Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = flame-holder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2997 KiB  
Article
Flow Field Analysis of a Hydrogen-Fueled Flame Holder Using Particle Image Velocimetry (PIV)
by Florin Gabriel Florean, Andreea Mangra, Marius Enache, Razvan Carlanescu and Cristian Carlanescu
Fuels 2025, 6(1), 20; https://doi.org/10.3390/fuels6010020 - 7 Mar 2025
Viewed by 931
Abstract
The stability of hydrogen-fueled flames in afterburner systems is crucial for advancing clean energy technologies but is challenged by intense turbulence and flow variability. This study uniquely integrates advanced particle image velocimetry (PIV) techniques to investigate the flow dynamics around a V-gutter flame [...] Read more.
The stability of hydrogen-fueled flames in afterburner systems is crucial for advancing clean energy technologies but is challenged by intense turbulence and flow variability. This study uniquely integrates advanced particle image velocimetry (PIV) techniques to investigate the flow dynamics around a V-gutter flame holder fueled with 100% hydrogen. Detailed velocity measurements were conducted to analyze the standard deviation of Vy, average Vy, average V, and uncertainty of Vy, as well as the mean swirling strength and mean vorticity profiles across multiple horizontal and vertical lines. The results reveal significant flow variability and turbulence intensity near the flame holder, with standard deviation peaks of up to 12 m/s, indicating zones of high turbulence and potential flame instability. The mean swirling strength, peaking at 850,000 [1/s2], and vorticity values up to 5000 [1/s] highlight intense rotational motion, enhancing fuel–air mixing and flame stabilization. The average Vy remained stable near the centerline, ensuring balanced flow conditions, while lateral deviations of up to −10 m/s reflect vortical structures induced by the flame holder geometry. Low uncertainty values, typically below 1 m/s, validate the precision of the PIV measurements, ensuring a reliable representation of the flow field. By providing a detailed analysis of turbulence structures and their impact on hydrogen combustion, this study offers novel insights into the interplay between flow dynamics and flame stability. These findings not only advance the understanding of hydrogen-fueled afterburner systems but also demonstrate the critical role of rotational flow structures in achieving stable and efficient combustion. By addressing key challenges in hydrogen combustion, this study provides a foundation for designing more robust and environmentally sustainable combustion systems, contributing to the transition toward clean energy technologies. Full article
Show Figures

Figure 1

15 pages, 11769 KiB  
Article
Improving Combustion Analysis of Extruded Polystyrene via Custom Isolation Methodology
by Yanan Hou, Mei Wan, Jian Li, Fei Ren, Xiaodong Qian and Congling Shi
Fire 2025, 8(2), 43; https://doi.org/10.3390/fire8020043 - 24 Jan 2025
Viewed by 768
Abstract
This study is dedicated to an in−depth analysis of the combustion characteristics of extruded polystyrene (XPS) as a building insulation material with the aim of accurately assessing its fire risk in the built environment. Innovatively, this research employed a cone calorimeter equipped with [...] Read more.
This study is dedicated to an in−depth analysis of the combustion characteristics of extruded polystyrene (XPS) as a building insulation material with the aim of accurately assessing its fire risk in the built environment. Innovatively, this research employed a cone calorimeter equipped with a self−designed insulating sample holder to conduct a systematic experimental study. Additionally, it performed a comprehensive analysis of the ignition characteristics, heat release rate, fire hazard, smoke release, and toxic gas emission of XPS materials. The experimental results revealed that the combustion behavior of XPS is influenced by multiple factors, including the content of flame retardants and external heat flux, which significantly affect the fire hazard of XPS. When the thermal radiation intensity escalates from 25 kW/m2 to 55 kW/m2, the peak heat release rate of XPS−B1 rises from 428 kW/m2 to 535 kW/m2, marking an increase of 25.00%. Conversely, the peak heat release rate of XPS−B2 surges from 348 kW/m2 to 579 kW/m2, reflecting a substantial increase of 66.38%. This research not only provides a solid theoretical foundation and detailed experimental data for the fire behavior of XPS materials but also holds significant practical importance for enhancing the fire safety of buildings. Overall, this research contributes to the scientific understanding of XPS insulation materials and supports the development of more effective fire prevention measures in construction. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

