Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = flash flood disaster prevention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 47488 KiB  
Article
Evaluation of X-Band Radar for Flash Flood Modeling in Guangrun River Basin
by Yan Xiong, Lingsheng Meng, Jiyang Tian and Yuefen Zhang
Water 2025, 17(12), 1811; https://doi.org/10.3390/w17121811 - 17 Jun 2025
Viewed by 384
Abstract
Flash flood disasters occur frequently under the influence of climate change and human activities, with the characteristics of strong suddenness, a wide range of hazards, and difficult prediction. Obtaining high-spatial- and high-temporal-resolution and high-precision rainfall monitoring and forecasting data is of great significance [...] Read more.
Flash flood disasters occur frequently under the influence of climate change and human activities, with the characteristics of strong suddenness, a wide range of hazards, and difficult prediction. Obtaining high-spatial- and high-temporal-resolution and high-precision rainfall monitoring and forecasting data is of great significance for accurate early warnings for flash flood disasters. In order to evaluate the advantages of X-band radar inverted rainfall in flash flood simulations, two typical flood events (3 July 2024 and 13 July 2024) in the Guangrun River Basin were studied. A comparative study between X-band radar inversion-based rainfall and rainfall measured at rainfall stations in terms of the flooding process and inundation extent was carried out using the China Flash Flood Hydrological Model (CNFF) and the two-dimensional hydrodynamic model (FASFLOOD). The results indicated that the temporal and spatial distribution characteristics of rainfall inversion by X-band radar were highly consistent with the measured rainfall at rainfall stations; in terms of simulating flood processes, rainfall based on X-band radar inversion performed better in key indicators such as the relative error of runoff depth, relative error of peak flow, error in time of peak occurrence, and Nash–Sutcliffe efficiency coefficient (NSE). In terms of simulating flood inundation, the simulation results based on X-band radar inversion and the measured rainfall from rainfall stations were consistent in the trend of rising and falling water processes and inundation range changes, and X-band radar could more accurately capture the spatial heterogeneity of rainfall. This study can provide technical support for disaster prevention and reductions in mountain floods in small watersheds. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

14 pages, 3248 KiB  
Article
A Study on the Zoning Method of Flash Flood Control for Mountainous Cities: A Case Study of Yunnan Province
by Zhixiong Zhang, Qing Li, Changjun Liu and Yao Chen
Appl. Sci. 2025, 15(9), 4781; https://doi.org/10.3390/app15094781 - 25 Apr 2025
Viewed by 351
Abstract
Flash floods are the most serious natural disasters in China and seriously affect its social and economic development. The transformation of the underlying surface caused by urbanization also brings new challenges to the prevention and control of flash flood disasters in mountainous cities. [...] Read more.
Flash floods are the most serious natural disasters in China and seriously affect its social and economic development. The transformation of the underlying surface caused by urbanization also brings new challenges to the prevention and control of flash flood disasters in mountainous cities. Based on the results of the flash flood disaster investigation and evaluation, this study calculated and examined the prevention and control zoning of flash flood threat areas in Yunnan, China, and determined the distribution of the prevention and control zoning of flash flood threat areas in each city in Yunnan Province. The results show that the key, medium, and general flash flood prevention and control zones in Yunnan Province account for 8%, 29%, and 63% of the total area, respectively. The areas of flash flood control that require attention are consistent with those of weak flash flood control reflected in the results of the flash flood disaster investigation and evaluation. By updating the results of flash flood disaster investigations and evaluations, the research method adopted in this study can be used to quickly update the results of flash flood prevention and control regionalization and improve the timeliness of flash flood disaster prevention and control. Full article
Show Figures

