Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (127)

Search Parameters:
Keywords = five-coordinate compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14728 KiB  
Article
Integrated Multi-Omics Analysis of the Developmental Stages of Antheraea pernyi Pupae: Dynamic Changes in Metabolite Profiles and Gene Expression
by Shuhui Ma, Yongxin Sun, Yajie Li, Xuejun Li, Zhixin Wen, Rui Mi, Nan Meng and Xingfan Du
Insects 2025, 16(7), 745; https://doi.org/10.3390/insects16070745 - 21 Jul 2025
Viewed by 295
Abstract
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives [...] Read more.
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives (pyruvate, proline, lysine) declined, while pyrimidines (cytidine, uridine, β-alanine) and monosaccharides (glucose, mannose) increased. 18β-glycyrrhetinic and ursolic acids accumulated significantly in the middle and late stages. Transcriptomic analysis identified 7230 differentially expressed genes (DEGs), with 366, 1705, and 5159 significantly differentially expressed genes in the T1, T3, and T5 comparison groups, respectively. KEGG enrichment highlighted ABC transporters, amino acid/pyrimidine metabolism, and tyrosine pathways as developmentally critical, with aminoacyl-tRNA biosynthesis upregulated in later phases. Integrated multi-omics analysis revealed coordinated shifts in metabolites and genes across developmental phases, reflecting dynamic nutrient remodeling during pupal maturation. This study systematically delineates the molecular transitions driving pupal development in Antheraea pernyi pupae, uncovering conserved pathway interactions and mechanistic insights into nutrient metabolism. These findings provide a scientific foundation for leveraging pupal resources in functional food innovation and bioactive compound discovery for pharmaceutical applications. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

21 pages, 422 KiB  
Article
Profiling Land Use Planning: Legislative Structures in Five European Nations
by Dimitrios Koumoulidis, Ioannis Varvaris, Diofantos Hadjimitsis, Marzia Gabriele, Raffaella Brumana, Ioannis Gitas, Nikos Georgopoulos, Azadeh Abdollahnejad, Eleni Gkounti, Dimitris Stavrakoudis, Donatella Caniani, Andriy Dorosh, Roman Derkulskyi, Oksana Sakal, Shamil Ibatullin, Yevhenii Khan, Oleksandr Melnyk, Anne Fromage Mariette, Marc Tondriaux, Andrzej Perkowski, Adam Sieczka, Mariusz Maciejczak, Chryssa Kopra, Georgia Kostaki and Paraskevi Chantziadd Show full author list remove Hide full author list
Land 2025, 14(6), 1261; https://doi.org/10.3390/land14061261 - 12 Jun 2025
Viewed by 1523
Abstract
Land use transformation, the longest-standing human-driven environmental alteration, is a pressing and complex issue that significantly impacts European landscapes and contributes to global environmental change. The urgency to act is reinforced by the European Environment Agency (EEA), which identifies industrial, commercial, and residential [...] Read more.
Land use transformation, the longest-standing human-driven environmental alteration, is a pressing and complex issue that significantly impacts European landscapes and contributes to global environmental change. The urgency to act is reinforced by the European Environment Agency (EEA), which identifies industrial, commercial, and residential development—particularly near major urban centers—as key contributors to land take. As the EU sets a vision for achieving zero net land take by 2050, assessing the readiness and coherence of national legislation becomes critical. This comprehensive study employs a comparative legal analysis across five European countries—Italy, Greece, Poland, France, and Ukraine—examining their laws, strategies, and commitments related to land degradation neutrality. Using a review of national legislation and policy documents, the research identifies systemic patterns, barriers, and opportunities within current legal frameworks. The present study aims to provide valuable insights for policymakers, planners, and academic institutions, fostering a comprehensive understanding of existing gaps, implementation, and inconsistencies in national land use legislation. Among the results, it has become evident that a typical “pathway” between the examined states in terms of the legislative framework on land use–land take is probably a utopia for the time being. The legislations in force, in several cases, are labyrinthine and multifaceted, highlighting the urgent and immediate need for simplification and standardization. The need for this action is further underscored by the fact that, in most cases, land use frameworks are characterized by complementary legislation and ongoing amendments. Ultimately, the research underscores the critical need for harmonized governance and transparent, enforceable policies, particularly in regions where deregulated land use planning persists. The diversity in legislative layers and the decentralized role of the authorities further compounds the complexity, reinforcing the importance of cross-country dialogue and EU-wide coordination in advancing sustainable land use development. Full article
Show Figures