18 pages, 4943 KiB  
Article
Analysis of a Newly Developed Afterburner System Employing Hydrogen–Methane Blends
by Florin Gabriel Florean, Andreea Mangra, Marius Enache, Razvan Carlanescu, Alexandra Taranu and Madalina Botu
Inventions 2024, 9(4), 74; https://doi.org/10.3390/inventions9040074 - 11 Jul 2024
Cited by 1 | Viewed by 1459
Abstract
A considerable number of Combined Heat and Power (CHP) systems continue to depend on fossil fuels like oil and natural gas, contributing to significant environmental pollution and the release of greenhouse gases. Two V-gutter flame holder prototypes (P1 and P2) with the same [...] Read more.
A considerable number of Combined Heat and Power (CHP) systems continue to depend on fossil fuels like oil and natural gas, contributing to significant environmental pollution and the release of greenhouse gases. Two V-gutter flame holder prototypes (P1 and P2) with the same expansion angle, fueled with pure hydrogen (100% H2) or hydrogen–methane mixtures (60% H2 + 40% CH4, 80% H2 + 20% CH4), intended for use in cogeneration applications, have been designed, manufactured, and tested. Throughout the tests, the concentrations of CO2, CO, and NO in the flue gas were monitored, and particle image velocimetry (PIV) measurements were performed. The CO, CO2, respectively, and NO emissions gradually decreased as the percentage of H2 in the fuel mixture increased. The NO emissions were significantly lower in the case of prototype P2 in comparison with prototype P1 in all measurement points for all used fuel mixtures. The shortest recirculation zone was observed for P1, where the axial velocity reaches a negative peak of approximately 12 m/s at roughly 50 mm downstream of the edge of the flame holder, and the recirculation region spans about 90 mm. In comparison, the P2 prototype has a length of the recirculation region span of about 100 mm with a negative peak of approximately 14 m/s. The data reveal high gradients in flow velocity near the flow separation point, which gradually smooth out with increasing downstream distance. Despite their similar design, P2 consistently performs better across all measured velocity components. This improvement can be attributed to the larger fuel injection holes, which enhance fuel–air mixing and combustion stability. Additionally, the presence of side walls directing the flow around the flame stabilizer further aids in maintaining a stable combustion process. Full article
(This article belongs to the Special Issue Thermodynamic and Technical Analysis for Sustainability (Volume 3))
Show Figures

Figure 1

16 pages, 6505 KiB  
Article
Passive Control of Vortices in the Wake of a Bluff Body
by Marek Pátý, Michael Valášek, Emanuele Resta, Roberto Marsilio and Michele Ferlauto
Fluids 2024, 9(6), 131; https://doi.org/10.3390/fluids9060131 - 31 May 2024
Viewed by 1540
Abstract
Vortices belong to the most important phenomena in fluid dynamics and play an essential role in many engineering applications. They can act detrimentally by harnessing the flow energy and reducing the efficiency of an aerodynamic device, whereas in other cases, their presence can [...] Read more.
Vortices belong to the most important phenomena in fluid dynamics and play an essential role in many engineering applications. They can act detrimentally by harnessing the flow energy and reducing the efficiency of an aerodynamic device, whereas in other cases, their presence can be exploited to achieve targeted flow conditions. The control of the vortex parameters is desirable in both cases. In this paper, we introduce an optimization strategy for the control of vortices in the wake of a bluff body. Flow modelling is based on RANS and DES computations, validated by experimental data. The algorithm for vortex identification and characterization is based on the triple decomposition of motion. It produces a quantitative measure of vortex strength which is used to define the objective function in the optimization procedure. It is shown how the shape of an aerodynamic device can be altered to achieve the desired characteristics of vortices in its wake. The studied case is closely related to flame holders for combustion applications, but the conceptual approach has a general applicability to vortex control. Full article
Show Figures

