Lettich, E.; Miller, L.H.; Green, J.R. Pattern-Sensitive Epilepsy. Part 1. An Electrographic Study of Its Mechanisms. Epilepsia 1970, 11, 125–149. [Google Scholar] [CrossRef]
- Wilkins, A.J. Visual Stress; Oxford University Press: New York, NY, USA, 1995; ISBN 0-19-852174-X. [Google Scholar]
- O’Hare, L.; Hibbard, P.B. Visual Discomfort and Blur. J. Vis. 2013, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- Yoshimoto, S.; Garcia, J.; Jiang, F.; Wilkins, A.J.; Takeuchi, T.; Webster, M.A. Visual Discomfort and Flicker. Vis. Res. 2017, 138, 18–28. [Google Scholar] [CrossRef]
- Lin, M.-W.; Hsieh, P.-H.; Chang, E.C.; Chen, Y.-C. Flicker-Glare and Visual-Comfort Assessments of Light Emitting Diode Billboards. Appl. Opt. 2014, 53, E61–E68. [Google Scholar] [CrossRef]
- Ishida, S.; Yamashita, Y.; Matsuishi, T.; Ohshima, M.; Ohshima, H.; Kato, H.; Maeda, H. Photosensitive Seizures Provoked While Viewing “Pocket Monsters,” a Made-for-Televison Animation Program in Japan. Epilepsia 1998, 39, 1340–1344. [Google Scholar] [CrossRef]
- Takahashi, T.; Tsukahara, Y. Pocket Monster Incident and Low Luminance Visual Stimuli: Special Reference to Deep Red Flicker Stimulation. Pediatr. Int. 1998, 40, 631–637. [Google Scholar] [CrossRef]
- Harding, G.F.A. TV Can Be Bad for Your Health. Nat. Med. 1998, 4, 265–267. [Google Scholar] [CrossRef]
- Takahashi, T.; Tsukahara, Y. Influence of Color on the Photoconvulsive Response. Electroencephalogr. Clin. Neurophysiol. 1976, 41, 124–136. [Google Scholar] [CrossRef]
- Binnie, C.D.; Estevez, O.; Kasteleijn-Nolst Trenité, D.G.A.; Peters, A. Colour and Photosensitive Epilepsy. Electroencephalogr. Clin. Neurophysiol. 1984, 58, 387–391. [Google Scholar] [CrossRef]
- Parra, J.; Lopes Da Silva, F.H.; Stroink, H.; Kalitzin, S. Is Colour Modulation an Independent Factor in Human Visual Photosensitivity? Brain 2007, 130, 1679–1689. [Google Scholar] [CrossRef] [Green Version]
- Klass, D.W. Pattern Activation of Seizures. In Epileptic Seizures: Pathophysiology and Clinical Semiology; Luders, H.O., Noachtar, S., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2000; pp. 598–608. [Google Scholar]
- Takano, K.; Ikegami, S.; Komatsu, T.; Kansaku, K. Green/Blue Flicker Matrices for the P300 BCI Improve the Subjective Feeling of Comfort. Neurosci. Res. 2009, 65, S182. [Google Scholar] [CrossRef]
- Takano, K.; Komatsu, T.; Hata, N.; Nakajima, Y.; Kansaku, K. Visual Stimuli for the P300 Brain-Computer Interface: A Comparison of White/Gray and Green/Blue Flicker Matrices. Clin. Neurophysiol. 2009, 120, 1562–1566. [Google Scholar] [CrossRef]
- Hoffmann, U.; Vesin, J.M.; Ebrahimi, T.; Diserens, K. An Efficient P300-Based Brain–Computer Interface for Disabled Subjects. J. Neurosci. Methods 2008, 167, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Ikegami, S.; Takano, K.; Saeki, N.; Kansaku, K. Operation of a P300-Based Brain–Computer Interface by Individuals with Cervical Spinal Cord Injury. Clin. Neurophysiol. 2011, 122, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Nijboer, F.; Sellers, E.W.; Mellinger, J.; Jordan, M.A.; Matuz, T.; Furdea, A.; Halder, S.; Mochty, U.; Krusienski, D.J.; Vaughan, T.M.; et al. A P300-Based Brain–Computer Interface for People with Amyotrophic Lateral Sclerosis. Clin. Neurophysiol. 2008, 119, 1909–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccione, F.; Giorgi, F.; Tonin, P.; Priftis, K.; Giove, S.; Silvoni, S.; Palmas, G.; Beverina, F. P300-Based Brain Computer Interface: Reliability and Performance in Healthy and Paralysed Participants. Clin. Neurophysiol. 2006, 117, 531–537. [Google Scholar] [CrossRef]
- Sellers, E.W.; Donchin, E. A P300-Based Brain–Computer Interface: Initial Tests by ALS Patients. Clin. Neurophysiol. 2006, 117, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Norton, J.J.S.; DiRisio, G.F.; Carp, J.S.; Norton, A.E.; Kochan, N.S.; Wolpaw, J.R. Brain-Computer Interface-Based Assessment of Color Vision. J. Neural Eng. 2021, 18, 066024. [Google Scholar] [CrossRef]
- Moncada, F.; Martín, S.; González, V.M.; Álvarez, V.M.; García-López, B.; Gómez-Menéndez, A.I.; Villar, J.R. Virtual Reality and Machine Learning in the Automatic Photoparoxysmal Response Detection. Neural Comput. Appl. 2022, 1–17. [Google Scholar] [CrossRef]
Brodmann Area | Brain Area | Main Function | Typical Results of Damage | ||
---|---|---|---|---|---|
Functional | Neuroanatomical | ||||