Figure 1

17 pages, 5119 KiB  
Article
Machine-Learning-Assisted Aroma Profile Prediction in Five Different Quality Grades of Nongxiangxing Baijiu Fermented During Summer Using Sensory Evaluation Combined with GC×GC–TOF-MS
by Dongliang Shao, Wei Cheng, Chao Jiang, Tianquan Pan, Na Li, Mengmeng Li, Ruilong Li, Wei Lan and Xianfeng Du
Foods 2025, 14(10), 1714; https://doi.org/10.3390/foods14101714 - 12 May 2025
Viewed by 871
Abstract
Flavor is one of the crucial factors that influences the quality and consumer acceptance of baijiu. In this study, we analyzed the volatile organic compound (VOC) profiles of five different quality grades of Nongxiangxing baijiu (NXB), fermented during the summer of 2024, using [...] Read more.
Flavor is one of the crucial factors that influences the quality and consumer acceptance of baijiu. In this study, we analyzed the volatile organic compound (VOC) profiles of five different quality grades of Nongxiangxing baijiu (NXB), fermented during the summer of 2024, using 2D gas chromatography time-of-flight mass spectrometry (GC×GC–TOF-MS). We employed machine-learning (ML)-based classification and prediction models to evaluate the flavor. For TW, the scores of the sensory evaluation for coordination and overall evaluation were the highest. TW contained the highest concentration of ethyl caproate; we detected 965 VOCs in total, including several pyrazine compounds with potential health benefits. Principal component analysis (PCA) combined with orthogonal partial least squares discriminant analysis (OPLS-DA) enabled us to distinguish different samples, with eight VOCs emerging as primary contributors to the aroma of the samples, possessing variable importance in projection (VIP) values > 1. Furthermore, we tested eight ML models; random forest (RF) demonstrated the best classification performance, effectively discriminating samples based on their VOC profiles. The key VOC contributors that showed quality-grade specificity included 1-butanol, 3-methyl-1-butanol, and ethyl 5-methylhexanoate. The results elucidate the flavor-based features of NXB and provide a valuable reference for discriminating and predicting baijiu flavors. Full article
Show Figures

Figure 1

31 pages, 3410 KiB  
Article
Novel 8-Hydroxyquinoline-Derived V(IV)O, Ni(II), and Fe(III) Complexes: Synthesis, Characterization, and In Vitro Cytotoxicity Against Tumor Cells
by Joana Lopes, Leonor Côrte-Real, Íris Neto, Alice Alborghetti, Maël Dejoux, Nora V. May, Xavier Fontrodona, Isabel Romero, Alexandra M. M. Antunes, Catarina Pinto Reis, Maria Manuela Gaspar and Isabel Correia
Inorganics 2025, 13(5), 150; https://doi.org/10.3390/inorganics13050150 - 6 May 2025
Viewed by 1075
Abstract
We report the synthesis and characterization of five novel metal complexes. Three of them are vanadium complexes with the general formula [VO(Ln)2], where Ln are Schiff bases derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with either 4-(2-aminoethyl)morpholine (L [...] Read more.
We report the synthesis and characterization of five novel metal complexes. Three of them are vanadium complexes with the general formula [VO(Ln)2], where Ln are Schiff bases derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with either 4-(2-aminoethyl)morpholine (L1), 3-morpholinopropylamine (L2) or 1-(2-aminoethyl)piperidine (L3). The two other metal complexes are [Ni(L1)2] and [Fe(L1)2]Cl. They were characterized by analytical, spectroscopic (Fourier transform infrared, UV-visible absorption), and mass spectrometric techniques as well as by single-crystal X-ray diffraction (for all [VO(Ln)2] complexes and [Ni(L1)2]). While, in the crystal structure, the V(IV)O complexes show distorted square–pyramidal geometry with the ligands bound as bidentate through quinolate NO donors, the Ni(II) complex shows octahedral geometry with two ligand molecules coordinated through NNO donors. Stability studies in aqueous media revealed that the vanadium complexes are not stable, undergoing oxidation to VO2(L), which was corroborated by 51V NMR and MS. This behavior is also observed in organic media, though at a significantly slower rate. The Ni complex exhibited small spectral changes over time in aqueous media. Nonetheless, all compounds show enhanced stability in the presence of bovine serum albumin (BSA). Fluorescence studies carried out for the Ni(II) and Fe(III) complexes indicate reversible binding to albumin. The cytotoxicity of the L1 metal complexes was assessed on melanoma (B16F10 and A375) and colon cancer (CT-26 and HCT-116) cell lines, with 5-fluorouracil (5-FU) as a reference drug. The V- and Ni complexes showed the lowest IC50 values (<10 μM) in either A375 or HCT-116 cells after 48 h of incubation, while the Fe(III) complex presented minimal antiproliferative effects. The complexes were generally more cytotoxic to human than murine cancer cells. Synergistic in vitro studies with 5-FU revealed antagonism in most cases, except in A375 cells, where an additive effect was observed for the combination with the V-complex. Overall, these compounds show promising potential for cancer treatment, mostly for melanoma. Full article
Show Figures

