Comprehensive Risk Assessment Framework for Flash Floods in China
Abstract
:1. Introduction
2. Study Area and Materials
2.1. The Study Area
2.2. Basic Data
3. Comprehensive Risk Assessment Framework for Flash Floods in China
3.1. Building Approach for the Risk Assessment Framework of Flash Flood Disasters
3.2. Geodetector
3.3. Flash Flood Potential Index
3.4. Composite Index Method
4. Results and Analysis
4.1. Analysis of Flash Flood Disaster Drivers Based on the Geodetector
4.1.1. Drivers of Flash Flood Disasters
- ①
- Precipitation Factor
- ②
- Underlying Surface Factor
- ③
- Human Activity Factor
4.1.2. Single-Factor Driving Force Analysis
4.1.3. Multi-Factor Driving Force Interaction Detection Analysis
4.2. Flash Flood Risk Assessment
4.2.1. Distribution of Flash Flood Potential Index (FFPI)
4.2.2. Flash Flood Risk Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, D. Frequent Occurrence of Extreme Weather and Climate Events: Fundamental Patterns and Scientific Responses. Natl. Gov. 2023, 17, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Global Disaster Data Platform. Available online: https://www.gddat.cn/newGlobalWeb/#/home (accessed on 5 January 2024).
- Sun, D. Construction of China’s Flash Flood Disaster Monitoring and Early Warning System. China Flood Drought Manag. 2019, 29, 4–5. [Google Scholar]
- Li, J.; Wang, L.; Wang, J.; Deng, P.; Zhao, T. Research on flash flood warning technology based on dynamic critical rainfall. J. Nat. Disasters 2023, 32, 235–242. [Google Scholar]
- Cheng, D.; Liu, R.; Zhai, X.; Zhao, Y.; Liu, X. Real-time dynamic analysis of flash flood warning indicators based on a Chinese mountainous hydrological model. J. China Inst. Water Resour. Hydropower Res. 2023, 21, 444–454, (In English & Chinese). [Google Scholar]
- Ngoc, T.D.; Manh, T.T.; Le Hoang, S.; Thi, N.T.; Long, G.N.; Huy, T.P.; Van, H.V. Novel Approach Combining Particle Swarm Optimization and Deep Learning for Flash Flood Detection from Satellite Images. Mathematics 2021, 9, 2846. [Google Scholar]
- Surwase, T.; Manjusree, P.; Prakash, S.; Kuntla, S. Development of algorithms for evaluating performance of flood simulation models with satellite-derived flood. H2Open J. 2020, 3, 222–235. [Google Scholar] [CrossRef]
- Liu, H.; Guo, C.; Yuan, Y.; Jin, Z.; Yi, Y. Dynamic risk assessment and warning of flash floods based on sediment-runoff. China Flood Drought Manag. 2022, 32, 20–26. [Google Scholar]
- Tian, J.; Liu, R.; Li, R.; Liu, H. Application and prospect of meteorological and hydrological coupling forecasting technology in flash flood defense. China Flood Drought Manag. 2020, 30, 54–57+112. [Google Scholar]
- Yang, F.; Kang, Y.; Wang, Q.; Ma, M.; Liu, R. Analysis of spatial and temporal characteristics and inducing factors of mountain floods in Guangdong Province. Water Resour. Power 2023, 41, 81–84. [Google Scholar]
- Wang, Z.; Wang, H. Cause analysis and defense measures of flash flood disasters in Chengde City. Hebei Water Resour. 2023, 8, 25–26. [Google Scholar]
- Zhang, Q.; Lu, Y.; Yan, T.; Xie, Q.; Zhao, C.; Hu, Y. Spatiotemporal evolution characteristics and influencing factors analysis of flash flood disasters in Chongqing City. J. Yangtze River Sci. Res. Inst. 2023, 40, 80–87+117. [Google Scholar]