Figure 1

21 pages, 7421 KiB  
Article
Study on the Spatial Distribution Patterns and Driving Forces of Rainstorm-Induced Flash Flood in the Yarlung Tsangpo River Basin
by Fei He, Chaolei Zheng, Xingguo Mo, Zhonggen Wang and Suxia Liu
Remote Sens. 2025, 17(8), 1393; https://doi.org/10.3390/rs17081393 - 14 Apr 2025
Viewed by 531
Abstract
Flash floods, typically triggered by natural events such as heavy rainfall, snowmelt, and dam failures, are characterized by abrupt onset, destructive power, unpredictability, and challenges in mitigation. This study investigates the spatial distribution patterns and driving mechanisms of rainstorm-induced flash flood disasters in [...] Read more.
Flash floods, typically triggered by natural events such as heavy rainfall, snowmelt, and dam failures, are characterized by abrupt onset, destructive power, unpredictability, and challenges in mitigation. This study investigates the spatial distribution patterns and driving mechanisms of rainstorm-induced flash flood disasters in the Yarlung Tsangpo River Basin (YTRB) by integrating topography, hydrometeorology, human activity data, and historical disaster records. Through a multi-method spatial analysis framework—including kernel density estimation, standard deviation ellipse, spatial autocorrelation (Moran’s I and Getis–Ord Gi*), and the optimal parameter geographic detector (OPGD) model (integrating univariate analysis and interaction detection)—we reveal multiscale disaster dynamics across county, township, and small catchment levels. Key findings indicate that finer spatial resolution (e.g., small catchment scale) enhances precision when identifying high-risk zones. Temporally, the number of rainstorm-induced flash floods increased significantly and disaster-affected areas expanded significantly from the 1980s to the 2010s, with a peak spatial dispersion observed during 2010–2019, reflecting a westward shift in disaster distribution. Spatial aggregation of flash floods persisted throughout the study period, concentrated in the central basin. Village density (TD) was identified as the predominant human activity factor, exhibiting nonlinear amplification through interactions with short-duration heavy rainfall (particularly 3 h [P3] and 6 h [P6] maximum precipitations) and GDP. These precipitation durations demonstrated compounding risk effects, where sustained rainfall intensity progressively heightened disaster potential. Topographic and ecological interactions, particularly between elevation (DEM) and vegetation type (VT), further modulate disaster intensity. These findings provide critical insights for risk zonation and targeted prevention strategies in high-altitude river basins. Full article
Show Figures

Figure 1

22 pages, 4837 KiB  
Article
Development of Deep Intelligence for Automatic River Detection (RivDet)
by Sejeong Lee, Yejin Kong and Taesam Lee
Remote Sens. 2025, 17(2), 346; https://doi.org/10.3390/rs17020346 - 20 Jan 2025
Cited by 2 | Viewed by 1167
Abstract
Recently, the impact of climate change has led to an increase in the scale and frequency of extreme rainfall and flash floods. Due to this, the occurrence of floods and various river disasters has increased, necessitating the acquisition of technologies to prevent river [...] Read more.
Recently, the impact of climate change has led to an increase in the scale and frequency of extreme rainfall and flash floods. Due to this, the occurrence of floods and various river disasters has increased, necessitating the acquisition of technologies to prevent river disasters. Owing to the nature of rivers, areas with poor accessibility exist, and obtaining information over a wide area can be time-consuming. Artificial intelligence technology, which has the potential to overcome these limits, has not been broadly adopted for river detection. Therefore, the current study conducted a performance analysis of artificial intelligence for automatic river path setting via the YOLOv8 model, which is widely applied in various fields. Through the augmentation feature in the Roboflow platform, many river images were employed to train and analyze the river spatial information of each applied image. The overall results revealed that the models with augmentation performed better than the basic models without augmentation. In particular, the flip and crop and shear model showed the highest performance with a score of 0.058. When applied to rivers, the Wosucheon stream showed the highest average confidence across all models, with a value of 0.842. Additionally, the max confidence for each river was extracted, and it was found that models including crop exhibited higher reliability. The results show that the augmentation models better generalize new data and can improve performance in real-world environments. Additionally, the RivDet artificial intelligence model for automatic river path configuration developed in the current study is expected to solve various problems, such as automatic flow rate estimation for river disaster prevention, setting early flood warnings, and calculating the range of flood inundation damage. Full article
Show Figures