Graphical abstract

16 pages, 2704 KiB  
Article
Unveiling the Reaction Pathway of Oxidative Aldehyde Deformylation by a MOF-Based Cytochrome P450 Mimic
by Zehua Luo, Wentian Zhou, Junying Chen and Yingwei Li
Catalysts 2025, 15(5), 436; https://doi.org/10.3390/catal15050436 - 29 Apr 2025
Viewed by 745
Abstract
Understanding the reaction pathway of aldehyde deformylation catalyzed by natural enzymes has shown significance in developing synthetic methodologies and new catalysts in organic, biochemical, and medicinal chemistry. However, unlike other well-rationalized chemical processes catalyzed by cytochrome P450 (Cyt P450) superfamilies, the detailed mechanism [...] Read more.
Understanding the reaction pathway of aldehyde deformylation catalyzed by natural enzymes has shown significance in developing synthetic methodologies and new catalysts in organic, biochemical, and medicinal chemistry. However, unlike other well-rationalized chemical processes catalyzed by cytochrome P450 (Cyt P450) superfamilies, the detailed mechanism of the P450-catalyzed aldehyde deformylation is still controversial. Challenges lie in establishing synthetic models to decipher the reaction pathways, which normally are homogeneous systems for precisely mimicking the structure of the active sites in P450s. Herein, we report a heterogeneous Cyt P450 aromatase mimic based on a porphyrinic metal–organic framework (MOF) PCN-224. Through post-metalation of iron(II) triflate with the porphyrin unit, a five-coordinated FeII(Porp) compound could be afforded and isolated inside the resulting PCN-224(Fe) to mimic the heme active site in P450. This MOF-based P450 mimic could efficiently catalyze the oxidative deformylation of aldehydes to the corresponding ketones under room temperature using O2 as the sole oxidant and triethylamine as the electron source, analogous to the NADPH reductase. The catalyst could be completely recovered after the catalytic reaction without undergoing structural decomposition or compromising its reactivity, representing it as one of the most valid mimics of P450 aromatase from both the structural and functional aspects. A mechanistic study reveals a strong correlation between the catalytic activity and the Cα-H bond dissociation energy of the aldehyde substrates, which, in conjunction with various trapping experiments, confirms an unconventional mechanism initiated by hydrogen atom abstraction. Full article
(This article belongs to the Special Issue Recent Advances in Metal-Organic Framework Catalysts)
Show Figures

