Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (483)

Search Parameters:
Keywords = fish canning industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 371 KiB  
Review
Human Breast Milk as a Biological Matrix for Assessing Maternal and Environmental Exposure to Dioxins and Dioxin-like Polychlorinated Biphenyls: A Narrative Review of Determinants
by Artemisia Kokkinari, Evangelia Antoniou, Kleanthi Gourounti, Maria Dagla, Aikaterini Lykeridou, Stefanos Zervoudis, Eirini Tomara and Georgios Iatrakis
Pollutants 2025, 5(3), 25; https://doi.org/10.3390/pollutants5030025 (registering DOI) - 7 Aug 2025
Abstract
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is [...] Read more.
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is the primary route of maternal exposure, environmental pathways—including inhalation, dermal absorption, and residential proximity to contaminated sites—may also significantly contribute to the maternal body burden. (2) Methods: This narrative review examined peer-reviewed studies investigating maternal and environmental determinants of dioxin and dl-PCB concentrations in human breast milk. A comprehensive literature search was conducted in PubMed, Scopus, and Web of Science (2000–2024), identifying a total of 325 records. Following eligibility screening and full-text assessment, 20 studies met the inclusion criteria. (3) Results: The included studies consistently identified key exposure determinants, such as high consumption of animal-based foods (e.g., meat, fish, dairy), living near industrial facilities or waste sites, and maternal characteristics including age, parity, and body mass index (BMI). Substantial geographic variability was observed, with higher concentrations reported in regions affected by industrial activity, military pollution, or inadequate waste management. One longitudinal study from Japan demonstrated a declining trend in dioxin levels in breast milk, suggesting the potential effectiveness of regulatory interventions. (4) Conclusions: These findings highlight that maternal exposure to dioxins is influenced by identifiable environmental and behavioral factors, which can be mitigated through public health policies, targeted dietary guidance, and environmental remediation. Breast milk remains a critical bioindicator of human exposure. Harmonized, long-term research is needed to clarify health implications and minimize contaminant transfer to infants, particularly among vulnerable populations. Full article
Show Figures

Figure 1

21 pages, 7017 KiB  
Article
Chronic Heat Stress Caused Lipid Metabolism Disorder and Tissue Injury in the Liver of Huso dauricus via Oxidative-Stress-Mediated Ferroptosis
by Yining Zhang, Yutao Li, Ruoyu Wang, Sihan Wang, Bo Sun, Dingchen Cao, Zhipeng Sun, Weihua Lv, Bo Ma and Ying Zhang
Antioxidants 2025, 14(8), 926; https://doi.org/10.3390/antiox14080926 - 29 Jul 2025
Viewed by 218
Abstract
High-temperature stress has become an important factor that has restricted the aquaculture industry. Huso dauricus is a high-economic-value fish that has faced the threat of thermal stress. Based on this point, our investigation aimed to explore the detailed mechanism of the negative impacts [...] Read more.
High-temperature stress has become an important factor that has restricted the aquaculture industry. Huso dauricus is a high-economic-value fish that has faced the threat of thermal stress. Based on this point, our investigation aimed to explore the detailed mechanism of the negative impacts of heat stress on the liver metabolism functions in Huso dauricus. In this study, we set one control group (19 °C) and four high-temperature treatment groups (22 °C, 25 °C, 28 °C, 31 °C) with 40 fish in each group for continuous 53-day heat exposure. Histological analysis, biochemical detection, and transcriptome technology were used to explore the effects of heat stress on the liver structure and functions of juvenile Huso dauricus. It suggested heat-stress-induced obvious liver injury and reactive oxygen species accumulation in Huso dauricus with a time/temperature-dependent manner. Serum total protein, transaminase, and alkaline phosphatase activities showed significant changes under heat stress (p < 0.05). In addition, 6433 differentially expressed genes (DEGs) were identified based on the RNA-seq project. Gene Ontology enrichment analysis showed that various DEGs could be mapped to the lipid-metabolism-related terms. KEGG enrichment and immunohistochemistry analysis showed that ferroptosis and FoxO signaling pathways were significantly enriched (p < 0.05). These results demonstrated that thermal stress induced oxidative stress damage in the liver of juvenile Huso dauricus, which triggered lipid metabolism disorder and hepatocyte ferroptosis to disrupt normal liver functions. In conclusion, chronic thermal stress can cause antioxidant capacity imbalance in the liver of Huso dauricus to mediate the ferroptosis process, which would finally disturb the lipid metabolism homeostasis. In further research, it will be necessary to verify the detailed cellular signaling pathways that are involved in the heat-stress-induced liver function disorder response based on the in vitro experiment, while the multi-organ crosswalk mode under the thermal stress status is also essential for understanding the comprehensive mechanism of heat-stress-mediated negative effects on fish species. Full article
Show Figures

