Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = flame retardant (TCPP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4006 KiB  
Article
Per- and Poly-Fluoroalkyl Substances, and Organophosphate Flame Retardants in the Upper Yangtze River: Occurrence, Spatiotemporal Distribution, and Risk Assessment
by Wen Sun, Zhiyou Fu, Yueyue Liu, Yingchen Bai, Yuyan Zhao, Chen Wang and Fengchang Wu
Toxics 2025, 13(2), 116; https://doi.org/10.3390/toxics13020116 - 1 Feb 2025
Viewed by 1336
Abstract
Contaminants of Emerging Concern (CECs), including per- and polyfluoroalkyl substances (PFASs) and organophosphate flame retardants (OPFRs), have raised global concerns due to their persistence, bioaccumulation potential, and toxicity. This study presents a comprehensive investigation of the occurrence, spatiotemporal distribution, potential sources, and the [...] Read more.
Contaminants of Emerging Concern (CECs), including per- and polyfluoroalkyl substances (PFASs) and organophosphate flame retardants (OPFRs), have raised global concerns due to their persistence, bioaccumulation potential, and toxicity. This study presents a comprehensive investigation of the occurrence, spatiotemporal distribution, potential sources, and the ecological and human health risks associated with 18 PFASs and 9 OPFRs in the surface waters of the upper Yangtze River, China. The water samples were collected from the main stream and five major tributaries (Min, Jinsha, Tuo, Jialing, and Wu Rivers) in 2022 and 2023. The total concentration of PFASs and OPFRs ranged from 16.07 to 927.19 ng/L, and 17.36 to 190.42 ng/L, respectively, with a consistently higher concentration observed in the main stream compared to the tributaries. Ultra-short-chain PFASs (e.g., TFMS) and halogenated OPFRs (e.g., TCPP) were the predominant compounds, likely originating from industrial discharges, wastewater effluents, and other anthropogenic sources. Ecological risk assessments indicated low-to-moderate risks at most sampling sites, with higher risks near wastewater discharge points. Human health risk evaluations suggested negligible non-carcinogenic risks but identified potential carcinogenic risks from OPFR exposure for adults at specific locations, particularly in Leshan city. This study highlights the importance of understanding the fate and impacts of PFASs and OPFRs in the upper Yangtze River, and provides valuable insights for developing targeted pollution control strategies and risk management measures. Full article
Show Figures

Figure 1

17 pages, 2113 KiB  
Article
Occupational Exposure of On-Shift Ottawa Firefighters to Flame Retardants and Polycyclic Aromatic Hydrocarbons
by William Papas, Rocio Aranda-Rodriguez, Xinghua Fan, Cariton Kubwabo, Janet S. L. Lee, Emma Fantin, Elita D. Zheng, Jennifer L. A. Keir, Dave Matschke, Jules M. Blais and Paul A. White
Toxics 2024, 12(9), 677; https://doi.org/10.3390/toxics12090677 - 17 Sep 2024
Cited by 1 | Viewed by 2059
Abstract
Firefighters can be exposed to complex mixtures of airborne substances, including hazardous substances released during structural fires. This study employed silicone wristbands (SWBs) as passive samplers to investigate potential exposure to polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs). SWBs were deployed at [...] Read more.
Firefighters can be exposed to complex mixtures of airborne substances, including hazardous substances released during structural fires. This study employed silicone wristbands (SWBs) as passive samplers to investigate potential exposure to polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs). SWBs were deployed at different areas of four fire stations, in four truck cabins, and at an office control location; they were also donned outside the jackets of 18 firefighters who responded to fire calls. Overall, office areas had significantly lower PAHs than fire station areas. Vehicle bays and truck cabins had significantly higher concentrations of low molecular weight (LMW) PAHs than sleeping and living room areas. For organophosphate ester flame retardants (OPFRs), tri-n-butyl phosphate (TnBP) and tris(1-chloro-2-propyl) phosphate (TCPP) were detected in all the samples; 2-ethylhexyl diphenyl phosphate (EHDPP) was more frequently detected in the fire station areas. Triphenyl phosphate (TPP) concentrations were highest in the truck cabin and office areas, and tris(1,3-dichloro-2-propyl)phosphate (TDCPP) was highest in truck cabins. Thirteen of 16 PAHs and nine of 36 OPFRs were detected in all the SWBs worn by firefighters, and tris (2-butoxyethyl) phosphate (TBEP) was the predominant OPFR. Levels of LMW PAHs were significantly lower when firefighters did not enter the fire. LMW PAHs, HMW (high molecular weight) PAHs, and EHDPP were significantly elevated when heavy smoke was reported. This work highlights the potential for occupational exposure to PAHs and flame retardants in some fire station areas; moreover, factors that may influence exposure during fire suppression. Whilst firefighters’ occupational exposure to PAHs is likely related to fire suppression and exposure to contaminated gear and trucks, exposure to OPFRs may be more related to their presence in truck interiors and electronics. Full article
(This article belongs to the Special Issue Firefighters’ Occupational Exposures and Health Risks)
Show Figures