Figure 1

19 pages, 3255 KiB  
Review
Insights into Active Site Cysteine Residues in Mycobacterium tuberculosis Enzymes: Potential Targets for Anti-Tuberculosis Intervention
by Abayomi S. Faponle, James W. Gauld and Sam P. de Visser
Int. J. Mol. Sci. 2025, 26(8), 3845; https://doi.org/10.3390/ijms26083845 - 18 Apr 2025
Viewed by 656
Abstract
Cysteine, a semi-essential amino acid, is found in the active site of a number of vital enzymes of the bacterium Mycobacterium tuberculosis (Mtb) and in particular those that relate to its survival, adaptability and pathogenicity. Mtb is the causative agent of [...] Read more.
Cysteine, a semi-essential amino acid, is found in the active site of a number of vital enzymes of the bacterium Mycobacterium tuberculosis (Mtb) and in particular those that relate to its survival, adaptability and pathogenicity. Mtb is the causative agent of tuberculosis, an infectious disease that affects millions of people globally. Common anti-tuberculosis targets are focused on immobilizing a vital cysteine amino acid residue in enzymes that plays critical roles in redox and non-redox catalysis, the modulation of the protein, enzyme activity, protein structure and folding, metal coordination, and posttranslational modifications of newly synthesized proteins. This review examines five Mtb enzymes that contain an active site cysteine residue and are considered as key targets for anti-tuberculosis drugs, namely alkyl hydroperoxide reductase (AhpC), dihydrolipoamide dehydrogenase (Lpd), aldehyde dehydrogenase (ALDH), methionine aminopeptidase (MetAP) and cytochromes P450. AhpC and Lpd protect Mtb against oxidative and nitrosative stress, whereas AhpC neutralizes peroxide/peroxynitrite substrates with two active site cysteine residues. Mtb ALDH detoxifies aldehydes, using a nucleophilic active site cysteine to form an oxyanion thiohemiacetal intermediate, whereas MtMetAP’s active site cysteine is essential for substrate recognition. The P450s metabolize various endogenous and exogenous compounds. Targeting these critical active site cysteine residues could disrupt enzyme functions, presenting a promising avenue for developing anti-mycobacterial agents. Full article
Show Figures

Figure 1

13 pages, 2319 KiB  
Article
Synthesis, Characterization, and Preliminary In Vitro Anticancer Activity of Zinc Complexes Containing Amino Acid-Derived Imidazolium-Based Dicarboxylate Ligands
by Carlos J. Carrasco, Antonio Pastor, María del Mar Conejo, Eleuterio Álvarez, José Manuel Calderón-Montaño, Miguel López-Lázaro and Agustín Galindo
Int. J. Mol. Sci. 2025, 26(7), 3202; https://doi.org/10.3390/ijms26073202 - 30 Mar 2025
Viewed by 579
Abstract
Coordination polymers containing zinc and imidazolium-based dicarboxylate ligands, [LR], were synthesized by reacting zinc acetate with HLR compounds, 1. The resulting complexes were characterized and structurally identified using single-crystal X-ray diffraction, revealing polymeric structures for the complexes [...] Read more.
Coordination polymers containing zinc and imidazolium-based dicarboxylate ligands, [LR], were synthesized by reacting zinc acetate with HLR compounds, 1. The resulting complexes were characterized and structurally identified using single-crystal X-ray diffraction, revealing polymeric structures for the complexes [Zn(LR)2]n (R = Gly, 2a; βAla, 2b) and [Zn(LLeu)2(H2O)2]n (2c). In these structures, the [LR] ligands adopt a bridging monodentate μ-κ1-O11-O3 coordination mode, resulting in distorted tetrahedral (2a, 2b) or octahedral (2c) geometries around the zinc center. When the synthesis was carried out in the presence of amino acids, mixed ligand complexes [Zn(LR)(aa)(H2O)]n (R = aa = Val, 2d, and R = aa = Ile, 2e) were formed. Complexes 2d2e were also structurally characterized using single-crystal X-ray crystallography, revealing that the ligand [LR] maintained the same coordination mode, while the zinc center adopted a five-coordinated geometry. The cytotoxic activity of complexes 2a2e was evaluated against three cancer cell lines and one non-cancerous cell line. Remarkably, these complexes exhibited higher toxicity against cancer cells than against the non-cancerous cell line, and they showed greater selectivity than carboplatin, a commonly used chemotherapy drug. Although, in general, these complexes did not surpass the selectivity of gemcitabine, complex 2c stood out for exhibiting a selectivity index value similar to that of gemcitabine against melanoma cells. Among the series, compounds 2a2c demonstrated the highest activity, with 2a being the only complex with some selective activity against lung cancer. Complex 2b was the most active, though with low selectivity, while complex 2c exhibited the highest selectivity for melanoma and bladder cancer (selectivity index of 3.0). Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