Figure 1

22 pages, 13772 KiB  
Article
Experimental Research on an Afterburner System Fueled with Hydrogen–Methane Mixtures
by Florin Gabriel Florean, Andreea Mangra, Marius Enache, Marius Deaconu, Razvan Ciobanu and Razvan Carlanescu
Inventions 2024, 9(3), 46; https://doi.org/10.3390/inventions9030046 - 24 Apr 2024
Cited by 2 | Viewed by 2324
Abstract
A new afterburner installation is proposed, fueled with pure hydrogen (100%H2) or hydrogen–methane mixtures (60% H2 + 40% CH4, 80% H2 + 20% CH4) for use in cogeneration applications. Two prototypes (P1 and P2) with the [...] Read more.
A new afterburner installation is proposed, fueled with pure hydrogen (100%H2) or hydrogen–methane mixtures (60% H2 + 40% CH4, 80% H2 + 20% CH4) for use in cogeneration applications. Two prototypes (P1 and P2) with the same expansion angle (45 degrees) were developed and tested. P1 was manufactured by the classic method and P2 by additive manufacturing. Both prototypes were manufactured from Inconel 625. During the tests, analysis of flue gas (CO2, CO, and NO concentration), PIV measurements, and noise measurements were conducted. The flue gas analysis emphasizes that the behavior of the two tested prototypes was very similar. For all three fuels used, the CO2 concentration levels were slightly lower in the case of the additive-manufactured prototype P2. The CO concentration levels were significantly higher in the case of the additive-manufactured prototype P2 when 60% H2/40% CH4 and 80% H2/20% CH4 mixtures were used as fuel. When pure H2 was used as fuel, the measured data suggest that no additional CO was produced during the combustion process, and the level of CO was similar to that from the Garrett micro gas turbine in all five measuring points. The NO emissions gradually decreased as the percentage of H2 in the fuel mixture increased. The NO concentration was significantly lower in the case of the additive-manufactured prototype (P2) in comparison with the classic manufactured prototype (P1). Examining the data obtained from the PIV measurements of the flow within the mixing region shows that the highest axial velocity component value on the centerline was measured for the P1 prototype. The acoustic measurements showed that a higher H2 concentration led to a reduction in noise of approximately 1.5 dB for both afterburner prototypes. The outcomes reveal that the examined V-gutter flame holder prototype flow was smooth, without any perpendicular oscillations, without chaotic motions or turbulent oscillations to the flow direction, across all tested conditions, keeping constant thermal power. Full article
(This article belongs to the Special Issue Thermodynamic and Technical Analysis for Sustainability (Volume 3))
Show Figures

Figure 1

19 pages, 21072 KiB  
Article
Numerical Simulation Study on the Dynamics of Bluff-Body Flames under Oxygen-Lean Conditions
by Fuquan Deng, Minwei Zhao, Shunchuang Qin, Zhaokun Wang, Yongliang Xie, Hongtao Zheng, Xiao Liu and Feng Zhang
Energies 2024, 17(1), 142; https://doi.org/10.3390/en17010142 - 27 Dec 2023
Cited by 3 | Viewed by 1710
Abstract
As modern aeroengine combustors advance towards high temperatures, afterburners are inevitably affected by diminished oxygen content in incoming flows, thus affecting combustion efficiency, instability, and flammability limits. In this study, the dynamic combustion characteristics of V-shaped bluff body-stabilised diffusion flames were investigated using [...] Read more.
As modern aeroengine combustors advance towards high temperatures, afterburners are inevitably affected by diminished oxygen content in incoming flows, thus affecting combustion efficiency, instability, and flammability limits. In this study, the dynamic combustion characteristics of V-shaped bluff body-stabilised diffusion flames were investigated using a large eddy simulation method with an oxygen mass fraction range of 14–23% and temperatures ranging from 900 to 1100 K. The results show the significant effects of oxygen content and inflow temperature on the flame/flow behaviours downstream of the bluff-body flame holder. In a separated shear layer, two distinct modes of flow/flame shedding are observed when varying the oxygen content and inflow temperature. The results show that BVK instability governs the far-field wake flow/flame features, whereas the oxygen concentration and temperature significantly affect their oscillation amplitudes. In addition, variations in the incoming oxygen content and temperature shift the axial position of the transition from KH instability to BVK instability. Finally, a spectral analysis is conducted to investigate the characteristics of pressure and heat release pulsations under different scenarios. This study highlights the importance of oxygen content on the combustion dynamics of bluff body-stabilised diffusion flames at various temperatures, which is essential for optimising combustion efficiency and stability in practical applications. Full article
Show Figures