Graphical abstract

14 pages, 2014 KiB  
Article
Occurrence, Bioaccumulation, and Risk Assessment of Organophosphate Esters in Rivers Receiving Different Effluents
by Shuyan Da and Jun Wang
Toxics 2024, 12(8), 612; https://doi.org/10.3390/toxics12080612 - 20 Aug 2024
Cited by 4 | Viewed by 1604
Abstract
Organophosphate esters (OPEs), as alternatives to brominated flame retardants, are extensively used in both production and daily life, with their environmental contamination and toxic effects being a concern. This study investigated the concentration levels, bioaccumulation, and ecological effects of OPEs in five different [...] Read more.
Organophosphate esters (OPEs), as alternatives to brominated flame retardants, are extensively used in both production and daily life, with their environmental contamination and toxic effects being a concern. This study investigated the concentration levels, bioaccumulation, and ecological effects of OPEs in five different effluent-receiving rivers. The results demonstrate that the concentration range of Σ13OPEs across the five rivers was between 142.23 and 304.56 ng/L (mean: 193.50 ng/L). The highest pollution levels of OPEs were found in rivers receiving airport and industrial wastewater, followed by agricultural wastewater, mixed wastewater, and domestic wastewater. Tris(2-chloroisopropyl) phosphate (TCPP), triethyl phosphate (TEP), and tricresyl phosphate (TCrP) were identified as the main pollutants. The accumulation concentrations of OPEs in fish ranged from 54.0 to 1080.88 ng/g dw, with the highest bioaccumulation found in Pelteobagrus fulvidraco, followed by Carassius auratus and Misgurnus anguillicaudatus. The brain was the primary organ of accumulation, followed by the liver, gills, intestine, and muscle. Tri-n-propyl phosphate (TPeP) and TEP exhibited the highest bioconcentration, with log BAF values exceeding three. The bioaccumulation of OPEs was influenced by pollutant concentration levels, hydrophobic properties, and biological metabolism. Ecological risk assessment revealed that the cumulative risk values of Σ13OPEs ranged from 0.025 to 16.76, with TCrP being the major contributor. It posed a medium–low risk to algae but a high risk to crustaceans and fish. Full article
(This article belongs to the Special Issue Environmental Risk Assessment and Control of Emerging Contaminants)
Show Figures