Figure 1

81 pages, 6368 KiB  
Review
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics
by Sofia Neonilli A. Papadopoulou, Theodora Adamantidi, Dimitrios Kranas, Paschalis Cholidis, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2025, 23(8), 299; https://doi.org/10.3390/md23080299 - 26 Jul 2025
Viewed by 386
Abstract
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet [...] Read more.
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet underutilized source of bioactive compounds with notable potential in cosmeceutical innovation. Generated as waste from the fishery and seafood-processing industries, these materials are rich in valuable bioactives, such as chitosan, collagen, peptides, amino acids, fatty acids, polar lipids, lipid-soluble vitamins, carotenoids, pigments, phenolics, and mineral-based substrates like hydroxyapatite. Marine by-product bioactives can be isolated via several extraction methods, and most importantly, green ones. These compounds exhibit a broad spectrum of skin-health-promoting effects, including antioxidant, anti-aging, anti-inflammatory, antitumor, anti-wrinkle, anti-hyperpigmentation, and wound-healing properties. Moreover, applications extend beyond skincare to include hair, nail, and oral care. The present review provides a comprehensive analysis of bioactives obtained from marine mollusks, crustaceans, and fish by-products, emphasizing modern extraction technologies with a focus on green and sustainable approaches. It further explores their mechanisms of action and documented efficacy in cosmetic formulations. Finally, the review outlines current limitations and offers future perspectives for the industrial valorization of marine by-products in functional and environmentally-conscious cosmetic development. Full article
Show Figures

Figure 1

20 pages, 1893 KiB  
Article
Acute Dermatotoxicity of Green-Synthesized Silver Nanoparticles (AgNPs) in Zebrafish Epidermis
by Grace Emily Okuthe and Busiswa Siguba
Toxics 2025, 13(7), 592; https://doi.org/10.3390/toxics13070592 - 15 Jul 2025
Viewed by 333
Abstract
Silver nanoparticles (AgNPs), lauded for their unique antibacterial and physicochemical attributes, are proliferating across industrial sectors, raising concerns about their environmental fate, in aquatic systems. While “green” synthesis offers a sustainable production route with reduced chemical byproducts, the safety of these AgNPs for [...] Read more.
Silver nanoparticles (AgNPs), lauded for their unique antibacterial and physicochemical attributes, are proliferating across industrial sectors, raising concerns about their environmental fate, in aquatic systems. While “green” synthesis offers a sustainable production route with reduced chemical byproducts, the safety of these AgNPs for aquatic fauna remains uncertain due to nanoparticle-specific effects. Conversely, mast cells play crucial roles in fish immunity, orchestrating innate and adaptive immune responses by releasing diverse mediators and recognizing danger signals. Goblet cells are vital for mucosal immunity and engaging in immune surveillance, regulation, and microbiota interactions. The interplay between these two cell types is critical for maintaining mucosal homeostasis, is central to defending against fish diseases and is highly responsive to environmental cues. This study investigates the acute dermatotoxicity of environmentally relevant AgNP concentrations (0, 0.031, 0.250, and 5.000 μg/L) on zebrafish epidermis. A 96 h assay revealed a biphasic response: initial mucin hypersecretion at lower AgNP levels, suggesting an early stress response, followed by a concentration-dependent collapse of mucosal integrity at higher exposures, with mucus degradation and alarm cell depletion. A rapid and generalized increase in epidermal mucus production was observed across all AgNP exposure groups within two hours of exposure. Further mechanistic insights into AgNP-induced toxicity were revealed by concentration-dependent alterations in goblet cell dynamics. Lower AgNP concentrations initially led to an increase in both goblet cell number and size. However, at the highest concentration, this trend reversed, with a significant decrease in goblet cell numbers and size evident between 48 and 96 h post-exposure. The simultaneous presence of neutral and acidic mucins indicates a dynamic epidermal response suggesting a primary physical barrier function, with acidic mucins specifically upregulated early on to enhance mucus viscosity, trap AgNPs, and inhibit pathogen invasion, a clear defense mechanism. The subsequent reduction in mucin-producing cells at higher concentrations signifies a critical breakdown of this protective strategy, leaving the epidermis highly vulnerable to damage and secondary infections. These findings highlight the vulnerability of fish epidermal defenses to AgNP contamination, which can potentially compromise osmoregulation and increase susceptibility to threats. Further mechanistic research is crucial to understand AgNP-induced epithelial damage to guide sustainable nanotechnology. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