- Chen, L.; Li, S.; Fu, J.; Zhang, S. Analysis of characteristics and countermeasures of flash flood disasters in Zhangshu City watershed. Tech. Superv. Water Resour. 2022, 138–141. [Google Scholar]
- Shi, K.; Chen, Y.; Zhang, X.; Ma, Q.; Ren, L. Research on zoning of flash flood risk in Jiangxi Province based on graph clustering neural network. Acta Geogr. Sin. 2023, 39, 7–15. [Google Scholar]
- Wang, N.; Zhang, X.; Gu, L.; Yu, X.; Zhang, Y. Research on flash flood risk assessment in Fangshan District of Beijing. Water Resour. Power 2022, 40, 85–89. [Google Scholar]
- Yan, C. Research on risk zoning of flash flood disasters in Deqing County based on GIS. Gansu Water Resour. Hydropower Technol. 2020, 56, 21–25. [Google Scholar]
- Sanyal, J.; Lu, X. GIS-based flood risk mapping at different administrative scales: A case study in Gangetic West Bengal, India. Singap. J. Trop. Geogr. 2010, 27, 207–220. [Google Scholar] [CrossRef]
- Bhatt, G.D.; Sinha, K.; Deka, P.K.; Kumar, A. Flood Risk and Risk Assessment in Chamoli District, Uttarakhand Using Satellite Remote Sensing and GIS Techniques. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 15348–15356. [Google Scholar] [CrossRef]
- Mojaddadi, H.; Pradhan, B.; Nampak, H.; Ahmad, N.; Ghazali, A.H. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat. Nat. Hazards Risk 2017, 8, 1080–1102. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J. GIS-based risk zoning of flash flood disasters. Acta Geogr. Sin. 2005, 1, 87–94. [Google Scholar]
- Huang, G.; Xian, Z.; Cheng, G.; Chen, Z.; Zhou, X. Flash flood risk assessment in Yao’an watershed, Qingyuan City based on GIS. Water Resour. Power 2015, 33, 43–47. [Google Scholar]
- Dong, Y.; Hai, J.; Hu, S.; Pei, Y.; Wang, X.; Long, Y.; Cao, M. Influence of successive landslides on topographic changes revealed by multitemporal high-resolution UAS-based DEM. Catena 2021, 202, 105229. [Google Scholar]
- Zhou, W.; Qiu, H.; Wang, L.; Pei, Y.; Tang, B.; Ma, S.; Yang, D.; Cao, M. Combining rainfall-induced shallow landslides and subsequent debris flows for hazard chain prediction. Catena 2022, 213, 106199. [Google Scholar] [CrossRef]
- Ma, S.; Qiu, H.; Yang, D.; Wang, J.; Zhu, Y.; Tang, B.; Sun, K.; Cao, M. Surface multi-hazard effect of underground coal mining. Landslides 2022, 20, 39–52. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, H.; Zhu, Y.; Liu, Y.; Yang, D.; Ma, S.; Zhang, J.; Wang, Y.; Wang, L.; Tang, B. Efficient Identification and Monitoring of Landslides by Time-Series InSAR Combining Single- and Multi-Look Phases. Remote Sens. 2022, 14, 1026. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, H.; Zhou, W.; Zhu, Y.; Liu, Z.; Ma, S.; Yang, D.; Tang, B. The Post-Failure Spatiotemporal Deformation of Certain Translational Landslides May Follow the Pre-Failure Pattern. Remote Sens. 2022, 14, 2333. [Google Scholar] [CrossRef]
- Muhammad, M.; Linlin, L.; Mushahid, A.M.; Mohamed, E.S.; Li, Q.; Abdulrahman, A. Prediction of flash flood susceptibility using integrating analytic hierarchy process (AHP) and frequency ratio (FR) algorithms. Front. Environ. Sci. 2023, 10, 1037547. [Google Scholar]
- Hafedh, H.M.; Mohammed, S.A. Flash Flood Risk Assessment Due to a Possible Dam Break in Urban Arid Environment, the New Um Al-Khair Dam Case Study, Jeddah, Saudi Arabia. Sustainability 2023, 15, 1074. [Google Scholar] [CrossRef]