14 pages, 4754 KiB  
Article
Slow Relaxation of Magnetization and Magnetocaloric Effects in One-Dimensional Oxamato-Based Lanthanide(III) Coordination Polymers
by Jhonny W. Maciel, Lucas H. G. Kalinke, Renato Rabelo, Meiry E. Alvarenga, Felipe Terra Martins, Nicolás Moliner and Danielle Cangussu
Magnetochemistry 2025, 11(4), 23; https://doi.org/10.3390/magnetochemistry11040023 - 24 Mar 2025
Cited by 1 | Viewed by 1043
Abstract
Herein, we present the synthesis and characterization of a series of isostructural lanthanide(III) compounds with the N-(4-carboxyphenyl)oxamic acid (H3pcpa) ligand of the general formula as {[Ln2(Hpcpa)3(H2O)5]}n [Ln = Dy(III) 1, [...] Read more.
Herein, we present the synthesis and characterization of a series of isostructural lanthanide(III) compounds with the N-(4-carboxyphenyl)oxamic acid (H3pcpa) ligand of the general formula as {[Ln2(Hpcpa)3(H2O)5]}n [Ln = Dy(III) 1, Ho(III) 2, Er(III) 3]. The structure of 3 consists of neutral zig–zag chains of Er(III) ions, with Hpcpa2– ligands acting as bridges in a bidentate/monodentate coordination mode with five water molecules achieving the eight-coordination around the two Er(III) ions within the repeating bis(carboxylate)-bridged dinuclear units along the chain. The magnetic and magnetocaloric properties were studied for 13. Compound 1 presents a field-induced slow relaxation of the magnetization with a “reciprocating thermal behavior” below 5 K for H = 0.25 T, while 2 shows maxima of the magnetic entropy from 3 up to 6 K for ΔH > 2 T. Full article
Show Figures

Graphical abstract

19 pages, 2363 KiB  
Article
The Effect of Central Metal Ions (Dy, Er, Ni, and V) on the Structural and HSA-Binding Properties of 2-Hydroxy-3-methoxybenzaldehyde Semicarbazone Complexes
by Violeta Jevtovic, Jelena M. Živković, Aleksandra A. Rakić, Aljazi Abdullah Alrashidi, Maha Awjan Alreshidi, Elham A. Alzahrani, Odeh A. O. Alshammari, Mostafa Aly Hussien and Dušan Dimić
Inorganics 2025, 13(3), 95; https://doi.org/10.3390/inorganics13030095 - 20 Mar 2025
Viewed by 734
Abstract
2-Hydroxy-3-methoxybenzaldehyde semicarbazone (HMBS) is a multidentate ligand with interesting coordination behavior that depends on the central metal ion and the overall complex geometry. In this contribution, the structural characteristics of five HMBS-containing complexes with different metal ions (Dy, Er, Ni, and V) were [...] Read more.
2-Hydroxy-3-methoxybenzaldehyde semicarbazone (HMBS) is a multidentate ligand with interesting coordination behavior that depends on the central metal ion and the overall complex geometry. In this contribution, the structural characteristics of five HMBS-containing complexes with different metal ions (Dy, Er, Ni, and V) were investigated. Four binuclear and one mononuclear complex were selected from the Cambridge Structural Database. The crystallographic structures and intermolecular interactions in the solid state were analyzed, and the effect of central metal ions was elucidated. The different contributions of the most numerous contacts were explained by examining additional ligands in the structure. Density functional theory (DFT) optimizations were performed for the selected complexes, and the applicability of different computational methods was discussed. The Quantum Theory of Atoms in Molecules (QTAIMs) approach was employed to identify and quantify interactions in nickel and vanadium complexes, highlighting the role of weak intermolecular interactions between ligands in stabilizing the overall structure. Molecular docking studies of the interaction between these complexes and Human Serum Albumin (HSA) demonstrated that all compounds bind within the active pocket of the protein. The overall size and presence of aromatic rings emerged as key factors in the formation of stabilizing interactions. Full article
(This article belongs to the Special Issue Advances in Metal Ion Research and Applications)
Show Figures