Figure 1

20 pages, 12817 KiB  
Article
Numerical and Experimental Investigation of the Decoupling Combustion Characteristics of a Burner with Flame Stabilizer
by Jing Wang, Jingchi Yang, Fengling Yang and Fangqin Cheng
Energies 2023, 16(11), 4474; https://doi.org/10.3390/en16114474 - 1 Jun 2023
Cited by 4 | Viewed by 1718
Abstract
In order to integrate renewable electricity into the power grid, it is crucial for coal-fired power plant boilers to operate stably across a wide load range. Achieving steady combustion with low nitrogen oxide (NOx) emissions poses a significant challenge for boilers [...] Read more.
In order to integrate renewable electricity into the power grid, it is crucial for coal-fired power plant boilers to operate stably across a wide load range. Achieving steady combustion with low nitrogen oxide (NOx) emissions poses a significant challenge for boilers burning low-volatile coal in coal-fired power plants. This study focuses on developing a decoupling combustion technology for low-volatile coal-fired boilers operating at low loads. A three-dimensional numerical simulation is employed to analyze and optimize the geometrical parameters of a burner applied in a real 300 MW pulverized coal fired boiler. Detailed analysis of the burner’s decoupling combustion characteristics, including stable combustion ability and NOx reduction principles, is conducted. The results indicate that this burner showed three stages of coal/air separation, and the flame holder facilitates the stepwise spontaneous ignition and combustion of low-volatile coal. By extending the time between coal pyrolysis and carbon combustion, the burner enhances decoupling combustion and achieves low nitrogen oxide emissions. Based on optimization, a flat partition plate without inclination demonstrates excellent performance in terms of velocity vector field distribution, coal air flow rich/lean separation, combustion, and nitrogen oxide generation. Compared with the initial structural design, the average nitrogen oxide concentration at the outlet is reduced by 59%. Full article
Show Figures

Figure 1

13 pages, 5908 KiB  
Article
Experimental Investigation of Flameholding in Scramjet Combustor by Pylon with Plasma Actuator Based on Q-DC Discharge
by Aleksandr A. Firsov
Aerospace 2023, 10(3), 204; https://doi.org/10.3390/aerospace10030204 - 21 Feb 2023
Cited by 3 | Viewed by 2363
Abstract
This paper presents the results of testing and optimization of a plasma-assisted combustion scheme based on a pylon for fuel injection equipped with a plasma actuator. Electrodes were installed behind the stern of the pylon for the creation of Q-DC discharge with voltage [...] Read more.
This paper presents the results of testing and optimization of a plasma-assisted combustion scheme based on a pylon for fuel injection equipped with a plasma actuator. Electrodes were installed behind the stern of the pylon for the creation of Q-DC discharge with voltage U = 200–2500 V and current I = 3–7.5 A. The experiments were performed in the PWT-50 supersonic wind tunnel of the JIHT RAS under the following conditions: Mach number M = 2, static pressure ~200 Torr, stagnation temperature T0 = 300 K. Gaseous fuel ethylene was used and the fuel mass flow rate was 0.5–4 g/s. The pylon had a streamlined shape that prevented the formation of a stagnant zone; plasma-assisted combustion was performed under more difficult conditions compared to plasma-assisted combustion on a flat wall, where separated flows near the wall are easily formed by discharge. In this work, two new geometries of pylon equipped with electrodes were proposed and experimentally tested. A second version providing a longer discharge length demonstrates stable ignition and intense combustion in a fully discussed fuel mass flow rate. The process of ignition in a supersonic flow and flame front pulsations was described. A reduction in the energy input in comparison with the previously considered configurations of plasma-assisted combustion was also demonstrated. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 16915 KiB  
Article
Plasma Actuation for the Turbulent Mixing of Fuel Droplets and Oxidant Air in an Aerospace Combustor
by Zhengqi Tai, Qian Chen, Xiaofei Niu, Zhenhua Lin and Hesen Yang
Aerospace 2023, 10(1), 77; https://doi.org/10.3390/aerospace10010077 - 12 Jan 2023
Cited by 1 | Viewed by 2152
Abstract
In order to explore plasma-assisted turbulent mixing in aerospace engines, the dielectric barrier discharge plasma actuation for the turbulent mixing of fuel droplets and oxidant air in a ramjet combustor was studied using computational fluid dynamics. A two-way coupling of turbulent air and [...] Read more.
In order to explore plasma-assisted turbulent mixing in aerospace engines, the dielectric barrier discharge plasma actuation for the turbulent mixing of fuel droplets and oxidant air in a ramjet combustor was studied using computational fluid dynamics. A two-way coupling of turbulent air and discrete droplets was realized by Eulerian–Lagrangian simulation, and the dielectric barrier discharge plasma action on flow was modeled by body force. The results show that the plasma actuation can rearrange the recirculation zone behind the evaporative V-groove flameholder, and the main mechanism of actuation is to increase the local momentum of the fluid; the actuation dimension, actuation intensity, and actuation position of the dielectric barrier discharge plasma have strong effects on the turbulent mixing of fuel droplets and oxidant air; and a relatively optimal turbulent mixing can be achieved by adjusting the actuation parameters. Full article
(This article belongs to the Special Issue Thermal Fluid Dynamics and Control in Aerospace)
Show Figures