- Hewaidy, A.G.A.H.; El Hassan, M.A.; Salama, A.; Ahmed, R. Flash Flood Risk Assessment of Wadi Degla Basin Protected Area, East of Maadi, Cairo, Egypt Based on Morphometric Analysis Using GIS Techniques. Hydrology 2021, 9, 66–73. [Google Scholar] [CrossRef]
- Fang, X.; Wang, K.; Ren, L.; Zhang, X.; Feng, L. Flash flood risk assessment and zoning in Jiangxi Province based on GIS. J. Catastrophol. 2017, 32, 111–116. [Google Scholar]
- Lin, B. Research on risk zoning evaluation of flash flood disasters in Guangdong Province based on AHP-GIS. Guangdong Water Resour. Hydropower 2022, 2, 21–27. [Google Scholar]
- Wang, B.; Tian, J.; Cheng, L.; Hao, F.; Han, H.; Wang, S. Spatial differentiation of China’s digital economy and its influencing factors. Sci. Geogr. Sin. 2018, 38, 859–868. [Google Scholar]
- Lv, C.; Lan, X.; Sun, W. Relationship between population spatial pattern changes and natural factors in Beijing based on geographical detector method. J. Nat. Resour. 2017, 32, 1385–1397. [Google Scholar]
- Yang, Q.; Wang, J.; Li, C.; Liu, X. Spatial differentiation and driving factors of total factor productivity of China’s agricultural green production. J. Quant. Tech. Econ. 2019, 36, 21–37. [Google Scholar]
- Huang, Y. Analysis of Driving Factors of Flash Flood Disasters and Risk Assessment in Shaanxi Province. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 30 June 2021. [Google Scholar]
- Li, H.; Wan, Q. Preliminary study on the selection of rainfall index for flash flood risk analysis in small watersheds. J. Geo-Inf. Sci. 2017, 19, 425–435. [Google Scholar]
- Yu, M. Analysis of Driving Factors and Risk Assessment of Flash Flood Disasters at Different Spatial Scales in the Guanzhong Area. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 30 June 2023. [Google Scholar]
- He, B.; Ma, M.; Li, Q.; Liu, L.; Wang, X. Analysis of the current situation and characteristics of mountain flood disasters prevention and control in China. China Rural Water Hydropower 2021, 5, 133–138+144. [Google Scholar]
- Liu, Y.; Yang, Z.; Huang, Y.; Liu, C. Spatiotemporal pattern and driving factors analysis of flash flood events in China since the founding of the People’s Republic. Sci. Sin. Earth Sci. 2019, 49, 408–420. [Google Scholar]
- Chen, Y.; Xu, C.; Zhang, X.; Zhang, R.; Ma, Q.; Liu, C.; Ren, L.; Shi, K. Research on zoning of flash flood risk in China. Acta Geogr. Sin. 2023, 78, 1059–1073. [Google Scholar]
- Bin, L.; Yang, W.; Xu, K. Driving Force Exploration for Flash Flood Based on Mann–Kendall Test and Geographical Detector: A Case Study of Hainan Island, China. Sustainability 2023, 15, 12517. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geographical detector: Principles and prospects. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Xu, H.; Cao, Y.; Zeng, Z. Flash flood risk warning method based on FFPI. J. Catastrophol. 2020, 35, 90–95. [Google Scholar]
- Niu, Q.; Xiong, C.; Lei, J.; Wang, H.; Liu, B.; Zhang, R. Risk assessment of flash flood disasters in Longnan area, Gansu Province based on FFPI model. J. Nat. Disasters 2023, 32, 36–47. [Google Scholar]
- Jia, P.; Li, X.; Wang, J. Comparison of several typical comprehensive evaluation methods. China Hosp. Stat. 2008, 15, 351–353. [Google Scholar]
Data Name | Data Source | Attribute | Data Year |
---|---|---|---|
Precipitation | National Tibetan Plateau Data Center | 1 km, monthly | 2017–2021 |