Figure 1

19 pages, 23094 KiB  
Article
Research on the Heavy Rainstorm–Flash Flood–Debris Flow Disaster Chain: A Case Study of the “Haihe River ‘23·7’ Regional Flood”
by Renzhi Li, Shuwen Qi, Zhonggen Wang, Xiaoran Fu, Huiran Gao, Junxue Ma and Liang Zhao
Remote Sens. 2024, 16(24), 4802; https://doi.org/10.3390/rs16244802 - 23 Dec 2024
Cited by 1 | Viewed by 1367
Abstract
Over the past decades, China has experienced severe compound natural disasters, such as extreme rainfalls, which have led to significant losses. In response to the challenges posed by the lack of a clear investigation process and inadequate comprehensiveness in evaluating the natural disaster [...] Read more.
Over the past decades, China has experienced severe compound natural disasters, such as extreme rainfalls, which have led to significant losses. In response to the challenges posed by the lack of a clear investigation process and inadequate comprehensiveness in evaluating the natural disaster chains, this study proposes a comprehensive retrospective simulation strategy for emergency investigation and simulation of heavy rainstorm–flash flood–debris flow chain disasters at the county–town level. The primary aim is to avert potential new chain disasters and alleviate subsequent disasters. This study combines emergency investigation efforts with hydrodynamic models to digitally simulate and analyze compound chain disasters triggered by an extreme rainfall event in the Haihe River regional area, specifically Gaoyakou Valley, Liucun Town, Changping District, Beijing, in July 2023, along with potential new disasters in adjacent regions. The findings indicate that the heavy rainstorm chain disaster on “7.29” resulted from a complex interplay of interrelated natural phenomena, including flash floods, debris flows, urban floodings, and river overflows. Hantai Village has experienced flash flood and debris flow events at different times in this area. Should the rainfall volume experienced in Liucun Town be replicated in the Ming Tombs Town area, approximately 6.2 km2 of land would be inundated, leading to damages to 458 residences and impacting around 240 ha of agricultural land. The anticipated release of floodwater from the reservoir would lead to significant impacts on downstream residents and roads. Our research can improve the efficacy of emergency investigations and assessments, which in turn can help with the management and reduction of disaster risks at the grassroots level. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Flood Forecasting and Monitoring)
Show Figures

Graphical abstract

27 pages, 4877 KiB  
Review
A Review of Cutting-Edge Sensor Technologies for Improved Flood Monitoring and Damage Assessment
by Yixin Tao, Bingwei Tian, Basanta Raj Adhikari, Qi Zuo, Xiaolong Luo and Baofeng Di
Sensors 2024, 24(21), 7090; https://doi.org/10.3390/s24217090 - 4 Nov 2024
Cited by 3 | Viewed by 6317
Abstract
Floods are the most destructive, widespread, and frequent natural hazards. The extent of flood events is accelerating in the context of climate change, where flood management and disaster mitigation remain important long-term issues. Different studies have been utilizing data and images from various [...] Read more.
Floods are the most destructive, widespread, and frequent natural hazards. The extent of flood events is accelerating in the context of climate change, where flood management and disaster mitigation remain important long-term issues. Different studies have been utilizing data and images from various types of sensors for mapping, assessment, forecasting, early warning, rescue, and other disaster prevention and mitigation activities before, during, and after floods, including flash floods, coastal floods, and urban floods. These monitoring processes evolved from early ground-based observations relying on in situ sensors to high-precision, high-resolution, and high-coverage monitoring by airborne and remote sensing sensors. In this study, we have analyzed the different kinds of sensors from the literature review, case studies, and other methods to explore the development history of flood sensors and the driving role of floods in different countries. It is found that there is a trend towards the integration of flood sensors with artificial intelligence, and their state-of-the-art determines the effectiveness of local flood management to a large extent. This study helps to improve the efficiency of flood monitoring advancement and flood responses as it explores the different types of sensors and their effectiveness. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