27 pages, 902 KiB  
Article
Application of Econometric Techniques to Analyze Selected Driving Forces and Regional Heterogeneity in the Recreational Fishery Industry Across 11 Coastal Areas in the Chinese Mainland from 2005 to 2023
by Ye Chen and Lirong Chen
Sustainability 2025, 17(14), 6440; https://doi.org/10.3390/su17146440 - 14 Jul 2025
Viewed by 309
Abstract
With the advantages of industrial integration, China’s recreational fishery sector represents a new trajectory in the transformation of the fishery industry. Coastal regions possess abundant fishery resources and have favorable geographical conditions, offering natural advantages for developing recreational fishing. However, substantial variations can [...] Read more.
With the advantages of industrial integration, China’s recreational fishery sector represents a new trajectory in the transformation of the fishery industry. Coastal regions possess abundant fishery resources and have favorable geographical conditions, offering natural advantages for developing recreational fishing. However, substantial variations can be observed among regions regarding their resource endowments and economic conditions, leading to diversity in the driving forces and paths of recreational fishery development. This study employs panel data for 11 coastal provinces, municipalities, and autonomous regions in the Chinese mainland from 2005 to 2023 to explore the driving forces and regional heterogeneity of recreational fishery development. This paper employs fixed-effects estimation and further incorporates a mediating-effect model to explore the role of market demand in shaping the development path of recreational fisheries. The results are as follows: (1) Natural resource endowments and market demand are key driving forces that promote growth in the output value of recreational fisheries. (2) There is heterogeneity in the driving forces across regions. In areas with richer resource endowments or lower economic development levels, recreational fishery growth relies more on natural resource-driven mechanisms, whereas in regions with weaker resource endowments or higher economic development levels, market demand plays a more dominant role. (3) Market demand drives recreational fishery growth through the expansion of the tertiary sector. This paper offers a valuable reference for policymakers seeking to allocate resources more efficiently, support balanced regional development, and formulate tailored development strategies in accordance with local conditions, thereby facilitating the sustainable and high-quality development of the recreational fishery industry in the Chinese mainland. Full article
Show Figures

Figure 1

18 pages, 1570 KiB  
Article
Effects of Two Culture Modes on Muscular Nutrition Content and Volatile Flavor in Chinese Longsnout Catfish (Leiocassis longirostris)
by Luo Zhou, Yingbing Su, Daiqin Yang, Qiong Shi, Tilin Yi and Zhengyong Wen
Biology 2025, 14(6), 694; https://doi.org/10.3390/biology14060694 - 13 Jun 2025
Viewed by 548
Abstract
Thus far, various aquaculture modes have been developed to facilitate the rapid growth of the aquaculture industry and thus meet the heavy demand for aquatic products for human consumption. However, the effects of different culture modes on fish muscular nutritional content and volatile [...] Read more.
Thus far, various aquaculture modes have been developed to facilitate the rapid growth of the aquaculture industry and thus meet the heavy demand for aquatic products for human consumption. However, the effects of different culture modes on fish muscular nutritional content and volatile flavor are rarely reported. In the present study, we evaluated the differences in muscular nutrition content and dietary flavor between Chinese longsnout catfish (Leiocassis longirostris) groups cultured in two different modes, i.e., flow-through water tanks (CWWL) and traditional ponds (CWWC). Our statistical results showed that a significantly higher crude protein content and lower crude fat levels were observed in the CWWL group than in the CWWC group (p < 0.05). Similarly, the contents of total aromatic amino acids (Total ∑TAA) and total dicarboxylic amino acids (Total ∑DAA) were also significantly higher in the CWWL group. Among the fatty acids, long-chain polyunsaturated fatty acids (LC-PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (ARA), were recorded at 1.44%, 2.5%, and 9.09%, respectively, in the CWWL group, which were dramatically higher than in the CWWC group. Conversely, the contents of volatile compounds, including 2-tridecanone, dimethyl trisulfide, and isophorone, in the CWWC group were also significant higher, which, however, may contribute to an unpleasant sensory experience. Conversely, other compounds like 2-methylbutanal and 2,3-butanedione were prevalent in the CWWL group, which can induce rich nutty and buttery flavors and thus enhance the freshness of flavor profiles. In conclusion, Chinese longsnout catfish cultured in flow-through tanks show higher nutritional value and better sensory flavor in comparison with those raised in ponds. These findings not only provide novel insights into the potential effects of aquaculture modes on muscular nutrition content and dietary flavor for Chinese longsnout catfish but also lay a solid foundation for optimizing practical culture modes to improve the global aquaculture industry. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