DEM | Resource and Environment Science and Data Center | By province, 90 m | 2008 |
Landform Types | 1:1,000,000 | 2009 | |
Soil Types | - | - | |
NDVI | Annual, 1 km | 2018 | |
Land Use | Raster data, 30 m | 2020 | |
Population Spatial Distribution | Kilometer grid | 2019 |
Factor | p-Value | Q-Value | Factor | p-Value | Q-Value |
---|---|---|---|---|---|
Precipitation | 0.000 | 0.363 | Soil | 0.000 | 0.268 |
Elevation | 0.000 | 0.191 | NDVI | 0.000 | 0.201 |
Slope | 0.000 | 0.221 | Land Use | 0.004 | 0.106 |
Landform | 0.000 | 0.195 | Population Density | 0.000 | 0.185 |
PRCP | DEM | SL | Geom | Soil | NDVI | LUCC | PD | |
---|---|---|---|---|---|---|---|---|
PRCP | 0.363 | |||||||
DEM | 0.594 | 0.191 | ||||||
SL | 0.496 | 0.393 | 0.221 | |||||
Landform | 0.548 | 0.441 | 0.415 | 0.195 | ||||
Soil | 0.640 | 0.611 | 0.566 | 0.558 | 0.268 | |||
NDVI | 0.494 | 0.429 | 0.374 | 0.400 | 0.530 | 0.201 | ||
LUCC | 0.456 | 0.347 | 0.372 | 0.423 | 0.442 | 0.266 | 0.106 | |
PD | 0.529 | 0.413 | 0.447 | 0.481 | 0.598 | 0.418 | 0.341 | 0.185 |
Primary Driving Factor | Q-Value | Interaction Factors with the Highest Explanatory Power | Interactive Q-Value | Interaction |
---|---|---|---|---|
Precipitation | 0.363 | |||
Elevation | 0.191 | Precipitation–elevation | 0.594 | Enhanced; nonlinear |
Slope | 0.221 | Precipitation–slope | 0.496 | Enhanced; linear |
Landform | 0.195 | Precipitation–landform | 0.548 | Enhanced; linear |
Soil | 0.268 | Precipitation–soil | 0.640 | Enhanced; nonlinear |
NDVI | 0.201 | Soil–NDVI | 0.530 | Enhanced; nonlinear |
Land Use | 0.106 | Precipitation–land ese | 0.456 | Enhanced; linear |
Population Density | 0.185 | Soil–population density | 0.598 | Enhanced; nonlinear |
FFPI | Slope | Soil Texture | NDVI | Land Use |
---|---|---|---|---|
1 | 1~5 | Loamy sandy soil | 0.8~1 | Other woodland |
2 | 5~10 | Forested land | ||
3 | 10~15 | Sandy loam soil | 0.6~0.8 | Shrubland |
4 | >45 | High coverage grassland | ||
5 | 40~45 | Loamy soil | 0.4~0.6 | Sparse woodland and moderate-coverage grassland |
6 | 35~40 | Low-coverage grassland | ||
7 | 30~35 | Silty soil | 0.2~0.4 | Bare land and paddy field |
8 | 25~30 | Wetland | ||
9 | 20~25 | Sandy clay soil | 0~0.2 | Water body and dryland |
10 | 15~25 | Urban and rural land and other developed Land |
Driving Factor | Q-Value | Weight |
---|---|---|
Precipitation | 0.363 | 0.210 |
Elevation | 0.191 | 0.110 |
Slope | 0.221 | 0.138 |
Landform | 0.195 | 0.113 |
Soil | 0.268 | 0.155 |
NDVI | 0.201 | 0.116 |
Land Use | 0.106 | 0.061 |
Population Density | 0.185 | 0.107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Li, Y.; Zhao, L.; Zhang, Z.; Wang, Y.; Ma, M. Comprehensive Risk Assessment Framework for Flash Floods in China. Water 2024, 16, 616. https://doi.org/10.3390/w16040616
Li Q, Li Y, Zhao L, Zhang Z, Wang Y, Ma M. Comprehensive Risk Assessment Framework for Flash Floods in China. Water. 2024; 16(4):616. https://doi.org/10.3390/w16040616
Chicago/Turabian StyleLi, Qing, Yu Li, Lingyun Zhao, Zhixiong Zhang, Yu Wang, and Meihong Ma. 2024. "Comprehensive Risk Assessment Framework for Flash Floods in China" Water 16, no. 4: 616. https://doi.org/10.3390/w16040616
APA StyleLi, Q., Li, Y., Zhao, L., Zhang, Z., Wang, Y., & Ma, M. (2024). Comprehensive Risk Assessment Framework for Flash Floods in China. Water, 16(4), 616. https://doi.org/10.3390/w16040616