Figure 1

24 pages, 10465 KiB  
Article
Numerical Simulations of Spray Combustion in Jet Engines
by Arvid Åkerblom, Francesco Pignatelli and Christer Fureby
Aerospace 2022, 9(12), 838; https://doi.org/10.3390/aerospace9120838 - 16 Dec 2022
Cited by 6 | Viewed by 4919
Abstract
The aviation sector is facing a massive change in terms of replacing the currently used fossil jet fuels (Jet A, JP5, etc.) with non-fossil jet fuels from sustainable feedstocks. This involves several challenges and, among them, we have the fundamental issue of current [...] Read more.
The aviation sector is facing a massive change in terms of replacing the currently used fossil jet fuels (Jet A, JP5, etc.) with non-fossil jet fuels from sustainable feedstocks. This involves several challenges and, among them, we have the fundamental issue of current jet engines being developed for the existing fossil jet fuels. To facilitate such a transformation, we need to investigate the sensitivity of jet engines to other fuels, having a wider range of thermophysical specifications. The combustion process is particularly important and difficult to characterize with respect to fuel characteristics. In this study, we examine premixed and pre-vaporized combustion of dodecane, Jet A, and a synthetic test fuel, C1, based on the alcohol-to-jet (ATJ) certified pathway behind an equilateral bluff-body flameholder, spray combustion of Jet A and C1 in a laboratory combustor, and spray combustion of Jet A and C1 in a single-sector model of a helicopter engine by means of numerical simulations. A finite rate chemistry (FRC) large eddy simulation (LES) approach is adopted and used together with small comprehensive reaction mechanisms of around 300 reversible reactions. Comparison with experimental data is performed for the bluff-body flameholder and laboratory combustor configurations. Good agreement is generally observed, and small to marginal differences in combustion behavior are observed between the different fuels. Full article
(This article belongs to the Special Issue Large-Eddy Simulation Applications of Combustion Systems)
Show Figures

Figure 1

18 pages, 8500 KiB  
Article
Effect of Fuel-Injection Distance and Cavity Rear-Wall Height on the Flameholding Characteristics in a Mach 2.52 Supersonic Flow
by Zhonghao He, Hongbo Wang, Fan Li, Yifu Tian, Minggang Wan and Jiajian Zhu
Aerospace 2022, 9(10), 566; https://doi.org/10.3390/aerospace9100566 - 29 Sep 2022
Cited by 7 | Viewed by 2272
Abstract
The ethylene-fueled flameholding characteristics of a cavity-based scramjet combustor are experimentally and numerically investigated. The test facility used the air heater, which heats air from room temperature to total temperature 1477 K. A nozzle is installed behind the heater outlet to increase the [...] Read more.
The ethylene-fueled flameholding characteristics of a cavity-based scramjet combustor are experimentally and numerically investigated. The test facility used the air heater, which heats air from room temperature to total temperature 1477 K. A nozzle is installed behind the heater outlet to increase the air speed to Mach 2.52. Two cavity geometries with different rear-wall heights of 8 mm and 10 mm and two injection distances upstream of the cavities of 10 mm and 40 mm are compared to show the effect of these parameters. The CH* spontaneous emission images obtained by dual-camera synchronous shooting and the wall-pressure distribution obtained by a pressure-scan system are used to capture the flame dynamics. The global equivalence ratio range for different combination schemes is controlled from 0.14 to 0.27 in this paper. The results show that the conventional cavity (the rear-wall height is 10 mm) and the shorter injection distance can effectively decrease the lean blowoff limit of the combustor, while the rear-wall-expansion cavity (the rear-wall height is 8 mm) and the longer injection distance can effectively increase the rich blowoff limit. Compared with the injection distance, the rear-wall height of the cavity has little effect on the oscillation distribution of the shear layer-stabilized flame. However, the fuel-injection distance and cavity rear-wall height both have great influence on the spatial distribution of the flame. Full article
(This article belongs to the Special Issue Aerospace Combustion Engineering)
Show Figures