33 pages, 1335 KiB  
Review
Enhancing Biosecurity in Mollusc Aquaculture: A Review of Current Isothermal Nucleic Acid Detection Methods
by Hoda Abbas, Gemma Zerna, Alexandra Knox, Danielle Ackerly, Jacinta Agius, Karla Helbig and Travis Beddoe
Animals 2025, 15(11), 1664; https://doi.org/10.3390/ani15111664 - 4 Jun 2025
Viewed by 724
Abstract
The growing human population has increased the need for food beyond what terrestrial sources can provide. This boosts aquaculture demand for molluscs, fish, and crustaceans. Molluscs are popular for their nutritional benefits, making them a profitable industry. Despite a 3% annual growth in [...] Read more.
The growing human population has increased the need for food beyond what terrestrial sources can provide. This boosts aquaculture demand for molluscs, fish, and crustaceans. Molluscs are popular for their nutritional benefits, making them a profitable industry. Despite a 3% annual growth in mollusc populations, recent high mortality rates and population losses due to poor feeding practices and water pollution have made them more disease-prone. Limited treatment options exist for mollusc diseases in aquaculture systems. Hence, developing rapid, sensitive, and cost-effective diagnostic tools for field use is essential to identify and prevent infections promptly. Recently developed isothermal nucleic acid amplification technologies, like loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA), offer rapid results within an hour. This review examines these isothermal diagnostic techniques for mollusc pathogens and their potential for field application. Full article
(This article belongs to the Special Issue Bacterial and Viral Diseases in Aquatic Animals)
Show Figures

Figure 1

23 pages, 8720 KiB  
Article
Meaningful Multi-Stakeholder Participation via Social Media in Coastal Fishing Village Spatial Planning and Governance
by Jing Wang, Ming-Ming He, Su-Hsin Lee and Shu-Chen Tsai
Water 2025, 17(11), 1703; https://doi.org/10.3390/w17111703 - 4 Jun 2025
Viewed by 684
Abstract
Due to the rapid development of China’s economy, the current situation of fishing villages in the southeastern coastal areas is spatial disorder caused by changes in population composition and industrial transformation. This study analyses the differences between the clan structure and the multi-stakeholder [...] Read more.
Due to the rapid development of China’s economy, the current situation of fishing villages in the southeastern coastal areas is spatial disorder caused by changes in population composition and industrial transformation. This study analyses the differences between the clan structure and the multi-stakeholder engagement model in traditional fishing villages. The main aim is to illustrate contemporary issues that fishing villages’ spaces need to deal with in governance and decision making. With the development of information technology, social media has become an important platform through which stakeholders can communicate and make decisions. The aims of this paper were as follows: (1) Identify the stakeholders involved in the governance of fishing villages; (2) explore how stakeholders participate in the planning and governance of fishing villages through social media; (3) examine the mechanisms of social media and its impact on the spatial planning of fishing villages. Through qualitative research methods such as field surveys and in-depth interviews, the following results were obtained: (1) Social media subverts the traditional fishing village governance model, and the scope of the governance subject is expanded; (2) spatial changes in fishing villages are affected by the joint influence of people, the environment, and the economy, and a social network acts as an intermediary to compensate for the deficiencies that existed in previous fishing village governance processes. Full article
(This article belongs to the Special Issue Coastal and Marine Governance and Protection)
Show Figures