4 | Primary motor cortex | Precentral gyrus | Contralateral finger, hand and wrist movement (dorsal) Contralateral lip, tongue, face and mouth movement (lateral) Learning motor sequences Voluntary blinking and inhibition of blinking Horizontal saccadic eye movement Response to touch/observed touch (left) Attention to action (posterior) | Contralateral spastic palsy Contralateral hemiparesis Babinski sign Clonus | |
5, 7 | Secondary sensorimotor cortex | Posterior parietal cortex Medial part: precuneus; lateral part: superior parietal lobule | Visuo-motor coordination Stereopsis Movement perception Saccadic eye movement Working memory Visuospatial memory (right) Tactile localisation (dorsal stream) Visuomotor attention Temporal context recognition (left 7) | Astereognosis Neglect Optic ataxia Apraxia | |
6 | Premotor cortex and SMA | Medial frontal gyrus | Motor sequencing/planning Motor learning (SMA) Movement preparation/imagined movement (rostral SMA) Movement initiation (caudal SMA) Motor imagery (SMA) Horizontal saccadic eye movements Working memory Visuospatial/visuomotor attention Updating spatial information (lateral) Temporal context recognition Same-different discrimination (right) Frequency deviant detection | Apraxia Deficits in contralateral fine motor control Difficulty in using sensory feedback Transient disturbance of the ability to initiate voluntary motor actions (SMA) Transient speech arrest (SMA) | |
17 | Primary visual cortex (V1) | Striate cortex | Detection of light intensity, patterns Contour perception Colour discrimination Visual attention Visuo-spatial information processing (Right) Processing spatial orientation Tracking visual motion patterns Visual priming Horizontal saccadic eye movements | Blindsight Cortical blindness | |
18 | Secondary visual cortex (V2, V3, V4, V5) | Middle occipital gyrus | V2 | Detection of light intensity, patterns Feature-based attention | Visual agnosia Alexia |
19 | Inferior occipital gyrus | V3 | Monochromatic pattern perception | Achromatopsia | |
V4 | Colour perception Shape perception | ||||
V5/MT | Movement detection Perception of direction Analysing stereoscopic depth | Akinetopsia | |||
20 | Inferior temporal, Fusiform and parahippocampal gyri | Visual fixation Integration of visual elements Dual working memory task processing | Agraphia | ||
37 | Posterior inferior temporal gyrus, middle temporal gyrus and fusiform gyrus | Episodic encoding Face recognition Visual motion processing Visual fixation Sustained attention to colour and shape Motion aftereffect | Prosopagnosia Visual agnosia Alexia | ||
38 | Temporal pole | Visual processing of emotional images Multimodal memory retrieval Response to tone stimulus Colour and structural judgments of familiar objects | Anomia Semantic memory impairment (left) Episodic memory impairment (right) High-level visual and auditory processing | ||
46 | Anterior middle frontal gyrus | Memory encoding and recognition Working memory Executive control of behaviour Horizontal saccadic eye movement | Sentence comprehension difficulties Memory impairment |
Response | |||
---|---|---|---|
Present (Yes) | Absent (No) | ||
Signal | Present | Hit | Miss |
Absent | False alarm | Correct rejection |
Frequency | Effect on Eliciting PPRs |
---|---|
10–15 Hz | Colour stimulation > white light |
15 Hz | Red-blue altering stimulation |
20–30 Hz | Colour stimulation = white stimulation Alternating colours are less provocative |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mankowska, N.D.; Grzywinska, M.; Winklewski, P.J.; Marcinkowska, A.B. Neuropsychological and Neurophysiological Mechanisms behind Flickering Light Stimulus Processing. Biology 2022, 11, 1720. https://doi.org/10.3390/biology11121720
Mankowska ND, Grzywinska M, Winklewski PJ, Marcinkowska AB. Neuropsychological and Neurophysiological Mechanisms behind Flickering Light Stimulus Processing. Biology. 2022; 11(12):1720. https://doi.org/10.3390/biology11121720
Chicago/Turabian StyleMankowska, Natalia D., Malgorzata Grzywinska, Pawel J. Winklewski, and Anna B. Marcinkowska. 2022. "Neuropsychological and Neurophysiological Mechanisms behind Flickering Light Stimulus Processing" Biology 11, no. 12: 1720. https://doi.org/10.3390/biology11121720
APA StyleMankowska, N. D., Grzywinska, M., Winklewski, P. J., & Marcinkowska, A. B. (2022). Neuropsychological and Neurophysiological Mechanisms behind Flickering Light Stimulus Processing. Biology, 11(12), 1720. https://doi.org/10.3390/biology11121720