Figure 1

16 pages, 6437 KiB  
Article
Cd(II)-Based Coordination Polymers and Supramolecular Complexes Containing Dianiline Chromophores: Synthesis, Crystal Structures, and Photoluminescence Properties
by Nicoleta Craciun, Elena Melnic, Anatolii V. Siminel, Natalia V. Costriucova, Diana Chisca and Marina S. Fonari
Inorganics 2025, 13(3), 90; https://doi.org/10.3390/inorganics13030090 - 18 Mar 2025
Viewed by 553
Abstract
Five new coordination compounds that included three coordination polymers and two supramolecular complexes were obtained by reactions of different cadmium salts (tetrafluoroborate, nitrate, and perchlorate) with dianiline chromophores, 4,4′-diaminodiphenylmethane (ddpm), and 4,4′-diaminodiphenylethane (ddpe). The crystal structures were studied by single-crystal X-ray analysis. The [...] Read more.
Five new coordination compounds that included three coordination polymers and two supramolecular complexes were obtained by reactions of different cadmium salts (tetrafluoroborate, nitrate, and perchlorate) with dianiline chromophores, 4,4′-diaminodiphenylmethane (ddpm), and 4,4′-diaminodiphenylethane (ddpe). The crystal structures were studied by single-crystal X-ray analysis. The coordination arrays with the ddpm chromophore included {[Cd(OH)(H2O)(ddpm)2](BF4)}n (1) as a one-dimensional (1D) coordination garland chain, {[Cd(NO3)(ddpm)2](H2O)(NO3)}n (2) as a two-dimensional (2D) coordination layer, and [Cd(bpy)2(ddpm)2](ddpm)(NO3)2 (3) as a supramolecular complex. The products with the ddpe chromophore were identified as {[Cd(phen)2(ddpe)](ClO4)2}n (4) in the form of a linear coordination chain and [Cd(phen)3](ClO4)2(ddpe)0.5(CH3CN)0.5 (5) as a supramolecular complex. The extension of coordination arrays in 1, 2, and 4 was achieved via dianiline ligands as bidentate linkers and additionally via bridging of nitrate anions in 2. The diversification of products became possible due to usage of 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) as co-ligands forming the terminal corner fragments [Cd(bpy)2]2+, [Cd(phen)2]2+, and [Cd(phen)3]2+ in 35, respectively. The assembling of coordination entities occurred via the interplay of hydrogen bonds with the participation of amino groups, water molecules, and inorganic anions. Two dianilines were powerful luminophores in the crystalline phase, while the photoluminescence in 15 was considerably weaker than in the pure ddpm and ddpe luminophores and redistributed along the spectrum. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

16 pages, 3593 KiB  
Article
Luminescence of the Conjugate Bases of [2-(2-Hydroxyphenyl)phenyl]phosphinic Acid and Single-Crystal X-Ray Structure Determination of Sodium [2-(2-Hydroxyphenyl)phenyl]phosphinate
by Valeria Gagliardi, Jesús Castro, Valentina Beghetto, María Expósito and Marco Bortoluzzi
Organics 2025, 6(1), 10; https://doi.org/10.3390/org6010010 - 3 Mar 2025
Cited by 1 | Viewed by 1006
Abstract
The commercial flame-retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) was almost quantitatively converted in sodium [2-(2-hydroxyphenyl)phenyl]phosphinate Na[OH-Ph-Ph-PHO2] and disodium 2-(2-phosphinatophenyl)benzen-1-olate Na2[O-Ph-Ph-PHO2] under mild reaction conditions and without the use of toxic reactants. The structure of Na[OH-Ph-Ph-PHO2] was determined by [...] Read more.
The commercial flame-retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) was almost quantitatively converted in sodium [2-(2-hydroxyphenyl)phenyl]phosphinate Na[OH-Ph-Ph-PHO2] and disodium 2-(2-phosphinatophenyl)benzen-1-olate Na2[O-Ph-Ph-PHO2] under mild reaction conditions and without the use of toxic reactants. The structure of Na[OH-Ph-Ph-PHO2] was determined by means of single-crystal X-ray diffraction. The inter- and intramolecular Na-O interactions generate a stair-like framework where the sodium cations are five-coordinated and exhibit a highly distorted coordination sphere. The two compounds are characterized by appreciable blue luminescence at the solid state upon excitation with UV light, attributed to S1→S0 decays on the basis of time-resolved measurements and computational calculations. The photoluminescence quantum yield is higher for Na2[O-Ph-Ph-PHO2], and the emission and excitation bands are shifted at longer wavelengths. The disodium salt showed affinity towards cellulose, and doped Na2[O-Ph-Ph-PHO2]@cellulose samples maintained emission features comparable to those of the pure compound. The nature of the interaction between cellulose and the emitting species was studied by means of periodic density functional theory calculations, that highlighted the role of the sodium cations. Full article
Show Figures