Figure 1

18 pages, 6410 KiB  
Article
Flammability, Toxicity, and Microbiological Properties of Polyurethane Flexible Foams
by Arkadiusz Głowacki, Przemysław Rybiński, Grzegorz Czerwonka, Witold Żukowski, Ulugbek Zakirovich Mirkhodjaev and Monika Żelezik
Materials 2024, 17(14), 3517; https://doi.org/10.3390/ma17143517 - 16 Jul 2024
Cited by 2 | Viewed by 1420
Abstract
The aim of the research was to investigate the influence of calcium phosphinate (HPCA) and aluminum phosphinate (HPAL) in synergistic systems with organophosphorus compounds, i.e., diphenylcresyl phosphate (CDP) and trichloropropyl phosphate (TCPP), on the thermal stability, flammability, smoke density, and emission of toxic [...] Read more.
The aim of the research was to investigate the influence of calcium phosphinate (HPCA) and aluminum phosphinate (HPAL) in synergistic systems with organophosphorus compounds, i.e., diphenylcresyl phosphate (CDP) and trichloropropyl phosphate (TCPP), on the thermal stability, flammability, smoke density, and emission of toxic gases during the thermal decomposition of polyurethane (PUR) foams. Thermogravimetric analysis (TGA), along with cone calorimetry and microcalorimetry, were used to assess the influence of fillers on the thermal stability and flammability of PUR foams. The analysis of toxic gas products was performed with the use of a coupled TG–gas analyzer system. The optical density of gases was measured with the use of a smoke density chamber (SDC). The obtained results showed an increase in thermal stability and a decrease in the flammability of the PUR composites. However, the results regarding smoke and gas emissions, as well as toxic combustion by-products, present ambiguity. On one hand, the applied flame retardant systems in the form of PUR-HPCA-CDP and PUR-HPCA-TCPP led to a reduction in the concentration of CO and HCN in the gas by-products. On the other hand, they clearly increased the concentration of CO2, NOx, and smoke emissions. Microbiological studies indicated that the obtained foam material is completely safe for use and does not exhibit biocidal properties. Full article
(This article belongs to the Special Issue New Advances in Elastomer Materials and Its Composites)
Show Figures

Figure 1

21 pages, 7146 KiB  
Article
Distribution and Risk Assessment of Organophosphate Esters in Agricultural Soils and Plants in the Coastal Areas of South China
by Wangxing Luo, Siyu Yao, Jiahui Huang, Haochuan Wu, Haijun Zhou, Mingjiang Du, Ling Jin and Jianteng Sun
Toxics 2024, 12(4), 286; https://doi.org/10.3390/toxics12040286 - 12 Apr 2024
Cited by 7 | Viewed by 2374
Abstract
Organophosphate esters (OPEs) are frequently used as flame retardants and plasticizers in various commercial products. While initially considered as substitutes for brominated flame retardants, they have faced restrictions in some countries due to their toxic effects on organisms. We collected 37 soil and [...] Read more.
Organophosphate esters (OPEs) are frequently used as flame retardants and plasticizers in various commercial products. While initially considered as substitutes for brominated flame retardants, they have faced restrictions in some countries due to their toxic effects on organisms. We collected 37 soil and crop samples in 20 cities along the coast of South China, and OPEs were detected in all of them. Meanwhile, we studied the contamination and potential human health risks of OPEs. In soil samples, the combined concentrations of eight OPEs varied between 74.7 and 410 ng/g, averaging at 255 ng/g. Meanwhile, in plant samples, the collective concentrations of eight OPEs ranged from 202 to 751 ng/g, with an average concentration of 381 ng/g. TDCIPP, TCPP, TCEP, and ToCP were the main OPE compounds in both plant and soil samples. Within the study area, the contaminants showed different spatial distributions. Notably, higher OPEs were found in coastal agricultural soils in Guangdong Province and crops in the Guangxi Zhuang Autonomous Region. The results of an ecological risk assessment show that the farmland soil along the southern coast of China is at high or medium ecological risk. The average non-carcinogenic risk and the carcinogenic risk of OPEs in soil through ingestion and dermal exposure routes are within acceptable levels. Meanwhile, this study found that the dietary intake of OPEs through food is relatively low, but twice as high as other studies, requiring serious attention. The research findings suggest that the human risk assessment indicates potential adverse effects on human health due to OPEs in the soil–plant system along the coast of South China. This study provides a crucial foundation for managing safety risks in agricultural operations involving OPEs. Full article
(This article belongs to the Special Issue Distribution, Metabolism, and Toxicity Exposure of Emerging Toxics)
Show Figures