Figure 1

17 pages, 1219 KiB  
Article
Research on Carbon Sink Effect of Marine Shellfish and Algae in China
by Peng Zheng, Tianrang Chu, Wei Zhao and Yongquan Liu
Fishes 2025, 10(6), 270; https://doi.org/10.3390/fishes10060270 - 4 Jun 2025
Viewed by 450
Abstract
Global warming has increasingly become a widespread concern of the international community, and one of the key approaches to achieving carbon neutrality goals lies in the carbon sequestration capacity of oceans. Therefore, scientifically and accurately measuring the carbon sink capacity of marine fisheries [...] Read more.
Global warming has increasingly become a widespread concern of the international community, and one of the key approaches to achieving carbon neutrality goals lies in the carbon sequestration capacity of oceans. Therefore, scientifically and accurately measuring the carbon sink capacity of marine fisheries and studying its spatial effects are particularly crucial for mitigating global climate change. Marine fisheries encompass categories such as fish, shellfish, algae, and crustaceans. Given that marine fisheries-based carbon sinks are non-feed fisheries, with cultivated shellfish and algae being highly representative, this paper primarily focuses on the carbon sink capacity of shellfish and algae as the main assessment criteria for marine fisheries carbon sinks, aiming to apply this research to other countries worldwide to assist in addressing global warming. Thus, based on panel data of shellfish and algae cultivation in nine coastal provinces of China from 2007 to 2021, this paper employs the “removable carbon sink” model to calculate the carbon sink capacity of Chinese marine shellfish and algae aquaculture industry and utilizes the spatial Durbin model to analyze its spatial effects. The research findings are as follows: (1) The spatial distribution of carbon sink capacity in China’s marine shellfish and algae is uneven. (2) Moran’s Index indicates that the carbon sink capacity of marine shellfish and algae exhibits positive spatial correlation, but the degree of spatial agglomeration is unstable. Fujian Province has the highest average carbon sink capacity at 446,451.21 tons, while regions such as Hainan, Hebei, and Jiangsu have relatively lower average carbon sink capacities, with Hainan Province’s being only 3627.57 tons, sufficiently demonstrating the characteristic of uneven spatial distribution. (3) Through decomposition using the spatial Durbin model, it is found that the direct effects of marine shellfish and algae aquaculture production, technological input, technological promotion, and fishery disaster situations are positive, with the result for marine shellfish and algae aquaculture production being 1.617, significantly positive at the 1% level. The result for labor input is −0.847, with a negative direct effect. From the perspective of indirect effects, the indirect effects of marine shellfish and algae aquaculture production, technological input, and technological promotion are positive, with aquaculture production at 1.185, still significantly positive at the 1% level. The result for labor input is −2.140, with a negative indirect effect. These research conclusions provide important references for the formulation of global marine carbon sink-related policies, helping countries optimize resource allocation, strengthen regional collaboration, and increase investment in science and technology. Consequently, they can promote the sustainable development of marine shellfish and algae aquaculture industries, and contribute to enhancing marine carbon sink capacity and achieving global carbon neutrality goals. Full article
(This article belongs to the Special Issue Fisheries Monitoring and Management)
Show Figures

Figure 1

23 pages, 1452 KiB  
Article
Effect of Two Different Pretreatments of Brewers Spent Grain Used as Feed Ingredient on Nutritional, Immunological, and Metabolical Parameters in Gilthead Seabream (Sparus aurata)
by Francisca P. Martínez-Antequera, Paula Simó-Mirabet, Verónica de las Heras, Marta Román, Juan Miguel Mancera, Juan Antonio Martos-Sitcha and Francisco J. Moyano
Biology 2025, 14(6), 585; https://doi.org/10.3390/biology14060585 - 22 May 2025
Viewed by 591
Abstract
Brewer’s spent grain (BSG), the primary byproduct generated by the brewing industry, holds significant potential as an ingredient in aquafeeds. However, its high content of non-starch polysaccharides (NSP) restricts the amount that can be incorporated into fish diets. To address these limitations, various [...] Read more.
Brewer’s spent grain (BSG), the primary byproduct generated by the brewing industry, holds significant potential as an ingredient in aquafeeds. However, its high content of non-starch polysaccharides (NSP) restricts the amount that can be incorporated into fish diets. To address these limitations, various pretreatment methods (physical, chemical, or enzymatic) can be applied prior to its inclusion in feed formulations. The objectives of the present study were (i) to optimize the conditions for enzymatic or microwave pretreatments to enhance the nutritional and functional profile of BSG, (ii) to determine the bioaccessibility and availability of specific nutrients and antioxidant compounds in diets including a high amount of BSG (pretreated or not) using an in vitro assay simulating the digestion of the gilthead seabream (Sparus aurata), and (iii) to evaluate the effect of such diet pretreatments on growth, metabolism, intestinal microbiota, and oxidative status in live fish. For this study, three experimental diets were formulated: one containing 20% untreated BSG (C) and two containing the same amount of BSG pretreated either enzymatically (H) or with microwave heating (MW). Each diet was administered ad libitum to triplicate groups of 22 juvenile sea bream (mean weight 60 g) over a period of three months. The results indicated that the microwave-treated BSG led to improved growth (0.69 ± 0.02%) and feed efficiency (0.80 ± 0.02 weight gain/total feed intake) and enhanced immune status (alkaline phosphatase activity = 11,811.68 ± 3426.92 U/mg SP), compared to the control diet (SGR = 0.59 ± 0.06%; FE: 0.68 ± 0.03 weight gain/total feed intake; alkaline phosphatase activity = 8590.29 ± 3663.44 U/mg SP). Moreover, fish fed on both pretreated BSG diets exhibited significant differences in metabolic parameters and functional profile of their intestinal microbiota when compared to the control group. Consequently, the findings suggest that the pretreatment of BSG, whether by enzymatic or microwave methods, results in notable differences in its nutritional value and the bioavailability of functional components, which, in turn, have a substantial impact on the growth and metabolism of gilthead seabream. Full article
(This article belongs to the Special Issue Aquatic Animal Nutrition and Feed)
Show Figures