28 pages, 9121 KiB  
Article
Flood Hazard and Risk Assessment of Flash Floods for Petra Catchment Area Using Hydrological and Analytical Hierarchy (AHP) Modeling
by Mustafa Al Kuisi, Naheel Al Azzam, Tasneem Hyarat and Ibrahim Farhan
Water 2024, 16(16), 2283; https://doi.org/10.3390/w16162283 - 13 Aug 2024
Cited by 6 | Viewed by 2817
Abstract
Floods are a widespread natural disaster that occur in most areas of the world, except for the polar regions. To minimize the damage caused by floods, effective management strategies and policies must be implemented. Petra and Wadi Musa areas are prone to floods, [...] Read more.
Floods are a widespread natural disaster that occur in most areas of the world, except for the polar regions. To minimize the damage caused by floods, effective management strategies and policies must be implemented. Petra and Wadi Musa areas are prone to floods, which happen every 2–3 years and result in significant harm to both lives and properties. To address this issue, a composite hazard and vulnerability index is commonly utilized to evaluate flood risk and guide policy formation for flood risk reduction. These tools are efficient and cost-effective in generating accurate results. Accordingly, the present study aims to determine the morphological and hydrometeorological parameters that affect flash floods in Petra catchment area and to identify high-risk zones using GIS, hydrological, and analytical hierarchy (AHP) modeling. Nine factors, including Elevation (E), Landuse/Landcover LULC, Slope (S), Drainage density (DD), Flood Control Points (FCP) and Rainfall intensity (RI), which make up the six risk indices, and Population Density (PD), Cropland (C), and Transportation (Tr), which make up the three vulnerability indices, were evaluated both individually and in combination using AHP in ArcGIS 10.8.2 software. These parameters were classified as hazard and vulnerability indicators, and a final flood map was generated. The map indicated that approximately 37% of the total area in Petra catchment is at high or very high risk of flooding, necessitating significant attention from governmental agencies and decision-makers for flood risk mitigation. The AHP method proposed in this study is an accurate tool for flood mapping that can be easily applied to other regions in Jordan to manage and prevent flood hazards. Full article
Show Figures

Figure 1

31 pages, 23976 KiB  
Article
GIS-Based Integrated Multi-Hazard Vulnerability Assessment in Makedonska Kamenica Municipality, North Macedonia
by Bojana Aleksova, Ivica Milevski, Slavoljub Dragićević and Tin Lukić
Atmosphere 2024, 15(7), 774; https://doi.org/10.3390/atmos15070774 - 28 Jun 2024
Cited by 6 | Viewed by 2846
Abstract
This study presents a comprehensive analysis of natural hazard susceptibility in the Makedonska Kamenica municipality of North Macedonia, encompassing erosion assessment, landslides, flash floods, and forest fire vulnerability. Employing advanced GIS and remote sensing (RS) methodologies, hazard models were meticulously developed and integrated [...] Read more.
This study presents a comprehensive analysis of natural hazard susceptibility in the Makedonska Kamenica municipality of North Macedonia, encompassing erosion assessment, landslides, flash floods, and forest fire vulnerability. Employing advanced GIS and remote sensing (RS) methodologies, hazard models were meticulously developed and integrated to discern areas facing concurrent vulnerabilities. Findings unveil substantial vulnerabilities prevalent across the area, notably along steep terrain gradients, river valleys, and deforested landscapes. Erosion assessment reveals elevated rates, with a mean erosion coefficient (Z) of 0.61 and an annual erosion production of 182,712.9 m3, equivalent to a specific erosion rate of 961.6 m3/km2/year. Landslide susceptibility analysis identifies 31.8% of the municipality exhibiting a very high probability of landslides, while flash flood susceptibility models depict 3.3% of the area prone to very high flash flood potential. Forest fire susceptibility mapping emphasizes slightly less than one-third of the municipality’s forested area is highly or very highly susceptible to fires. Integration of these hazard models elucidates multi-hazard zones, revealing that 11.0% of the municipality’s territory faces concurrent vulnerabilities from excessive erosion, landslides, flash floods, and forest fires. These zones are predominantly located in upstream areas, valleys of river tributaries, and the estuary region. The identification of multi-hazard zones underscores the critical need for targeted preventive measures and robust land management strategies to mitigate potential disasters and safeguard both human infrastructure and natural ecosystems. Recommendations include the implementation of enhanced monitoring systems, validation methodologies, and community engagement initiatives to bolster hazard preparedness and response capabilities effectively. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