Figure 1

20 pages, 3013 KiB  
Article
An Initial Survey on Occurrence, Fate, and Environmental Risk Assessment of Organophosphate Flame Retardants in Romanian Waterways
by Iuliana Paun, Florinela Pirvu, Vasile Ion Iancu, Marcela Niculescu, Luoana Florentina Pascu and Florentina Laura Chiriac
J. Xenobiot. 2024, 14(1), 31-50; https://doi.org/10.3390/jox14010003 - 22 Dec 2023
Cited by 6 | Viewed by 2974
Abstract
Organophosphate ester flame retardants (OPFRs) are ubiquitous organic pollutants in the environment and present an important preoccupation due to their potential toxicity to humans and biota. They can be found in various sources, including consumer products, building materials, transportation industry, electronic devices, textiles [...] Read more.
Organophosphate ester flame retardants (OPFRs) are ubiquitous organic pollutants in the environment and present an important preoccupation due to their potential toxicity to humans and biota. They can be found in various sources, including consumer products, building materials, transportation industry, electronic devices, textiles and clothing, and recycling and waste management. This paper presents the first survey of its kind in Romania, investigating the composition, distribution, possible sources, and environmental risks of OPFRs in five wastewater treatment plants (WWTPs) and the rivers receiving their effluents. Samples from WWTPs and surface waters were collected and subjected to extraction processes to determine the OPFRs using liquid chromatography with mass spectrometric detection. All the target OPFRs were found in all the matrices, with the average concentrations ranging from 0.6 to 1422 ng/L in wastewater, 0.88 to 1851 ng/g dry weight (d.w.) in sewage sludge, and 0.73 to 1036 ng/L in surface waters. The dominant compound in all the cases was tri(2-chloroisopropyl) phosphate (TCPP). This study observed that the wastewater treatment process was inefficient, with removal efficiencies below 50% for all five WWTPs. The environmental risk assessment indicated that almost all the targeted OPFRs pose a low risk, while TDCPP, TCPP, and TMPP could pose a moderate risk to certain aquatic species. These findings provide valuable information for international pollution research and enable the development of pollution control strategies. Full article
(This article belongs to the Section Emerging Chemicals)
Show Figures

Figure 1

18 pages, 14172 KiB  
Article
Coating Composites Based on Polyurea Elastomers with Increased Fire Resistance and Their Use as Roofing Systems
by Wojciech Dukarski, Iwona Rykowska, Piotr Krzyżanowski, Joanna Paciorek-Sadowska and Marek Isbrandt
Processes 2023, 11(8), 2421; https://doi.org/10.3390/pr11082421 - 11 Aug 2023
Cited by 3 | Viewed by 1791
Abstract
This paper presents the results of tests on elastomer coatings based on polyurea–polyurethane formulation with increased fire parameters. Coatings modified with flame retardants: bis(phenylphosphate) resorcinol (RDP), trischloropropyl phosphate (TCPP), and aluminum hydroxide (ATH) were tested. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis [...] Read more.
This paper presents the results of tests on elastomer coatings based on polyurea–polyurethane formulation with increased fire parameters. Coatings modified with flame retardants: bis(phenylphosphate) resorcinol (RDP), trischloropropyl phosphate (TCPP), and aluminum hydroxide (ATH) were tested. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA/DTG) were used to investigate the structure and thermal stability. The effectiveness of resorcinol bis(phenylphosphate) (RDP), tris chloropropyl phosphate (TCPP), and aluminum hydroxide (ATH) on heat release rate (HRR), smoke release rate (RSR), and oxygen consumption was evaluated using cone calorimetry. The cone calorimetry results were correlated with the mechanical properties of the coatings. The cone calorimetry analysis showed suitable organophosphorus flame retardant (FR) performance, significantly decreasing HRR and oxygen consumption. Additionally, 15% TCPP caused a reduction of HRR by over 50%, obtaining 211.4 kW/m2 and pHRR by over 55%, reaching 538.3 kW/m2. However, organophosphorus flame retardants caused a significant deterioration of mechanical properties simultaneously. Introducing a mixture of two FRs (RDP/TCPP) resulted in obtaining a coating with improved fire resistance and maintained good mechanical strength. The polyurea–polyurethane coating, modified with a mixture of two RDP/TCPP retardants (10:5), was simulated for the burning of roof systems. The result of the simulation was assessed positively. Thus, finally, it was confirmed that the proposed polyurea–polyurethane coating achieved the assumed flame retardant level. Full article
(This article belongs to the Special Issue Microstructure, Processing and Numerical Simulation of Coatings)
Show Figures