Figure 1

19 pages, 4354 KiB  
Article
Effects of Increased Feeding Rates on Oxidative Stress, Biochemical Indices and Growth of Juvenile Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus tukula ♂) Under Mild-Hyperoxia Conditions
by Zhiyi Wang, Yikai Zheng, Dengpan Dong, Xiefa Song and Meng Li
Fishes 2025, 10(5), 228; https://doi.org/10.3390/fishes10050228 - 15 May 2025
Viewed by 1629
Abstract
Evaluating the interaction between dissolved oxygen (DO) and feeding rates (FRs) in fish is crucial for the precise regulation of aquaculture water environments. This study established four treatment groups: the CK group (DO = 6 mg/L, FR = 2% of body weight), the [...] Read more.
Evaluating the interaction between dissolved oxygen (DO) and feeding rates (FRs) in fish is crucial for the precise regulation of aquaculture water environments. This study established four treatment groups: the CK group (DO = 6 mg/L, FR = 2% of body weight), the HFR group (DO = 6 mg/L, FR = 3.5% of body weight), the HDO group (DO = 9 mg/L, FR = 2% of body weight), and the MIX group (DO = 6 mg/L, FR = 3.5% of body weight). The combined effects of dissolved oxygen and feeding levels on oxidative stress, biochemical indicators, and growth in the hybrid grouper were evaluated. The results showed that mild hyperoxia significantly upregulates the expression of antioxidant enzyme genes (cat, cu/zn-sod, and gpx1a). Under conditions of mild hyperoxia, an increased feed rate can significantly downregulate the expression of cat and gpx1a. Additionally, serum levels of carnosine and cndp1 in muscle tissue are significantly elevated. Furthermore, a high FR mitigates the downregulation of glucose, triglycerides, and alanine aminotransferase (ALT) induced by mild hyperoxia while alleviating the upregulation of aspartate aminotransferase (AST). The combined effects of mild hyperoxia and high FR significantly enhance final body weight and specific growth rate (SGR), with notable interactions observed. Mild hyperoxia reduces serum levels of bile acids and glycocholic acid under high feeding conditions while significantly downregulating the expression of ghrb in both liver and brain tissues. In summary, high FRs alleviate oxidative stress and energy substrate deficiency in juvenile hybrid grouper under mild-hyperoxia environments. Moreover, the synergistic effect between mild hyperoxia and high FR promotes growth by improving bile acid enterohepatic circulation. This study provides a reference for the regulation of DO and feeding in modern industrial intensive mariculture. Full article
(This article belongs to the Section Physiology and Biochemistry)
Show Figures