Graphical abstract

14 pages, 4774 KiB  
Article
Genetic Analysis and Fingerprint Construction for Isatis indigotica Fort. Using SSR Markers
by Xiangyu Xing, Haijun Xu, Yan Dong, Hanwen Cui, Mingrui Sun, Hong Wang, Yang Liu, Li Meng and Chunying Zheng
Curr. Issues Mol. Biol. 2025, 47(3), 146; https://doi.org/10.3390/cimb47030146 - 24 Feb 2025
Viewed by 713
Abstract
Isatis indigotica Fort. is a traditional medicinal plant, which has anti-inflammatory, antioxidant, and antiviral properties. Despite the development and licensing of several cultivars in recent years, morphological similarity among cultivars complicates their identification. The genetic diversity within I. indigotica significantly impacts the biosynthesis [...] Read more.
Isatis indigotica Fort. is a traditional medicinal plant, which has anti-inflammatory, antioxidant, and antiviral properties. Despite the development and licensing of several cultivars in recent years, morphological similarity among cultivars complicates their identification. The genetic diversity within I. indigotica significantly impacts the biosynthesis of bioactive substances. To elucidate genetic relationships and evaluate bioactive compounds, I. indigotica cultivars were analyzed using SSR markers. A total of 109 alleles were identified across 29 cultivars at 20 SSR loci, exhibiting a genetic diversity with an average polymorphic information content (PIC) of 0.46. Phylogenetic, principal coordinate analysis (PCoA), and Bayesian clustering revealed that genetic relationships were largely independent of geographic origin, potentially due to regional transplantations. Notably, some cultivars with distinct leaf sizes showed clear genetic differentiation, highlighting their potential as candidates for quality evaluation. A fingerprint was successfully constructed using five SSR markers. These findings provide technical support for cultivar identification, quality evaluation, and intellectual property protection of I. indigotica cultivars. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 4000 KiB  
Article
Studies Toward Persilylation of π-Cyclopentadienyl Complexes of Fe and Ru. Molecular Structures of [Fe(C5H5){C5(SiMe2H)5}], [Fe(C5H5){C5Br3(SiMe3)2}] and [Fe(C5H5){C5Br2(SiMe3)3}]
by Stefanie Bernhartzeder, Tobias Blockhaus, Markus Lang and Karlheinz Sünkel
Inorganics 2025, 13(2), 42; https://doi.org/10.3390/inorganics13020042 - 1 Feb 2025
Viewed by 615
Abstract
Increasing the number of SiMe3 substituents on a cyclopentadienyl ring has, in addition to a stabilizing effect of unusual coordination geometries and oxidation states, the effect of increasing the solubility in unpolar solvents and increasing the volatility. Starting from pentabromoferrocene and pentabromo(pentamethyl)ruthenocene, [...] Read more.
Increasing the number of SiMe3 substituents on a cyclopentadienyl ring has, in addition to a stabilizing effect of unusual coordination geometries and oxidation states, the effect of increasing the solubility in unpolar solvents and increasing the volatility. Starting from pentabromoferrocene and pentabromo(pentamethyl)ruthenocene, we could achieve the introduction of up to five silyl (SiMe2H or SiMe3) groups to give [Fe(C5H5){C5(SiMe2R)5}], R = H, Me, and [Ru(C5Me5){C5(SiMe2H)5}]. However, yields were very low, and nearly all intermediate steps afforded mixtures of similar silyl-substituted compounds, which were difficult to separate. The crystal structures of [Fe(C5H5){C5(SiMe2H)5}] (13a), [Fe(C5H5){C5Br3(SiMe3)2}] (4b), and [Fe(C5H5){C5Br2(SiMe3)3}] (8b) were determined. Full article
(This article belongs to the Special Issue State-of-the-Art Inorganic Chemistry in Germany)
Show Figures