Figure 1

9 pages, 1843 KiB  
Proceeding Paper
Detection of Organophosphorus Esters (OPEs) in Groundwater
by Lucija Plantak, Anita Ptiček Siročić, Ivana Grčić and Ranko Biondić
Environ. Sci. Proc. 2023, 25(1), 47; https://doi.org/10.3390/ECWS-7-14169 - 14 Mar 2023
Cited by 1 | Viewed by 1148
Abstract
Organophosphate esters (OPEs), are used as flame retardants and plasticizers to protect or enhance the properties of plastics, textiles, and many other materials. Sampling was carried out in groundwater from the karst aquifer Bokanjac–Poličnik near the city of Zadar, Croatia. To determine their [...] Read more.
Organophosphate esters (OPEs), are used as flame retardants and plasticizers to protect or enhance the properties of plastics, textiles, and many other materials. Sampling was carried out in groundwater from the karst aquifer Bokanjac–Poličnik near the city of Zadar, Croatia. To determine their continuous presence, samples were taken once during each season for one year. In the collected samples, nine OPEs were identified: tris(2-butoxyethyl) phosphate-TBEP, tricresyl phosphate-TCP, triphenyl phosphate-TPPA, tris(1-chloro-2-propyl) phosphate-TCPP, tris(2-chloroethyl) phosphate-TCEP, tris(1,3-dichloroisopropyl) phosphate-TDCPP, diethyl phthalate-DEP, tri-n-butyl phosphate-TBP, and di(2-ethylhexyl) adipate-DEHA. Full article
(This article belongs to the Proceedings of The 7th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

14 pages, 969 KiB  
Article
Genotoxic and Toxic Effects of The Flame Retardant Tris(Chloropropyl) Phosphate (TCPP) in Human Lymphocytes, Microalgae and Bacteria
by Maria Antonopoulou, Dimitris Vlastos, Margarita Dormousoglou, Spyridon Bouras, Maria Varela-Athanasatou and Irene-Eleni Bekakou
Toxics 2022, 10(12), 736; https://doi.org/10.3390/toxics10120736 - 28 Nov 2022
Cited by 16 | Viewed by 3458
Abstract
Tris(chloropropyl) phosphate (TCPP) is a characteristic and widely used organophosphorus flame retardant. TCPP is comprised of four isomers and the most abundant is tris(1-chloro-2-propyl) phosphate. TCPP can be released into the environment, with potential impacts on living organisms and humans due to its [...] Read more.
Tris(chloropropyl) phosphate (TCPP) is a characteristic and widely used organophosphorus flame retardant. TCPP is comprised of four isomers and the most abundant is tris(1-chloro-2-propyl) phosphate. TCPP can be released into the environment, with potential impacts on living organisms and humans due to its extensive industrial use. Aiming to assess the potential risks of TCPP on human health and the environment, its toxic and genotoxic effects—using organisms from different trophic levels, i.e., bacteria, green microalgae, and human cells—were investigated. TCPP exposure at nominal concentrations of 10, 20, 30 and 40 μg mL−1 was studied to identify the potential risk of inducing genotoxic effects in cultured human lymphocytes. Treatment with 30 and 40 μg mL−1 of TCPP induced marginally significant micronuclei (MN) frequencies as well as cytotoxic effects. Freshwater microalgae species treated with TCPP (0.5, 1, 10, 20 and 50 μg L−1) showed different growth rates over time. All the tested microalgae species were adversely affected after exposure to TCPP during the first 24 h. However, differences among the microalgae species’ sensitivities were observed. In the case of the freshwater species, the most sensitive was found to be Chlorococcum sp. The marine algal species Dunaliella tertiolecta and Tisochrysis lutea were significantly affected after exposure to TCPP. The effects of TCPP on Aliivibrio fischeri that were observed can classify this flame retardant as a “harmful” compound. Our results suggest a potential risk to aquatic organisms and humans from the wide utilization of TCPP and its consequent release into the environment. These results highlight that further research should be conducted to investigate the effects of TCPP individually and in combination with other organophosphorus flame retardants in various organisms. In addition, the concern induced by TCPP points out that measures to control the introduction of TCPP into the environment should be taken. Full article
Show Figures