Figure 1

18 pages, 8643 KiB  
Article
Experimental Investigation on Flow Characteristics and Ignition Performance of Plasma-Actuated Flame Holder
by Min Jia, Yinxiang Zang, Wei Cui, Dong Lin, Zhibo Zhang and Huimin Song
Processes 2022, 10(9), 1848; https://doi.org/10.3390/pr10091848 - 14 Sep 2022
Cited by 1 | Viewed by 1816
Abstract
Improving the performance of flame holders has been a key focus of research on ramjet combustors. The plasma actuator has the potential to improve the ignition performance by manipulating the flow field of the flame holder. In this study, a plasma-actuated flame holder [...] Read more.
Improving the performance of flame holders has been a key focus of research on ramjet combustors. The plasma actuator has the potential to improve the ignition performance by manipulating the flow field of the flame holder. In this study, a plasma-actuated flame holder was designed. The aim of this study is to improve the performance of ramjet combustor by applying plasma discharge to the flame holder. The aerodynamic effects and ignition performance of the flame holder were investigated. The results demonstrated that the induced jet direction of the surface arc discharge was perpendicular to the actuator. The induced jet dissipated faster at lower pressures. The aerodynamic actuation intensity and jet area increased with the number of channels of surface arc discharges. Increasing discharge frequencies can increase the discharge times and jet height. The aerodynamic effects under a microsecond pulse duration were better than those under a nanosecond pulse duration. Actuators installed on the inside surface showed better performance than those installed outside. Under different total flow temperature conditions, the plasma-actuated flame holder significantly extended the ignition pressure limit and increased the combustion efficiency by 9.12% and 4.3% on average, respectively. Full article
(This article belongs to the Special Issue Plasma Combustion and Flow Control Processes)
Show Figures

Figure 1

20 pages, 11003 KiB  
Article
Active Flow Control of a Flame-Holder Wake Using Nanosecond-Pulsed Surface-Dielectric-Barrier Discharge in a Low-Pressure Environment
by Wei Cui, Min Jia, Dong Lin and Mei Lin
Processes 2022, 10(8), 1519; https://doi.org/10.3390/pr10081519 - 2 Aug 2022
Cited by 1 | Viewed by 1915
Abstract
Flame holders are widely used in ramjet combustors. We propose using surface nanosecond-pulsed surface-dielectric-barrier-discharge (NS-DBD) to manipulate the flame-holder flow field experimentally. The electrical characteristics, induced flow performance, and temperature distribution of NS-DBD were investigated via the electrical and optical measurement system. In [...] Read more.
Flame holders are widely used in ramjet combustors. We propose using surface nanosecond-pulsed surface-dielectric-barrier-discharge (NS-DBD) to manipulate the flame-holder flow field experimentally. The electrical characteristics, induced flow performance, and temperature distribution of NS-DBD were investigated via the electrical and optical measurement system. In the filamentary discharge mode, the discharge energy rose with decrease of the ambient pressure. The discharge pattern of NS-DBD changed from filamentous to uniform around 5 kPa. Starting-vortex intensity and jet-flow angle relative to the wall increased at low pressure. The recirculation zone was asymmetrical at pressures above 60 kPa. The recirculation zone’s area and length were smaller at lower pressures, but when the actuator was operating, the recirculation zone was nearly 11.8% longer. The vorticity increased with pressure. When the pulse width was 300 ns, the actuator had the greatest effect, and the low velocity region (LVR) area and the fuel–air-mixture residence time (FMRT) could be increased by 31.8% and 20.5%, respectively. The actuator had a smaller widening effect on the LVR area at lower pressure. Rising-edge time should increase with pressure to optimize LVR increase; it should be above 300 ns to optimize FMRT increase. We conclude that NS-DBD is a viable method of controlling flame-holder airflow at low pressure. Full article
(This article belongs to the Special Issue Plasma Combustion and Flow Control Processes)
Show Figures