16 pages, 21151 KiB  
Article
Comprehensive Risk Assessment Framework for Flash Floods in China
by Qing Li, Yu Li, Lingyun Zhao, Zhixiong Zhang, Yu Wang and Meihong Ma
Water 2024, 16(4), 616; https://doi.org/10.3390/w16040616 - 19 Feb 2024
Cited by 4 | Viewed by 3207
Abstract
Accurately assessing the risk of flash floods is a fundamental prerequisite for defending against flash flood disasters. The existing methods for assessing flash flood risk are constrained by unclear key factors and challenges in elucidating disaster mechanisms, resulting in less-than-ideal early warning effectiveness. [...] Read more.
Accurately assessing the risk of flash floods is a fundamental prerequisite for defending against flash flood disasters. The existing methods for assessing flash flood risk are constrained by unclear key factors and challenges in elucidating disaster mechanisms, resulting in less-than-ideal early warning effectiveness. This article is based on official statistics of flash flood disaster data from 2017 to 2021. It selects eight categories of driving factors influencing flash floods, such as rainfall, underlying surface conditions, and human activities. Subsequently, a geographical detector is utilized to analyze the explanatory power of each driving factor in flash flood disasters, quantifying the contribution of each factor to the initiation of flash flood; the flash flood potential index (FFPI) was introduced to assess the risk of flash flood disasters in China, leading to the construction of a comprehensive assessment framework for flash flood risk. The results indicate that (1) Flash floods are generally triggered by multiple factors, with rainfall being the most influential factor, directly causing flash floods. Soil type is the second most influential factor, and the combined effects of multiple factors intensify the risk of flash floods. (2) The southeastern, southern, and southwestern regions of China are considered high-risk areas for flash floods, with a high danger level, whereas the northwestern, northern, and northeastern plain regions exhibit a lower danger level. The above research results provide reference and guidance for the prevention and control of flash flood disasters. Full article
Show Figures

Figure 1

15 pages, 26057 KiB  
Article
Torrential Hazards’ Mitigation Measures in a Typical Alpine Catchment in Slovenia
by Jošt Sodnik, Matjaž Mikoš and Nejc Bezak
Appl. Sci. 2023, 13(20), 11136; https://doi.org/10.3390/app132011136 - 10 Oct 2023
Cited by 7 | Viewed by 1725
Abstract
Different sediment-related disasters due to torrential hazards, such as flash floods, debris flows, and landslides, can occur in an Alpine torrential catchment. When protecting infrastructure and human lives, different structural and non-structural protection measures can be used to mitigate permanent and future risks. [...] Read more.
Different sediment-related disasters due to torrential hazards, such as flash floods, debris flows, and landslides, can occur in an Alpine torrential catchment. When protecting infrastructure and human lives, different structural and non-structural protection measures can be used to mitigate permanent and future risks. An overview of the mitigation measures constructed near the Krvavec ski resort in northwest Slovenia (Central Europe) is presented. In May 2018, an extreme debris flood occurred in this area, causing significant economic damage. After the May 2018 event, different field investigations (i.e., geological and topographic surveys) and modeling applications (e.g., hydrological modeling, debris flow) have been conducted with the purpose of preparing the required input data for the design of protection measures against such disasters in future—due to climate change, more disasters are expected to happen in this torrential watershed. The mitigation includes the restoration of local streams, the construction of a large slit check dam for sediment retention, the construction of several smaller check dams and the construction of 16 flexible net barriers with an estimated ~8000 m3 retention volume for controlling in-channel erosion in steep torrential streams. Additionally, in order to observe and monitor potential future extreme events, an extensive monitoring system has been established in the investigated area. This monitoring system will cover measurements of flexible net corrosion, the estimation of concrete abrasion at check dams, periodical geodetic surveys using small drones (UAV), hydro-meteorological measurements using rainfall gauges and water level sensors. The recent extreme floods of August 2023 also hit this part of Slovenia, and this combination of technical countermeasures withstood the event and prevented large amounts of coarse debris from being transported to the downstream section and devastating infrastructure, as was the case in May 2018 during a less extreme event. Therefore, such mitigation measures can also be used in other torrential catchments in the Alpine environment. Full article
(This article belongs to the Special Issue Sediment Transport)
Show Figures