Figure 1

12 pages, 3557 KiB  
Article
Organophosphorus Flame Retardant TCPP Induces Cellular Senescence in Normal Human Skin Keratinocytes: Implication for Skin Aging
by Jian-Xiang Liu, Dao-Lei Cui, Dan-Lei Yang, Jing-Ya Li, Zi-Yue Yang, Jin-Zhou Su, Cai-Xia Ren, You-Ya Niu and Ping Xiang
Int. J. Mol. Sci. 2022, 23(22), 14306; https://doi.org/10.3390/ijms232214306 - 18 Nov 2022
Cited by 10 | Viewed by 2679
Abstract
Tris (1-chloro-2-propyl) phosphate (TCPP) is one of the most frequently detected organophosphorus flames in the environment. Continuous daily exposure to TCPP may harm human skin. However, little is known about the adverse effects of TCPP on human skin. In this study, we first [...] Read more.
Tris (1-chloro-2-propyl) phosphate (TCPP) is one of the most frequently detected organophosphorus flames in the environment. Continuous daily exposure to TCPP may harm human skin. However, little is known about the adverse effects of TCPP on human skin. In this study, we first evaluated the detrimental effects and tried to uncover the underlying mechanisms of TCPP on human skin keratinocytes (HaCaT) after 24 h exposure. We found that TCPP caused a concentration-dependent decrease in HaCaT cell viability after exposure to 1.56–400 μg/mL for 24 h, with an IC50 of 275 μg/mL. TCPP also promoted the generation of intracellular reactive oxygen species (ROS) and triggered DNA damage, evidenced by an increase of phosphorylated histone H2A.X (γH2A.X) in the nucleus. Furthermore, the cell cycle was arrested at the G1 phase at 100 μg/mL by upregulation of the mRNA expression of p53 and p21 and downregulation of cyclin D1 and CDK4 expression. Additionally, both the senescence-associated-β-galactosidase activity and related proinflammatory cytokine IL-1β and IL-6 were elevated, indicating that TCPP exposure caused cellular senescence may be through the p53-dependent DNA damage signal pathway in HaCaT cells. Taken together, our data suggest that flame-retardant exposure may be a key precipitating factor for human skin aging. Full article
Show Figures

Graphical abstract

15 pages, 10328 KiB  
Article
Preparation and Characterization of TCPP-CaMMT Nanocompound and Its Composite with Polypropylene
by Junming Geng, Yanhua Lan, Shanshan Liu, Jiyu He, Rongjie Yang and Dinghua Li
Nanomaterials 2022, 12(9), 1428; https://doi.org/10.3390/nano12091428 - 22 Apr 2022
Cited by 3 | Viewed by 2167
Abstract
Based on the molecular dynamics method, the tris-(1-chloropropan-2yl) phosphate (TCPP)/montmorillonite (MMT) molecular model was established to study the binding energy and microstructure changes in TCPP and MMT. The theoretical simulation results showed that TCPP can enter the MMT layer and increase the layer [...] Read more.
Based on the molecular dynamics method, the tris-(1-chloropropan-2yl) phosphate (TCPP)/montmorillonite (MMT) molecular model was established to study the binding energy and microstructure changes in TCPP and MMT. The theoretical simulation results showed that TCPP can enter the MMT layer and increase the layer spacing. From this, an organic intercalated Ca-montmorillonite TCPP-CaMMT was prepared by a very simple direct mixing method using flame retardant TCPP as a modifier. Polypropylene (PP) composites were prepared by TCPP, CaMMT, and TCPP-CaMMT. The microstructures of TCPP-CaMMT nanocompounds and PP composites were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results showed that TCPP-CaMMT nanocompounds could be exfoliated into nanosheets in PP. The flame retardancy and mechanical properties of PP/TCPP-CaMMT samples were studied by limited oxygen index (LOI) measurements and tensile tests. The PP/TCPP-CaMMT composites showed better LOI, tensile strength, and elongation at break than the machine-mixed PP/TCPP + CaMMT. Full article
Show Figures