Figure 1

21 pages, 15229 KiB  
Article
Establishment and Characteristics of the Spermatogonial Stem Cell Line from the Yellow River Carp (Cyprinus carpio haematopterus)
by Huijie Zhou, Tianqi Liu, Tan Zhang, Zhipeng Sun, Huan Xu, Tingting Zhang, Yashan Yin, Na Li, Ting Yan and Youyi Kuang
Biology 2025, 14(5), 536; https://doi.org/10.3390/biology14050536 - 12 May 2025
Viewed by 641
Abstract
To address the growing consumer demands for improved fish meat quality, desirable morphological traits, and sustainable production practices, researchers have intensified efforts in the selective breeding and genetic improvement of carp (Cyprinus carpio) varieties. However, traditional breeding methods are often time-consuming [...] Read more.
To address the growing consumer demands for improved fish meat quality, desirable morphological traits, and sustainable production practices, researchers have intensified efforts in the selective breeding and genetic improvement of carp (Cyprinus carpio) varieties. However, traditional breeding methods are often time-consuming and inefficient, which poses challenges to the sustainable development of the carp aquaculture industry. The establishment of germ stem cell lines offers a crucial tool for the study of germ cells, genetic improvement, and species conservation. In this study, we successfully established a spermatogonial stem cell line (YRSSCs) from Yellow River carp (Cyprinus carpio haematopterus) that can be cultured in vitro for the long term. We optimized the culture conditions to maintain their self-renewal and differentiation capabilities. The results demonstrated that YRSSCs have a diploid karyotype and can stably proliferate for over a year in L-15 medium supplemented with 5 mmol/L HEPES, 50 μmol/L β-mercaptoethanol, 15% FBS, 2 ng/mL bFGF, 2 ng/mL LIF, 1% carp serum, 800 IU/mL penicillin, 0.8 mg/mL streptomycin, 2 μg/mL amphotericin B, 1% zebrafish embryo extract, and 1% glutamine at 30 °C in the absence of CO2. The cells exhibited a typical germ stem cell gene expression profile, with strong expression of the vasa, plzf-a, and Oct4-a genes. Additionally, this study found that YRSSCs possess the ability to differentiate in vitro and functionally colonize in vivo within recipient bodies. This research explored the establishment of YRSSCs and their differentiation potential both in vitro and in vivo, providing a novel strategy for the genetic improvement of aquaculture fish species through germ stem cell-based gene editing and transplantation technologies. Full article
Show Figures

Figure 1

22 pages, 6560 KiB  
Article
Impact of Steam Processing on the Physicochemical Properties and Flavor Profile of Takifugu flavidus: A Comprehensive Quality Evaluation
by Zhihui Liu, Xiaoting Chen, Bei Chen, Yinghong Qu, Haiyan Tang, Ruowen Wu, Kun Qiao, Yongchang Su, Nan Pan, Tingru Chen, Wenzheng Shi and Zhiyu Liu
Foods 2025, 14(9), 1537; https://doi.org/10.3390/foods14091537 - 27 Apr 2025
Viewed by 602
Abstract
As a culturally iconic Chinese delicacy, pufferfish lacks systematic research on thermal processing optimization and pre-cooked meal development, limiting its industrial standardization and quality preservation. This study aimed to bridge this gap by evaluating steaming effects on Takifugu flavidus quality. This study systematically [...] Read more.
As a culturally iconic Chinese delicacy, pufferfish lacks systematic research on thermal processing optimization and pre-cooked meal development, limiting its industrial standardization and quality preservation. This study aimed to bridge this gap by evaluating steaming effects on Takifugu flavidus quality. This study systematically evaluated its physicochemical properties and flavor profiles under different steaming durations by determining the water loss rate, mass loss rate, water distribution status, textural properties, color, and free amino acid content using an electronic nose, electronic tongue, and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). The results indicated that the core temperature of the fish meat reached 70 °C after 9 min of steaming. With higher steaming time, its mass loss rate and water loss rate generally increased, though the water loss rate temporarily decreased at 10 min. The mass loss rate stabilized after 12.5 min. The hardness and chewiness of the fish meat increased significantly when steamed for 12.5 min or longer. After 5 min of steaming, the brightness value and yellow-blue value of the fish meat significantly increased, whereas the red-green value significantly decreased. The total free amino acid content showed a fluctuating upward trend and electronic tongue analysis revealed an increase in umami and richness after steaming. Electronic nose and HS-GC-IMS analyses demonstrated that the variety and content of volatile flavor compounds significantly increased with prolonged steaming. Sensory evaluation showed that the 10 min steaming group exhibited better texture and color, while the 15 min steaming group had the best odor. Therefore, the optimal steaming time for T. flavidus was determined to be 10–15 min. For home cooking, a 15 min steaming process achieves the peak abundance of flavor compounds and the highest sensory evaluation score. For the industrial production of pre-cooked meals, a 10 min steaming process can meet the doneness requirements while maintaining suitable textural properties and color stability. The findings of this study not only advance the scientific understanding of thermal processing effects on pufferfish quality attributes, but also establish a critical technological foundation for developing standardized industrial processing protocols and high-quality pre-prepared pufferfish products. Full article
Show Figures