Figure 1

12 pages, 3189 KiB  
Article
Four-Line C2*/CH* Optical Sensor for Chemiluminescence Based Imaging of Flame Stoichiometry
by Michael E. Tonarely, Tommy Genova, Anthony J. Morales, Daniel Micka, Darin Knaus and Kareem A. Ahmed
Sensors 2022, 22(15), 5665; https://doi.org/10.3390/s22155665 - 28 Jul 2022
Cited by 8 | Viewed by 2511
Abstract
In the present work, an optical sensor was developed and calibrated for the purpose of non-intrusive equivalence ratio measurements in combustion systems. The sensor incorporates a unique four-line, single-sensor chemiluminescence imaging-based approach, which relies on the ratio of C2* and CH* [...] Read more.
In the present work, an optical sensor was developed and calibrated for the purpose of non-intrusive equivalence ratio measurements in combustion systems. The sensor incorporates a unique four-line, single-sensor chemiluminescence imaging-based approach, which relies on the ratio of C2* and CH* radical-species intensities to obtain measurements of equivalence ratios. The advantage of the four-line sensor is the use of additional filtering to mitigate broadband luminescence signals, and its improvements over conventional two-line chemiluminescence diagnostics are discussed. The sensor was calibrated using a premixed bluff-body jet burner with a propane–air flame operating over a wide range of equivalence ratios. The results showed that the four-line processing technique improved the signal-to-noise ratio of the chemiluminescence images for all test cases. Calibrations of C2*/CH* intensity ratio to equivalence ratio were developed for both the four-line and two-line techniques. The calibrations were then used to create maps of local equivalence ratios in the flame-holding region. The maps revealed a non-uniform field of equivalence ratios due to the nature of the radical-species intensity profiles within the flame. Therefore, special consideration is required for calibration in order to accurately quantify equivalence ratios and apply these to diffusion flames. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 8806 KiB  
Article
The Characteristics of Gliding Arc Plasma and Its Activating Effect for Ramjet Combustion
by Jiulun Sun, Di Jin, Shengfang Huang, Kai Zhang, Weiqi Chen and Xinyao Cheng
Energies 2022, 15(12), 4260; https://doi.org/10.3390/en15124260 - 9 Jun 2022
Cited by 3 | Viewed by 2609
Abstract
In order to improve the combustion performance of a ramjet under low temperature and pressure, a gliding arc plasma actuator was designed based on a typical evaporation flameholder. The discharge characteristics, as well as the activating effect of single-channel and three-channel gliding arc [...] Read more.
In order to improve the combustion performance of a ramjet under low temperature and pressure, a gliding arc plasma actuator was designed based on a typical evaporation flameholder. The discharge characteristics, as well as the activating effect of single-channel and three-channel gliding arc plasma under different carrier gas flow rates, were studied. Results show that with the increase in the carrier gas flow rate, the average duration of the gliding arc discharge becomes shorter, while the average power increases, and the specific input energy decreases. Compared with single-channel discharge, three-channel discharge has higher discharge power and energy injection rate, which makes a bigger actuated space. Through gliding arc plasma, the kerosene is cracked and H2, CH4, C2H2, C2H4, C3H6 and other small molecule components are produced. For three-channel gliding arc discharge, the effective cracking rate and the production rate of each component are higher than those of the single-channel discharge; both of them gradually increase with the increase in the carrier gas flow rate. The experiment results indicate that three-channel gliding arc plasma can effectively widen the ignition boundary and improve the combustion efficiency of ramjet combustion. The ignition pressure boundary is expanded from 60 kPa to 50 kPa under 390 K; the combustion efficiency is increased from 76% to 82%. Full article
Show Figures

Figure 1

Back to TopTop