Figure 1

12 pages, 1950 KiB  
Article
Occurrence, Distribution, and Risk of Organophosphate Flame Retardants in Sediments from Jiulong River Estuary and Adjacent Western Taiwan Strait, China
by Ling Cai, Yuwei Shi, Chenyuan Pan, Feng Zhu, Siqi Wang, Juanjuan Dai, Ming Yang and Jing Ma
Int. J. Environ. Res. Public Health 2022, 19(4), 2449; https://doi.org/10.3390/ijerph19042449 - 20 Feb 2022
Cited by 7 | Viewed by 3060
Abstract
Organophosphate ester flame retardants (OPFRs) are widely prevalent in the environment and are of significant concern because of their potential toxicity to human health and wildlife. In this study, the concentration, frequency, spatial distribution, potential sources, and ecological risks of OPFRs in sediments [...] Read more.
Organophosphate ester flame retardants (OPFRs) are widely prevalent in the environment and are of significant concern because of their potential toxicity to human health and wildlife. In this study, the concentration, frequency, spatial distribution, potential sources, and ecological risks of OPFRs in sediments from the Jiulong River estuary and the adjacent western Taiwan Strait were investigated. Concentrations of four of the five studied OPFRs were between <LOD and 36.6 ng/g. The distribution of all OPFRs, except 2-Ethylhexyl diphenyl phosphate (EHDPP), remained highly consistent with hydrological (salinity) trends. Furthermore, a significantly positive correlation between EHDPP and total concentrations suggested that it may be the dominant contaminant at both sites. Principal element analysis indicated multiple sources of OPFRs, which were categorized as emissions from road runoff and surface traffic, effects of atmospheric deposition and hydrologic conditions, and a combination of industrial and population effects. Ecological risk indicates that tris (chloroethyl) phosphate (TCEP) and triphosphate ester (2,3-dibromopropyl) (TDBPP) have almost no risk, tris (clorisopropyl) phosphate (TCPP) generally has low risk, while EHDPP has moderate risk with the highest value of 0.487 in the sediments from both sites. Meanwhile, TCPP and TCEP exhibit lower theoretical health risks but are still not negligible. Overall, this work provides data to support global pollutant studies and facilitate the implementation of pollutant control strategies. Full article
Show Figures

Figure 1

18 pages, 3507 KiB  
Article
Removal of Emerging Pollutants in Horizontal Subsurface Flow and Vertical Flow Pilot-Scale Constructed Wetlands
by Georgios D. Gikas, Vassiliki A. Papaevangelou, Vassilios A. Tsihrintzis, Maria Antonopoulou and Ioannis K. Konstantinou
Processes 2021, 9(12), 2200; https://doi.org/10.3390/pr9122200 - 7 Dec 2021
Cited by 15 | Viewed by 6208
Abstract
We assessed constructed wetland (CW) performance in the removal of six emerging pollutants (EPs) from university campus wastewater. The EPs considered were: diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP), bis(2-ehtylxexyl) phthalate (DEHP), tris(1-chloro-2-propyl) phosphate (TCPP) and caffeine (CAF). Six pilot-scale CWs, [...] Read more.
We assessed constructed wetland (CW) performance in the removal of six emerging pollutants (EPs) from university campus wastewater. The EPs considered were: diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP), bis(2-ehtylxexyl) phthalate (DEHP), tris(1-chloro-2-propyl) phosphate (TCPP) and caffeine (CAF). Six pilot-scale CWs, i.e., three horizontal subsurface flow (HSF) and three vertical flow (VF), with different design configurations were used: two types of plants and one unplanted for both the HSF and the VF, two hydraulic retention times (HRT) for the HSF, and two wastewater feeding strategies for the VF units. The results showed that the median removals in the three HSF-CWs ranged between 84.3 and 99.9%, 79.0 and 95.7%, 91.4 and 99.7%, 72.2 and 81.0%, 99.1 and 99.6%, and 99.3 and 99.6% for DEP, DIBP, DNOP, DEHP, TCPP, and CAF, respectively. In the three VF-CWs, the median removal efficiencies range was 98.6–99.4%, 63.6–98.0%, 96.6–97.8%, 73.6–94.5%, 99.3–99.5% and 94.4–96.3% for DEP, DIBP, DNOP, DEHP, TCPP and CAF, respectively. The study indicates that biodegradation and adsorption onto substrate were the most prevalent removal routes of the target EPs in CWs. Full article
Show Figures