Figure 1

33 pages, 7245 KiB  
Article
Enhancing a Real-Time Flash Flood Predictive Accuracy Approach for the Development of Early Warning Systems: Hydrological Ensemble Hindcasts and Parameterizations
by Joško Trošelj, Han Soo Lee and Lena Hobohm
Sustainability 2023, 15(18), 13897; https://doi.org/10.3390/su151813897 - 19 Sep 2023
Cited by 2 | Viewed by 2248
Abstract
This study marks a significant step toward the future development of river discharges forecasted in real time for flash flood early warning system (EWS) disaster prevention frameworks in the Chugoku region of Japan, and presumably worldwide. To reduce the disaster impacts with EWSs, [...] Read more.
This study marks a significant step toward the future development of river discharges forecasted in real time for flash flood early warning system (EWS) disaster prevention frameworks in the Chugoku region of Japan, and presumably worldwide. To reduce the disaster impacts with EWSs, accurate integrated hydrometeorological real-time models for predicting extreme river water levels and discharges are needed, but they are not satisfactorily accurate due to large uncertainties. This study evaluates two calibration methods with 7 and 5 parameters using the hydrological Cell Distributed Runoff Model version 3.1.1 (CDRM), calibrated by the University of Arizona’s Shuffled Complex Evolution optimization method (SCE-UA). We hypothesize that the proposed ensemble hydrological parameter calibration approach can forecast similar future events in real time. This approach was applied to seven major rivers in the region to obtain hindcasts of the river discharges during the Heavy Rainfall Event of July 2018 (HRE18). This study introduces a new historical extreme rainfall event classification selection methodology that enables ensemble-averaged validation results of all river discharges. The reproducibility metrics obtained for all rivers cumulatively are extremely high, with Nash–Sutcliffe efficiency values of 0.98. This shows that the proposed approach enables accurate predictions of the river discharges for the HRE18 and, similarly, real-time forecasts for future extreme rainfall-induced events in the Japanese region. Although our methodology can be directly reapplied only in regions where observed rainfall data are readily available, we suggest that our approach can analogously be applied worldwide, which indicates a broad scientific contribution and multidisciplinary applications. Full article
(This article belongs to the Special Issue Hydro-Meteorology and Its Application in Hydrological Modeling)
Show Figures

Figure 1

18 pages, 7316 KiB  
Article
Map API-Based Evacuation Route Guidance System for Floods
by Sungwoo Jeon, Kwanyoung Jung, Jongrib Kim and Hoekyung Jung
Appl. Sci. 2023, 13(16), 9141; https://doi.org/10.3390/app13169141 - 10 Aug 2023
Cited by 1 | Viewed by 2498
Abstract
Recently, human casualties and property damage caused by natural disasters have increased worldwide. Among these natural disasters, flood damage is affected by season. Depending on the concentration of precipitation in the summer, heavy rainfall can occur, thus resulting in typhoons, floods, and increased [...] Read more.
Recently, human casualties and property damage caused by natural disasters have increased worldwide. Among these natural disasters, flood damage is affected by season. Depending on the concentration of precipitation in the summer, heavy rainfall can occur, thus resulting in typhoons, floods, and increased damage. To prevent such damages, the appropriate measures and research are being conducted in response to disasters. When a flash flood occurs, safe evacuation can be realized after detecting the situation and using announcements or laser indicators. However, these route guidance systems are typically used in fire or indoor environments, thus rendering them difficult to access outdoors. Therefore, we herein propose an evacuation route guidance system based on a map API that recognizes flood occurrences in forest areas, recreational forests, and parks. It calculates the route based on the map API and delivers the evacuation route to the nearest shelter to the user; and if there is a second problem on the moving evacuation route and it is difficult to proceed, the user’s current location is identified and the route to the next nearest shelter is provided. This will help you to evacuate safely. Full article
Show Figures

Figure 1

21 pages, 6909 KiB  
Article
Study on Risk Assessment of Flash Floods in Hubei Province
by Yong Tu, Yanwei Zhao, Rui Dong, Han Wang, Qiang Ma, Bingshun He and Changjun Liu
Water 2023, 15(4), 617; https://doi.org/10.3390/w15040617 - 4 Feb 2023
Cited by 7 | Viewed by 2403
Abstract
Flash floods are typically associated with short, high-intensity and extreme rain-storms, and they are characterized by short response time and severely impact and damage communities in different areas in China. In order to scientifically assess the risks of flash floods, this paper takes [...] Read more.
Flash floods are typically associated with short, high-intensity and extreme rain-storms, and they are characterized by short response time and severely impact and damage communities in different areas in China. In order to scientifically assess the risks of flash floods, this paper takes Hubei Province as an example to carry out risk assessment. Based on Pearson correlation coefficient and principal component analysis methods, 14 factors were selected from 98 factors to establish a risk assessment model. The confidence coefficient model and multi-factor superposition method were used to determine the weight of each risk factor, and a risk map of Hubei Province was finally constructed. The results show that medium-high risk areas in Huanggang account for 47.00%, and high-risk areas account for 8.70%, with both areas adding up to more than 50%, followed by more than 40% in Shiyan, E’zhou and Xianning, and more than 30% in Huangshi, Yichang, Xiangyang, Jingmen and Suizhou. The risk level distribution is highly consistent with the location and frequency of flash flood disasters, shows high reliability, and can provide data support for flash flood disaster prevention and control. This study used a quantitative method to determine the key factors affecting flash flood disasters and provides a reference and basis for flash flood risk assessment in other provinces in China. Full article
Show Figures