Figure 1

21 pages, 2993 KiB  
Article
Mixtures of Algal Oil and Terrestrial Oils in Diets of Tiger Puffer (Takifugu rubripes)
by Lu Zhang, Haoxuan Li, Ziling Song, Qingyan Gao, Chenchen Bian, Qiang Ma, Yuliang Wei, Mengqing Liang and Houguo Xu
Animals 2025, 15(9), 1187; https://doi.org/10.3390/ani15091187 - 22 Apr 2025
Viewed by 660
Abstract
The n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have a key role in maintaining fish growth and health. However, fish oil (FO), the main source of n-3 LC-PUFAs, is in relative shortage due to the rapid development of the aquaculture industry. In this [...] Read more.
The n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have a key role in maintaining fish growth and health. However, fish oil (FO), the main source of n-3 LC-PUFAs, is in relative shortage due to the rapid development of the aquaculture industry. In this study, we investigated the efficacy of replacing fish oil with mixtures of algal oil (AO) from Schizochytrium sp. and terrestrially sourced oils (animal oil poultry oil (PO) or vegetable oil rapeseed oil (RO)) in the diets of juvenile tiger puffer (average initial body weight 23.8 ± 1.51 g). An 8-week feeding trial was conducted using three experimental diets: a control diet containing 6% added FO (control FO-C) and two diets with 3% AO + 3% PO or RO (groups AO+PO and AO+RO, respectively), replacing FO. Each diet was fed to triplicate tanks with 25 fish in each tank. The weight gain, feed conversion ratio, body composition, and serum biochemical parameters were not significantly different among the three groups, except that the AO+PO group had a significantly lower muscle lipid content than the other two groups. The AO-added diets significantly increased the DHA content in whole fish, muscle, and liver samples but significantly reduced the EPA content. The oil mixture treatments significantly increased the contents of monounsaturated fatty acid (MUFA) but significantly decreased the contents of saturated fatty acids (SFAs) in the liver and whole fish samples. However, the MUFA and SFA contents in the muscle samples were not significantly different among the dietary groups. The diets with oil mixtures did not affect the hepatic histology but tended to result in the atrophy of intestinal villi. The treatment diets downregulated the hepatic gene expression of proinflammatory cytokines (il-1β and tnf-α) and the fibrosis marker gene, acta2. However, the AO+PO diet inhibited the intestinal gene expression of the tight junction protein, claudin 18. In the muscle, the treatment diets upregulated the expression of genes related to cell differentiation and apoptosis (myod, myog, myf6, myf5, bcl-2, and bax). In conclusion, Schizochytrium sp. oil in combination with terrestrial oils (poultry oil or rapeseed oil) can be an effective alternative to fish oil in the diets of tiger puffer, but the mixing strategy may be better modified in consideration of intestinal health. Full article
(This article belongs to the Special Issue Novel Feeds Affect Fish Growth Performance and Immunity)
Show Figures

Figure 1

17 pages, 297 KiB  
Review
Introduction of Non-Native Fish Species in Red Sea Aquaculture: Implications for Marine Ecosystem Integrity
by Seemab Zehra, Pranav Pulukkayi, Mahalakshmi Boopathi, Fadiyah Baalkhuyur, Mohammed Alghamdi, Ali Al Shaikhi, Youssef S. Alhafedh and Asaad H. Mohamed
Diversity 2025, 17(4), 296; https://doi.org/10.3390/d17040296 - 20 Apr 2025
Viewed by 766
Abstract
Aquaculture is a rapidly expanding industry that holds significant potential to meet growing seafood demands and it is expected to alleviate pressures on wild stocks. The use of non-native fishes has been practiced worldwide as a strategy to enhance production and to promote [...] Read more.
Aquaculture is a rapidly expanding industry that holds significant potential to meet growing seafood demands and it is expected to alleviate pressures on wild stocks. The use of non-native fishes has been practiced worldwide as a strategy to enhance production and to promote financial sustainability in aquaculture. However, the introduction and cultivation of non-native species (hereafter, NNS) in aquaculture can pose severe risks to marine ecosystems, particularly in biodiverse regions like the Red Sea. This review explores insights about commercially produced species, the rationale of introducing NNS, and the potential associated risks, focusing on escapees, genetic pollution, and competition with native species, disease transmission, and habitat modification. The review also highlights the ecological consequences of such risks and proposes strategies to mitigate their impacts, emphasizing the need for comprehensive monitoring, regulatory frameworks, and sustainable aquaculture practices to safeguard marine ecosystem integrity in the region. Full article
(This article belongs to the Section Marine Diversity)
Back to TopTop