Figure 1

35 pages, 9810 KiB  
Review
2-Guanidinobenzimidazole as Ligand in Supramolecular, Coordination and Organometallic Chemistry
by Itzia I. Padilla-Martínez, Alejandro Cruz and Efrén V. García-Báez
Int. J. Mol. Sci. 2025, 26(3), 1063; https://doi.org/10.3390/ijms26031063 - 26 Jan 2025
Viewed by 1116
Abstract
The benzimidazole core (BI) plays a central role in biologically active molecules. The BI nucleus is widely used as a building block to generate a variety of bioactive heterocyclic compounds to be used as antihelmintics, antiprotozoal, antimalarials, anti-inflammatories, antivirals, antimicrobials, antiparasitics, and antimycobacterials. [...] Read more.
The benzimidazole core (BI) plays a central role in biologically active molecules. The BI nucleus is widely used as a building block to generate a variety of bioactive heterocyclic compounds to be used as antihelmintics, antiprotozoal, antimalarials, anti-inflammatories, antivirals, antimicrobials, antiparasitics, and antimycobacterials. A versatile BI derivative is the 2-guanidinobenzimidazole (2GBI), which, together with its derivatives, is a very interesting poly-functional planar molecule having a delocalised 10 π electrons system conjugated with the guanidine group. The 2GBI molecule has five nitrogen atoms containing five labile N–H bonds, which interact with the out-ward-facing channel entrance, forming a labile complex with the biological receptor sites. In this work, 2GBI and their derivatives were analyzed as ligands to form host–guest, coordination and organometallic complexes. Synthesis methodology, metal geometries, hydrogen bonding (HB) interactions, and the biological activities of the complexes were discussed. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 4748 KiB  
Article
Hierarchically Porous Titanosilicate Hollow Spheres Containing TS-1 Zeolite Precursors for Oxidative Desulfurization
by Yao Wang, Hongda Yu, Huan Wang and Tiehong Chen
Inorganics 2025, 13(2), 37; https://doi.org/10.3390/inorganics13020037 - 25 Jan 2025
Viewed by 797
Abstract
The environmental and health impacts of sulfur compounds in fuel oil have prompted considerable research interest in oxidative desulfurization (ODS) technology. Tetrahedrally coordinated titanium has been demonstrated to exhibit excellent activity in the context of oxidative desulfurization processes. However, further improving the catalytic [...] Read more.
The environmental and health impacts of sulfur compounds in fuel oil have prompted considerable research interest in oxidative desulfurization (ODS) technology. Tetrahedrally coordinated titanium has been demonstrated to exhibit excellent activity in the context of oxidative desulfurization processes. However, further improving the catalytic property of the tetrahedrally coordinated titanium remains a challenging endeavor. In the context of ODS processes conducted at near room temperatures, the improvement of conversion remains a subject of considerable challenge. In this study, hierarchically porous titanosilicate hollow spheres were synthesized by using TS-1 zeolite precursors as Ti and Si sources to obtain the catalyst with only tetrahedrally coordinated titanium. The synthesized materials were characterized through transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet–visible diffuse reflectance spectroscopy (UV-Vis), and nitrogen adsorption analysis. These techniques confirmed the formation of hollow spherical hierarchically porous structures with Ti species uniformly incorporated in tetrahedral coordination and the presence of five-member rings of TS-1 zeolite. As a result, the hierarchically porous titanosilicate hollow spheres demonstrated excellent catalytic performance in ODS, achieving complete dibenzothiophene (DBT) removal within 15 min and a high turnover frequency (TOF) of up to 123 h−1 at 30 °C. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2024)
Show Figures

Figure 1

Back to TopTop