Figure 1

12 pages, 3549 KiB  
Article
Flame Retardancy Properties and Physicochemical Characteristics of Polyurea-Based Coatings Containing Flame Retardants Based on Aluminum Hydroxide, Resorcinol Bis(Diphenyl Phosphate), and Tris Chloropropyl Phosphate
by Wojciech Dukarski, Piotr Krzyżanowski, Marcin Gonsior and Iwona Rykowska
Materials 2021, 14(18), 5168; https://doi.org/10.3390/ma14185168 - 9 Sep 2021
Cited by 11 | Viewed by 3390
Abstract
Polyurea is a synthetic material made by the reaction of isocyanate and polymer blend-containing amines. Due to its outstanding mechanical properties and fast curing, polyurea-based coatings have found dozens of applications, including waterproofing and anti-corrosion coatings. Further development of this material can create [...] Read more.
Polyurea is a synthetic material made by the reaction of isocyanate and polymer blend-containing amines. Due to its outstanding mechanical properties and fast curing, polyurea-based coatings have found dozens of applications, including waterproofing and anti-corrosion coatings. Further development of this material can create a flame-retardant product, a good alternative for common products available on the market, such as intumescent coatings. To improve the flame retardancy of polyurea, several flame retardants were investigated. The influence of aluminum hydroxide, resorcinol bis(diphenyl phosphate) (RDP), and tris chloropropyl phosphate (TCPP) on flame retardancy and morphology was studied. The following methods were used: infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, limiting oxygen index, and tensile strength. The examinations mentioned above showed the improvement of flame-retardancy of polyurea for two products: chlorinated organophosphate and organophosphate. Nevertheless, using the chlorinated organophosphate additive caused a rapid deterioration of mechanical properties. Full article
(This article belongs to the Topic Metallurgical and Materials Engineering)
Show Figures

Figure 1

14 pages, 3004 KiB  
Article
Changes in Human Erythrocyte Exposed to Organophosphate Flame Retardants: Tris(2-chloroethyl) Phosphate and Tris(1-chloro-2-propyl) Phosphate
by Bożena Bukowska
Materials 2021, 14(13), 3675; https://doi.org/10.3390/ma14133675 - 1 Jul 2021
Cited by 12 | Viewed by 3216
Abstract
Tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP) are the main representatives of organophosphate flame retardants (OPFRs). The exposure of humans to OPFRs present in air, water, and food leads to their occurrence in the circulation. Thus far, no report has been published about [...] Read more.
Tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP) are the main representatives of organophosphate flame retardants (OPFRs). The exposure of humans to OPFRs present in air, water, and food leads to their occurrence in the circulation. Thus far, no report has been published about the influence of these retardants on non-nucleated cells like mature erythrocytes. Therefore, the impact of TCEP and TCPP (in concentrations determined in human blood as well as potentially present in the human body after intoxication) on human erythrocytes was evaluated. In this study, the effect of TCEP and TCPP on the levels of methemoglobin, reduced glutathione (GHS), and reactive oxygen species (ROS), as well as the activity of antioxidative enzymes, was assessed. Moreover, morphological, hemolytic, and apoptotic alterations in red blood cells were examined. Erythrocytes were incubated for 24 h with retardants in concentrations ranging from 0.001 to 1000 μg/mL. This study has revealed that the tested flame retardants only in very high concentrations disturbed redox balance; increased ROS and methemoglobin levels; and induced morphological changes, hemolysis, and eryptosis in the studied cells. The tested compounds have not changed the activity of the antioxidative system in erythrocytes. TCPP exhibited a stronger oxidative, eryptotic, and hemolytic potential than TCEP in human red blood cells. Comparison of these findings with hitherto published data confirms a much lower toxicity of OPFRs in comparison with brominated flame retardants. Full article
(This article belongs to the Special Issue Flame Retardants for Polymeric Materials)
Show Figures

Figure 1

Back to TopTop