Figure 1

18 pages, 2086 KiB  
Review
Real-Time Urban Flood Forecasting Systems for Southeast Asia—A Review of Present Modelling and Its Future Prospects
by Detchphol Chitwatkulsiri and Hitoshi Miyamoto
Water 2023, 15(1), 178; https://doi.org/10.3390/w15010178 - 1 Jan 2023
Cited by 25 | Viewed by 8570
Abstract
Many urban areas in tropical Southeast Asia, e.g., Bangkok in Thailand, have recently been experiencing unprecedentedly intense flash floods due to climate change. The rapid flood inundation has caused extremely severe damage to urban residents and social infrastructures. In addition, urban Southeast Asia [...] Read more.
Many urban areas in tropical Southeast Asia, e.g., Bangkok in Thailand, have recently been experiencing unprecedentedly intense flash floods due to climate change. The rapid flood inundation has caused extremely severe damage to urban residents and social infrastructures. In addition, urban Southeast Asia usually has inadequate capacities in drainage systems, complicated land use patterns, and a large vulnerable population in limited urban areas. To reduce the urban flood risk and enhance the resilience of vulnerable urban communities, it has been of essential importance to develop real-time urban flood forecasting systems for flood disaster prevention authorities and the urban public. This paper reviewed the state-of-the-art models of real-time forecasting systems for urban flash floods. The real-time system basically consists of the following subsystems, i.e., rainfall forecasting, drainage system modelling, and inundation area mapping. This paper summarized the recent radar data utilization methods for rainfall forecasting, physical-process-based hydraulic models for flood inundation prediction, and data-driven artificial intelligence (AI) models for the real-time forecasting system. This paper also dealt with available technologies for modelling, e.g., digital surface models (DSMs) for the finer urban terrain of drainage systems. The review indicated that an obstacle to using process-based hydraulic models was the limited computational resources and shorter lead time for real-time forecasting in many urban areas in tropical Southeast Asia. The review further discussed the prospects of data-driven AI models for real-time forecasting systems. Full article
(This article belongs to the Special Issue Urban Water-Related Problems)
Show Figures

Figure 1

13 pages, 3406 KiB  
Article
Assessing the Effects of Urbanization on Water Flow and Flood Events Using the HEC-HMS Model in the Wirynka River Catchment, Poland
by Ewelina Janicka and Jolanta Kanclerz
Water 2023, 15(1), 86; https://doi.org/10.3390/w15010086 - 27 Dec 2022
Cited by 20 | Viewed by 5187
Abstract
Floods are among the most devastating natural disasters in small urban watersheds resulting in loss of life and enormous damage to property and posing a serious threat to the economy. Appropriate modeling can be a useful tool to prevent and reduce such flood [...] Read more.
Floods are among the most devastating natural disasters in small urban watersheds resulting in loss of life and enormous damage to property and posing a serious threat to the economy. Appropriate modeling can be a useful tool to prevent and reduce such flood risks. It is currently important to use hydrological models to assess and predict the water availability of river basins due to climate change to develop a strategy to cope with the changing environment. The study used an integrated approach combining a geographic information system (GIS) and hydrological modeling to assess the impact of urbanization on flash floods in peri-urban developing areas. The modeling was carried out for two spatial aspects relating to 1990 and 2018. The model allowed simulation of the river water flow that can occur under different rainfall probabilities. The study showed that rapid urbanization adversely affects hydrological processes. Reduced infiltration capacity increases water runoff, thereby increasing the risk of flooding or waterlogging. Therefore, it is extremely important to properly manage rainwater in the area. Full article
Show Figures

Figure 1

Back to TopTop